Zaixi's picture
1
dcacefd
import copy
import sys
sys.path.append("..")
import numpy as np
from rdkit import RDConfig
import random
import os
import torch
import torch.nn as nn
from torch.nn import Module, Linear, Embedding
from torch.nn import functional as F
from torch_scatter import scatter_add, scatter_mean
from torch_geometric.data import Data, Batch
from rdkit.Chem import ChemicalFeatures
from rdkit import Chem
from rdkit.Chem import rdchem
from .encoders import get_encoder, MLP
from .encoders.cftfm import residue_atom_mask
from .common import *
from .protein_features import *
from .esmadapter import *
from .esm2adapter import *
from utils.pdb_utils import VOCAB
from utils.rmsd import kabsch_torch
from utils.protein_ligand import PDBProtein
from utils.relax import openmm_relax
ATOM_FAMILIES = ['Acceptor', 'Donor', 'Aromatic', 'Hydrophobe', 'LumpedHydrophobe', 'NegIonizable', 'PosIonizable',
'ZnBinder']
ATOM_FAMILIES_ID = {s: i for i, s in enumerate(ATOM_FAMILIES)}
NUM_ATOMS = [4, 5, 11, 8, 8, 6, 9, 9, 4, 10, 8, 8, 9, 8, 11, 7, 6, 7, 14, 12, 7]
ATOM_TYPES = [
'', 'N', 'CA', 'C', 'O', 'CB', 'CG', 'CG1', 'CG2', 'OG', 'OG1', 'SG', 'CD',
'CD1', 'CD2', 'ND1', 'ND2', 'OD1', 'OD2', 'SD', 'CE', 'CE1', 'CE2', 'CE3',
'NE', 'NE1', 'NE2', 'OE1', 'OE2', 'CH2', 'NH1', 'NH2', 'OH', 'CZ', 'CZ2',
'CZ3', 'NZ', 'OXT'
]
RES_ATOM14 = [
[''] * 14,
['N', 'CA', 'C', 'O', 'CB', '', '', '', '', '', '', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD', 'NE', 'CZ', 'NH1', 'NH2', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'CG', 'OD1', 'ND2', '', '', '', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'CG', 'OD1', 'OD2', '', '', '', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'SG', '', '', '', '', '', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD', 'OE1', 'NE2', '', '', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD', 'OE1', 'OE2', '', '', '', '', ''],
['N', 'CA', 'C', 'O', '', '', '', '', '', '', '', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'CG', 'ND1', 'CD2', 'CE1', 'NE2', '', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'CG1', 'CG2', 'CD1', '', '', '', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD1', 'CD2', '', '', '', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD', 'CE', 'NZ', '', '', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'CG', 'SD', 'CE', '', '', '', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD1', 'CD2', 'CE1', 'CE2', 'CZ', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD', '', '', '', '', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'OG', '', '', '', '', '', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'OG1', 'CG2', '', '', '', '', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD1', 'CD2', 'NE1', 'CE2', 'CE3', 'CZ2', 'CZ3', 'CH2'],
['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD1', 'CD2', 'CE1', 'CE2', 'CZ', 'OH', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'CG1', 'CG2', '', '', '', '', '', '', ''],
]
RES_ATOM_TYPE = [[ATOM_TYPES.index(a) for a in res]for res in RES_ATOM14]
AA_NUMBER_NAME = {1: 'ALA', 2: 'ARG', 3: 'ASN', 4: 'ASP', 5: 'CYS', 6: 'GLN', 7: 'GLU', 8: 'GLY', 9: 'HIS', 10: 'ILE',
11: 'LEU', 12: 'LYS', 13: 'MET', 14: 'PHE', 15: 'PRO', 16: 'SER', 17: 'THR', 18: 'TRP', 19: 'TYR',
20: 'VAL'}
RES_ATOMS = [[ATOM_TYPES.index(i) for i in res if i != ''] for res in RES_ATOM14]
BOND_TYPE = {1: rdchem.BondType.SINGLE, 2: rdchem.BondType.DOUBLE, 3: rdchem.BondType.TRIPLE,
12: rdchem.BondType.AROMATIC}
def quaternion_to_matrix(q):
"""Convert a quaternion to its corresponding rotation matrix."""
