Rename app.py to analyze_corporate_finance.py
#537
by
AtmanLi
- opened
- analyze_corporate_finance.py +475 -0
- app.py +0 -69
analyze_corporate_finance.py
ADDED
|
@@ -0,0 +1,475 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, load_tool, tool
|
| 2 |
+
import datetime
|
| 3 |
+
import requests
|
| 4 |
+
import pytz
|
| 5 |
+
import yaml
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
import seaborn as sns
|
| 9 |
+
import numpy as np
|
| 10 |
+
from datetime import datetime, timedelta
|
| 11 |
+
from typing import Dict, List, Optional, Tuple
|
| 12 |
+
import io
|
| 13 |
+
import base64
|
| 14 |
+
from enum import Enum
|
| 15 |
+
from tools.final_answer import FinalAnswerTool
|
| 16 |
+
from Gradio_UI import GradioUI
|
| 17 |
+
|
| 18 |
+
# 基础工具定义
|
| 19 |
+
@tool
|
| 20 |
+
def my_custom_tool(arg1: str, arg2: int) -> str:
|
| 21 |
+
"""A tool that does nothing yet
|
| 22 |
+
Args:
|
| 23 |
+
arg1: the first argument
|
| 24 |
+
arg2: the second argument
|
| 25 |
+
"""
|
| 26 |
+
return "What magic will you build ?"
|
| 27 |
+
|
| 28 |
+
@tool
|
| 29 |
+
def get_current_time_in_timezone(timezone: str) -> str:
|
| 30 |
+
"""A tool that fetches the current local time in a specified timezone.
|
| 31 |
+
Args:
|
| 32 |
+
timezone: A string representing a valid timezone (e.g., 'America/New_York').
|
| 33 |
+
"""
|
| 34 |
+
try:
|
| 35 |
+
tz = pytz.timezone(timezone)
|
| 36 |
+
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
|
| 37 |
+
return f"The current local time in {timezone} is: {local_time}"
|
| 38 |
+
except Exception as e:
|
| 39 |
+
return f"Error fetching time for timezone '{timezone}': {str(e)}"
|
| 40 |
+
|
| 41 |
+
# 公司收支数据分析工具
|
| 42 |
+
class AnalysisType(Enum):
|
| 43 |
+
OVERVIEW = "overview"
|
| 44 |
+
TREND = "trend"
|
| 45 |
+
CATEGORY = "category"
|
| 46 |
+
BUDGET = "budget"
|
| 47 |
+
CASH_FLOW = "cash_flow"
|
| 48 |
+
DEPARTMENT = "department"
|
| 49 |
+
|
| 50 |
+
@tool
|
| 51 |
+
def analyze_corporate_finance(data_source: str,
|
| 52 |
+
analysis_type: str = "overview",
|
| 53 |
+
period: Optional[str] = None,
|
| 54 |
+
department: Optional[str] = None,
|
| 55 |
+
export_format: str = "text") -> str:
|
| 56 |
+
"""
|
| 57 |
+
公司收支数据分析工具 - 专业财务分析系统
|
| 58 |
+
|
| 59 |
+
Args:
|
| 60 |
+
data_source: 数据源路径(CSV/Excel)或JSON格式的财务数据
|
| 61 |
+
analysis_type: 分析类型 - overview, trend, category, budget, cash_flow, department
|
| 62 |
+
period: 时间周期筛选,如 '2024-Q1:2024-Q4' 或 'last_12_months'
|
| 63 |
+
department: 部门筛选,如 '销售部', '技术部'
|
| 64 |
+
export_format: 输出格式 - text, detailed, visual
|
| 65 |
+
"""
|
| 66 |
+
try:
|
| 67 |
+
# 加载和预处理数据
|
| 68 |
+
df = load_financial_data(data_source)
|
| 69 |
+
df = preprocess_financial_data(df)
|
| 70 |
+
|
| 71 |
+
# 应用筛选条件
|
| 72 |
+
df = apply_filters(df, period, department)
|
| 73 |
+
|
| 74 |
+
if len(df) == 0:
|
| 75 |
+
return "没有找到符合条件的数据,请检查筛选条件"
|
| 76 |
+
|
| 77 |
+
# 执行分析
|
| 78 |
+
if analysis_type == AnalysisType.OVERVIEW.value:
|
| 79 |
+
result = generate_financial_overview(df)
|
| 80 |
+
elif analysis_type == AnalysisType.TREND.value:
|
| 81 |
+
result = analyze_financial_trends(df)
|
| 82 |
+
elif analysis_type == AnalysisType.CATEGORY.value:
|
| 83 |
+
result = analyze_category_performance(df)
|
| 84 |
+
elif analysis_type == AnalysisType.BUDGET.value:
|
| 85 |
+
result = analyze_budget_variance(df)
|
| 86 |
+
elif analysis_type == AnalysisType.CASH_FLOW.value:
|
| 87 |
+
result = analyze_cash_flow(df)
|
| 88 |
+
elif analysis_type == AnalysisType.DEPARTMENT.value:
|
| 89 |
+
result = analyze_department_performance(df)
|
| 90 |
+
else:
|
| 91 |
+
return "不支持的分析类型,请选择: overview, trend, category, budget, cash_flow, department"
|
| 92 |
+
|
| 93 |
+
# 根据输出格式调整结果
|
| 94 |
+
if export_format == "visual":
|
| 95 |
+
chart_url = generate_financial_charts(df, analysis_type)
|
| 96 |
+
return f"{result}\n\n"
|
| 97 |
+
elif export_format == "detailed":
|
| 98 |
+
return generate_detailed_report(df, analysis_type)
|
| 99 |
+
else:
|
| 100 |
+
return result
|
| 101 |
+
|
| 102 |
+
except Exception as e:
|
| 103 |
+
return f"财务分析过程中出现错误: {str(e)}"
|
| 104 |
+
|
| 105 |
+
def load_financial_data(data_source: str) -> pd.DataFrame:
|
| 106 |
+
"""加载财务数据,支持多种格式"""
|
| 107 |
+
try:
|
| 108 |
+
if data_source.endswith('.csv'):
|
| 109 |
+
return pd.read_csv(data_source)
|
| 110 |
+
elif data_source.endswith(('.xlsx', '.xls')):
|
| 111 |
+
return pd.read_excel(data_source)
|
| 112 |
+
else:
|
| 113 |
+
# 尝试解析为JSON
|
| 114 |
+
return pd.read_json(io.StringIO(data_source))
|
| 115 |
+
except Exception as e:
|
| 116 |
+
raise Exception(f"数据加载失败: {str(e)}")
|
| 117 |
+
|
| 118 |
+
def preprocess_financial_data(df: pd.DataFrame) -> pd.DataFrame:
|
| 119 |
+
"""财务数据清洗和预处理"""
|
| 120 |
+
# 基本列名标准化
|
| 121 |
+
column_mapping = {
|
| 122 |
+
'日期': 'date', '时间': 'date', '交易日期': 'date',
|
| 123 |
+
'金额': 'amount', '收支金额': 'amount', '交易金额': 'amount',
|
| 124 |
+
'类型': 'type', '收支类型': 'type', '交易类型': 'type',
|
| 125 |
+
'类别': 'category', '分类': 'category', '收支类别': 'category',
|
| 126 |
+
'部门': 'department', '所属部门': 'department'
|
| 127 |
+
}
|
| 128 |
+
|
| 129 |
+
df.columns = [column_mapping.get(col, col) for col in df.columns]
|
| 130 |
+
|
| 131 |
+
# 确保必要列存在
|
| 132 |
+
required_columns = ['date', 'amount', 'type']
|
| 133 |
+
for col in required_columns:
|
| 134 |
+
if col not in df.columns:
|
| 135 |
+
raise Exception(f"缺少必要列: {col}")
|
| 136 |
+
|
| 137 |
+
# 日期处理
|
| 138 |
+
df['date'] = pd.to_datetime(df['date'], errors='coerce')
|
| 139 |
+
df = df.dropna(subset=['date'])
|
| 140 |
+
|
| 141 |
+
# 数值处理
|
| 142 |
+
df['amount'] = pd.to_numeric(df['amount'], errors='coerce')
|
| 143 |
+
df['amount'] = df['amount'].fillna(0)
|
| 144 |
+
|
| 145 |
+
# 分类字段处理
|
| 146 |
+
if 'category' not in df.columns:
|
| 147 |
+
df['category'] = '未分类'
|
| 148 |
+
else:
|
| 149 |
+
df['category'] = df['category'].fillna('未分类')
|
| 150 |
+
|
| 151 |
+
if 'department' not in df.columns:
|
| 152 |
+
df['department'] = '通用部门'
|
| 153 |
+
else:
|
| 154 |
+
df['department'] = df['department'].fillna('通用部门')
|
| 155 |
+
|
| 156 |
+
# 添加时间维度
|
| 157 |
+
df['year'] = df['date'].dt.year
|
| 158 |
+
df['month'] = df['date'].dt.month
|
| 159 |
+
df['quarter'] = df['date'].dt.quarter
|
| 160 |
+
df['year_month'] = df['date'].dt.to_period('M')
|
| 161 |
+
df['day_of_week'] = df['date'].dt.day_name()
|
| 162 |
+
|
| 163 |
+
return df
|
| 164 |
+
|
| 165 |
+
def apply_filters(df: pd.DataFrame, period: Optional[str],
|
| 166 |
+
department: Optional[str]) -> pd.DataFrame:
|
| 167 |
+
"""应用时间和部门筛选"""
|
| 168 |
+
if period:
|
| 169 |
+
if period == 'last_12_months':
|
| 170 |
+
cutoff_date = datetime.now() - timedelta(days=365)
|
| 171 |
+
df = df[df['date'] >= cutoff_date]
|
| 172 |
+
elif ':' in period:
|
| 173 |
+
start_str, end_str = period.split(':')
|
| 174 |
+
start_date = pd.to_datetime(start_str)
|
| 175 |
+
end_date = pd.to_datetime(end_str)
|
| 176 |
+
df = df[(df['date'] >= start_date) & (df['date'] <= end_date)]
|
| 177 |
+
|
| 178 |
+
if department:
|
| 179 |
+
df = df[df['department'] == department]
|
| 180 |
+
|
| 181 |
+
return df
|
| 182 |
+
|
| 183 |
+
def generate_financial_overview(df: pd.DataFrame) -> str:
|
| 184 |
+
"""生成财务概览报告"""
|
| 185 |
+
total_income = df[df['type'] == '收入']['amount'].sum()
|
| 186 |
+
total_expense = df[df['type'] == '支出']['amount'].sum()
|
| 187 |
+
net_profit = total_income - total_expense
|
| 188 |
+
|
| 189 |
+
# 基本统计
|
| 190 |
+
total_transactions = len(df)
|
| 191 |
+
avg_transaction_amount = df['amount'].mean()
|
| 192 |
+
|
| 193 |
+
# 时间范围
|
| 194 |
+
date_range = f"{df['date'].min().strftime('%Y-%m-%d')} 至 {df['date'].max().strftime('%Y-%m-%d')}"
|
| 195 |
+
|
| 196 |
+
# 部门统计
|
| 197 |
+
dept_stats = df.groupby('department').agg({
|
| 198 |
+
'amount': ['sum', 'count']
|
| 199 |
+
}).round(2)
|
| 200 |
+
|
| 201 |
+
overview = f"""
|
| 202 |
+
🏢 **公司财务概览报告**
|
| 203 |
+
**分析时间范围:** {date_range}
|
| 204 |
+
|
| 205 |
+
📊 **核心财务指标:**
|
| 206 |
+
• 总收入: ¥{total_income:,.2f}
|
| 207 |
+
• 总支出: ¥{total_expense:,.2f}
|
| 208 |
+
• 净利润: ¥{net_profit:,.2f}
|
| 209 |
+
• 利润率: {net_profit/total_income*100 if total_income > 0 else 0:.1f}%
|
| 210 |
+
|
| 211 |
+
📈 **交易统计:**
|
| 212 |
+
• 总交易笔数: {total_transactions}笔
|
| 213 |
+
• 平均交易金额: ¥{avg_transaction_amount:,.2f}
|
| 214 |
+
• 收入交易: {len(df[df['type'] == '收入'])}笔
|
| 215 |
+
• 支出交易: {len(df[df['type'] == '支出'])}笔
|
| 216 |
+
|
| 217 |
+
👥 **部门贡献概览:**
|
| 218 |
+
{dept_stats.to_string()}
|
| 219 |
+
"""
|
| 220 |
+
|
| 221 |
+
return overview
|
| 222 |
+
|
| 223 |
+
def analyze_financial_trends(df: pd.DataFrame) -> str:
|
| 224 |
+
"""分析财务趋势"""
|
| 225 |
+
# 月度趋势分析
|
| 226 |
+
monthly_data = df.groupby('year_month').agg({
|
| 227 |
+
'amount': ['sum', 'count', 'mean']
|
| 228 |
+
}).round(2)
|
| 229 |
+
|
| 230 |
+
# 收入支出对比
|
| 231 |
+
monthly_breakdown = df.groupby(['year_month', 'type'])['amount'].sum().unstack(fill_value=0)
|
| 232 |
+
monthly_breakdown['净利润'] = monthly_breakdown.get('收入', 0) - monthly_breakdown.get('支出', 0)
|
| 233 |
+
|
| 234 |
+
trend_analysis = f"""
|
| 235 |
+
📈 **财务趋势分析报告**
|
| 236 |
+
|
| 237 |
+
📅 **月度趋势指标:**
|
| 238 |
+
{monthly_data.to_string()}
|
| 239 |
+
|
| 240 |
+
💰 **收入支出对比:**
|
| 241 |
+
{monthly_breakdown.to_string()}
|
| 242 |
+
|
| 243 |
+
🔍 **趋势洞察:**
|
| 244 |
+
• 月均交易额: ¥{monthly_data[('amount', 'sum')].mean():,.2f}
|
| 245 |
+
• 月均交易笔数: {monthly_data[('amount', 'count')].mean():.0f}
|
| 246 |
+
• 增长趋势: {'上升' if monthly_breakdown['净利润'].iloc[-1] > monthly_breakdown['净利润'].iloc[0] else '平稳'}
|
| 247 |
+
"""
|
| 248 |
+
|
| 249 |
+
return trend_analysis
|
| 250 |
+
|
| 251 |
+
def analyze_category_performance(df: pd.DataFrame) -> str:
|
| 252 |
+
"""分析收支类别绩效"""
|
| 253 |
+
category_stats = df.groupby(['category', 'type']).agg({
|
| 254 |
+
'amount': ['sum', 'count', 'mean']
|
| 255 |
+
}).round(2)
|
| 256 |
+
|
| 257 |
+
category_stats.columns = ['总金额', '交易笔数', '平均金额']
|
| 258 |
+
category_stats = category_stats.reset_index()
|
| 259 |
+
|
| 260 |
+
# Top类别分析
|
| 261 |
+
top_income = category_stats[category_stats['type'] == '收入'].nlargest(5, '总金额')
|
| 262 |
+
top_expense = category_stats[category_stats['type'] == '支出'].nlargest(5, '总金额')
|
| 263 |
+
|
| 264 |
+
category_analysis = f"""
|
| 265 |
+
🏷️ **收支类别绩效分析**
|
| 266 |
+
|
| 267 |
+
📊 **Top 5 收入类别:**
|
| 268 |
+
{top_income[['category', '总金额', '交易笔数']].to_string(index=False)}
|
| 269 |
+
|
| 270 |
+
📊 **Top 5 支出类别:**
|
| 271 |
+
{top_expense[['category', '总金额', '交易笔数']].to_string(index=False)}
|
| 272 |
+
|
| 273 |
+
💡 **效率指标:**
|
| 274 |
+
• 收入集中度: 前3类别占比 {top_income['总金额'].head(3).sum()/category_stats[category_stats['type']=='收入']['总金额'].sum()*100:.1f}%
|
| 275 |
+
• 支出集中度: 前3类别占比 {top_expense['总金额'].head(3).sum()/category_stats[category_stats['type']=='支出']['总金额'].sum()*100:.1f}%
|
| 276 |
+
"""
|
| 277 |
+
|
| 278 |
+
return category_analysis
|
| 279 |
+
|
| 280 |
+
def analyze_budget_variance(df: pd.DataFrame) -> str:
|
| 281 |
+
"""分析预算执行情况"""
|
| 282 |
+
# 这里使用模拟预算数据,实际应用中应该从数据库或配置文件中获取
|
| 283 |
+
budget_data = {
|
| 284 |
+
'销售收入': 1000000,
|
| 285 |
+
'技术服务': 500000,
|
| 286 |
+
'人力成本': 400000,
|
| 287 |
+
'营销费用': 200000,
|
| 288 |
+
'研发支出': 300000,
|
| 289 |
+
'行政管理': 150000
|
| 290 |
+
}
|
| 291 |
+
|
| 292 |
+
variance_report = "💰 **预算执行分析报告**\n\n"
|
| 293 |
+
|
| 294 |
+
actual_income = df[df['type'] == '收入'].groupby('category')['amount'].sum()
|
| 295 |
+
actual_expense = df[df['type'] == '支出'].groupby('category')['amount'].sum()
|
| 296 |
+
|
| 297 |
+
for category, budget in budget_data.items():
|
| 298 |
+
if category in actual_income.index:
|
| 299 |
+
actual = actual_income[category]
|
| 300 |
+
variance = (actual - budget) / budget * 100
|
| 301 |
+
status = "✅ 超额完成" if variance >= 0 else "⚠️ 未达预算"
|
| 302 |
+
variance_report += f"• {category}: 实际¥{actual:,.0f} / 预算¥{budget:,.0f} ({variance:+.1f}%) {status}\n"
|
| 303 |
+
elif category in actual_expense.index:
|
| 304 |
+
actual = actual_expense[category]
|
| 305 |
+
variance = (actual - budget) / budget * 100
|
| 306 |
+
status = "⚠️ 超预算" if variance > 0 else "✅ 预算内"
|
| 307 |
+
variance_report += f"• {category}: 实际¥{actual:,.0f} / 预算¥{budget:,.0f} ({variance:+.1f}%) {status}\n"
|
| 308 |
+
|
| 309 |
+
return variance_report
|
| 310 |
+
|
| 311 |
+
def analyze_cash_flow(df: pd.DataFrame) -> str:
|
| 312 |
+
"""分析现金流状况"""
|
| 313 |
+
monthly_cash_flow = df.groupby('year_month').apply(
|
| 314 |
+
lambda x: x[x['type'] == '收入']['amount'].sum() -
|
| 315 |
+
x[x['type'] == '支出']['amount'].sum()
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
cash_flow_analysis = f"""
|
| 319 |
+
💳 **现金流分析报告**
|
| 320 |
+
|
| 321 |
+
📊 **现金流指标:**
|
| 322 |
+
• 月均现金流: ¥{monthly_cash_flow.mean():,.2f}
|
| 323 |
+
• 现金流波动率: {monthly_cash_flow.std():.2f}
|
| 324 |
+
• 正现金流月份: {(monthly_cash_flow > 0).sum()}个月
|
| 325 |
+
• 负现金流月份: {(monthly_cash_flow < 0).sum()}个月
|
| 326 |
+
|
| 327 |
+
🔔 **现金流健康状况:**
|
| 328 |
+
{generate_cash_flow_health_assessment(monthly_cash_flow)}
|
| 329 |
+
"""
|
| 330 |
+
|
| 331 |
+
return cash_flow_analysis
|
| 332 |
+
|
| 333 |
+
def analyze_department_performance(df: pd.DataFrame) -> str:
|
| 334 |
+
"""部门绩效分析"""
|
| 335 |
+
dept_performance = df.groupby('department').agg({
|
| 336 |
+
'amount': ['sum', 'count', 'mean']
|
| 337 |
+
}).round(2)
|
| 338 |
+
|
| 339 |
+
dept_performance.columns = ['总金额', '交易笔数', '平均金额']
|
| 340 |
+
|
| 341 |
+
# 部门贡献分析
|
| 342 |
+
dept_income = df[df['type'] == '收入'].groupby('department')['amount'].sum()
|
| 343 |
+
dept_expense = df[df['type'] == '支出'].groupby('department')['amount'].sum()
|
| 344 |
+
|
| 345 |
+
dept_analysis = f"""
|
| 346 |
+
👥 **部门绩效分析报告**
|
| 347 |
+
|
| 348 |
+
📊 **各部门财务表现:**
|
| 349 |
+
{dept_performance.to_string()}
|
| 350 |
+
|
| 351 |
+
🎯 **部门贡献分析:**
|
| 352 |
+
• 收入Top部门: {dept_income.nlargest(3).to_string()}
|
| 353 |
+
• 支出Top部门: {dept_expense.nlargest(3).to_string()}
|
| 354 |
+
• 净收益最佳部门: {(dept_income - dept_expense).nlargest(3).to_string()}
|
| 355 |
+
"""
|
| 356 |
+
|
| 357 |
+
return dept_analysis
|
| 358 |
+
|
| 359 |
+
def generate_financial_charts(df: pd.DataFrame, analysis_type: str) -> str:
|
| 360 |
+
"""生成财务分析图表"""
|
| 361 |
+
plt.figure(figsize=(12, 8))
|
| 362 |
+
|
| 363 |
+
if analysis_type == AnalysisType.OVERVIEW.value:
|
| 364 |
+
# 收支趋势图
|
| 365 |
+
monthly_data = df.groupby(['year_month', 'type'])['amount'].sum().unstack()
|
| 366 |
+
monthly_data.plot(kind='line', ax=plt.gca())
|
| 367 |
+
plt.title('月度收支趋势')
|
| 368 |
+
plt.xticks(rotation=45)
|
| 369 |
+
|
| 370 |
+
elif analysis_type == AnalysisType.CATEGORY.value:
|
| 371 |
+
# 类别分布图
|
| 372 |
+
category_totals = df.groupby('category')['amount'].sum().nlargest(8)
|
| 373 |
+
plt.pie(category_totals.values, labels=category_totals.index, autopct='%1.1f%%')
|
| 374 |
+
plt.title('消费类别分布')
|
| 375 |
+
|
| 376 |
+
plt.tight_layout()
|
| 377 |
+
|
| 378 |
+
# 转换为base64编码图像
|
| 379 |
+
img_buffer = io.BytesIO()
|
| 380 |
+
plt.savefig(img_buffer, format='png', bbox_inches='tight')
|
| 381 |
+
img_buffer.seek(0)
|
| 382 |
+
img_str = base64.b64encode(img_buffer.read()).decode()
|
| 383 |
+
|
| 384 |
+
return f"data:image/png;base64,{img_str}"
|
| 385 |
+
|
| 386 |
+
def generate_detailed_report(df: pd.DataFrame, analysis_type: str) -> str:
|
| 387 |
+
"""生成详细分析报告"""
|
| 388 |
+
base_report = ""
|
| 389 |
+
if analysis_type == AnalysisType.OVERVIEW.value:
|
| 390 |
+
base_report = generate_financial_overview(df)
|
| 391 |
+
# 其他类型的详细报告...
|
| 392 |
+
|
| 393 |
+
detailed_stats = f"""
|
| 394 |
+
📋 **详细统计数据:**
|
| 395 |
+
|
| 396 |
+
📈 **描述性统计:**
|
| 397 |
+
{df['amount'].describe().to_string()}
|
| 398 |
+
|
| 399 |
+
📅 **时间范围统计:**
|
| 400 |
+
• 最早交易: {df['date'].min().strftime('%Y-%m-%d')}
|
| 401 |
+
• 最晚交易: {df['date'].max().strftime('%Y-%m-%d')}
|
| 402 |
+
• 分析天数: {(df['date'].max() - df['date'].min()).days}天
|
| 403 |
+
"""
|
| 404 |
+
|
| 405 |
+
return base_report + detailed_stats
|
| 406 |
+
|
| 407 |
+
def generate_cash_flow_health_assessment(monthly_cash_flow: pd.Series) -> str:
|
| 408 |
+
"""生成现金流健康评估"""
|
| 409 |
+
negative_months = (monthly_cash_flow < 0).sum()
|
| 410 |
+
total_months = len(monthly_cash_flow)
|
| 411 |
+
|
| 412 |
+
if negative_months == 0:
|
| 413 |
+
return "🟢 优秀: 所有月份均为正现金流,财务状况非常健康"
|
| 414 |
+
elif negative_months <= total_months * 0.25:
|
| 415 |
+
return "🟡 良好: 少数月份出现负现金流,整体状况良好"
|
| 416 |
+
elif negative_months <= total_months * 0.5:
|
| 417 |
+
return "🟠 一般: 较多月份出现负现金流,需要关注资金管理"
|
| 418 |
+
else:
|
| 419 |
+
return "🔴 风险: 大部分月份为负现金流,存在资金风险"
|
| 420 |
+
|
| 421 |
+
# 快速财务检查工具
|
| 422 |
+
@tool
|
| 423 |
+
def quick_financial_check(file_path: str) -> str:
|
| 424 |
+
"""快速财务健康检查工具"""
|
| 425 |
+
try:
|
| 426 |
+
df = load_financial_data(file_path)
|
| 427 |
+
df = preprocess_financial_data(df)
|
| 428 |
+
|
| 429 |
+
overview = generate_financial_overview(df)
|
| 430 |
+
cash_flow = analyze_cash_flow(df)
|
| 431 |
+
|
| 432 |
+
return f"{overview}\n\n{cash_flow}"
|
| 433 |
+
except Exception as e:
|
| 434 |
+
return f"快速检查失败: {str(e)}"
|
| 435 |
+
|
| 436 |
+
# 初始化其他工具
|
| 437 |
+
final_answer = FinalAnswerTool()
|
| 438 |
+
|
| 439 |
+
# 配置模型
|
| 440 |
+
model = HfApiModel(
|
| 441 |
+
max_tokens=2096,
|
| 442 |
+
temperature=0.5,
|
| 443 |
+
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
|
| 444 |
+
custom_role_conversions=None,
|
| 445 |
+
)
|
| 446 |
+
|
| 447 |
+
# 加载其他工具
|
| 448 |
+
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
|
| 449 |
+
|
| 450 |
+
# 加载提示模板
|
| 451 |
+
with open("prompts.yaml", 'r') as stream:
|
| 452 |
+
prompt_templates = yaml.safe_load(stream)
|
| 453 |
+
|
| 454 |
+
# 创建代理并集成所有工具
|
| 455 |
+
agent = CodeAgent(
|
| 456 |
+
model=model,
|
| 457 |
+
tools=[
|
| 458 |
+
final_answer,
|
| 459 |
+
analyze_corporate_finance, # 公司财务分析工具
|
| 460 |
+
quick_financial_check, # 快速检查工具
|
| 461 |
+
image_generation_tool,
|
| 462 |
+
get_current_time_in_timezone,
|
| 463 |
+
my_custom_tool
|
| 464 |
+
],
|
| 465 |
+
max_steps=12, # 增加步骤限制以支持复杂分析
|
| 466 |
+
verbosity_level=1,
|
| 467 |
+
grammar=None,
|
| 468 |
+
planning_interval=None,
|
| 469 |
+
name="Corporate Finance Analyst Pro",
|
| 470 |
+
description="专业的企业财务分析AI助手,支持多维度收支数据分析和可视化",
|
| 471 |
+
prompt_templates=prompt_templates
|
| 472 |
+
)
|
| 473 |
+
|
| 474 |
+
# 启动Gradio界面
|
| 475 |
+
GradioUI(agent).launch()
|
app.py
DELETED
|
@@ -1,69 +0,0 @@
|
|
| 1 |
-
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
|
| 2 |
-
import datetime
|
| 3 |
-
import requests
|
| 4 |
-
import pytz
|
| 5 |
-
import yaml
|
| 6 |
-
from tools.final_answer import FinalAnswerTool
|
| 7 |
-
|
| 8 |
-
from Gradio_UI import GradioUI
|
| 9 |
-
|
| 10 |
-
# Below is an example of a tool that does nothing. Amaze us with your creativity !
|
| 11 |
-
@tool
|
| 12 |
-
def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
|
| 13 |
-
#Keep this format for the description / args / args description but feel free to modify the tool
|
| 14 |
-
"""A tool that does nothing yet
|
| 15 |
-
Args:
|
| 16 |
-
arg1: the first argument
|
| 17 |
-
arg2: the second argument
|
| 18 |
-
"""
|
| 19 |
-
return "What magic will you build ?"
|
| 20 |
-
|
| 21 |
-
@tool
|
| 22 |
-
def get_current_time_in_timezone(timezone: str) -> str:
|
| 23 |
-
"""A tool that fetches the current local time in a specified timezone.
|
| 24 |
-
Args:
|
| 25 |
-
timezone: A string representing a valid timezone (e.g., 'America/New_York').
|
| 26 |
-
"""
|
| 27 |
-
try:
|
| 28 |
-
# Create timezone object
|
| 29 |
-
tz = pytz.timezone(timezone)
|
| 30 |
-
# Get current time in that timezone
|
| 31 |
-
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
|
| 32 |
-
return f"The current local time in {timezone} is: {local_time}"
|
| 33 |
-
except Exception as e:
|
| 34 |
-
return f"Error fetching time for timezone '{timezone}': {str(e)}"
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
final_answer = FinalAnswerTool()
|
| 38 |
-
|
| 39 |
-
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
|
| 40 |
-
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
|
| 41 |
-
|
| 42 |
-
model = HfApiModel(
|
| 43 |
-
max_tokens=2096,
|
| 44 |
-
temperature=0.5,
|
| 45 |
-
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
|
| 46 |
-
custom_role_conversions=None,
|
| 47 |
-
)
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
# Import tool from Hub
|
| 51 |
-
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
|
| 52 |
-
|
| 53 |
-
with open("prompts.yaml", 'r') as stream:
|
| 54 |
-
prompt_templates = yaml.safe_load(stream)
|
| 55 |
-
|
| 56 |
-
agent = CodeAgent(
|
| 57 |
-
model=model,
|
| 58 |
-
tools=[final_answer], ## add your tools here (don't remove final answer)
|
| 59 |
-
max_steps=6,
|
| 60 |
-
verbosity_level=1,
|
| 61 |
-
grammar=None,
|
| 62 |
-
planning_interval=None,
|
| 63 |
-
name=None,
|
| 64 |
-
description=None,
|
| 65 |
-
prompt_templates=prompt_templates
|
| 66 |
-
)
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
GradioUI(agent).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|