q = q / q.norm()
w, x, y, z = q
R = torch.zeros((3, 3), device=q.device)
R[0, 0] = 1 - 2 * (y ** 2 + z ** 2)
R[0, 1] = 2 * (x * y - z * w)
R[0, 2] = 2 * (x * z + y * w)
R[1, 0] = 2 * (x * y + z * w)
R[1, 1] = 1 - 2 * (x ** 2 + z ** 2)
R[1, 2] = 2 * (y * z - x * w)
R[2, 0] = 2 * (x * z - y * w)
R[2, 1] = 2 * (y * z + x * w)
R[2, 2] = 1 - 2 * (x ** 2 + y ** 2)
return R
def nearest(residue_mask):
index = [[0, 0] for _ in range(len(residue_mask))]
p, q = 0, len(residue_mask)
for i in range(len(residue_mask)):
if residue_mask[i] == 0:
p = i
else:
index[i][0] = p
for i in range(len(residue_mask) - 1, -1, -1):
if residue_mask[i] == 0:
q = i
else:
index[i][1] = q
return index
def interpolation_init(pred_X, residue_mask, backbone_pos, atom2residue, protein_atom_batch, residue_batch):
num_protein = protein_atom_batch.max().item() + 1
offset = 0
for i in range(num_protein):
residue_mask_i = residue_mask[residue_batch == i]
backbone_pos_i = backbone_pos[residue_batch == i]
if (~residue_mask_i).sum() <= 2:
offset += len(residue_mask_i)
continue
else:
residue_index = torch.arange(len(residue_mask_i)).to(protein_atom_batch.device)
front = residue_index[~residue_mask_i][:2]
end = residue_index[~residue_mask_i][-2:]
near = nearest(residue_mask_i)
for k in range(len(residue_mask_i)):
if residue_mask_i[k]:
mask = atom2residue == (k + offset)
if k < front[0]:
pred_X[mask] = backbone_pos_i[front[0]] + (k - front[0]) / (front[0] - front[1]) * (
backbone_pos_i[front[0]] - backbone_pos_i[front[1]])
elif k > end[1]:
pred_X[mask] = backbone_pos_i[end[1]] + (k - end[1]) / (end[1] - end[0]) * (
backbone_pos_i[end[1]] - backbone_pos_i[end[0]])
else:
pred_X[mask] = ((k - near[k][0]) * backbone_pos_i[near[k][1]] + (near[k][1] - k) *
backbone_pos_i[near[k][0]]) * 1 / (near[k][1] - near[k][0])
offset += len(residue_mask_i)
return pred_X
def interpolation_init_new(res_X, residue_mask, backbone_pos, residue_batch):
num_protein = residue_batch.max().item() + 1
offset = 0
backbone = torch.tensor([[-0.525, 1.363, 0.0], [0.0, 0.0, 0.0], [1.526, 0.0, 0.0], [0.627, 1.062, 0.0]],
device=res_X.device)
for i in range(num_protein):
residue_mask_i = residue_mask[residue_batch == i]
backbone_pos_i = backbone_pos[residue_batch == i]
if (~residue_mask_i).sum() <= 2:
offset += len(residue_mask_i)
continue
else:
residue_index = torch.arange(len(residue_mask_i)).to(res_X.device)
front = residue_index[~residue_mask_i][:2]
end = residue_index[~residue_mask_i][-2:]
near = nearest(residue_mask_i)
for k in range(len(residue_mask_i)):
if residue_mask_i[k]:
ind = k + offset
if k < front[0]:
alpha = (backbone_pos_i[front[0]] + (k - front[0]) / (front[0] - front[1]) * (backbone_pos_i[front[0]] - backbone_pos_i[front[1]]))[1: 2]
elif k > end[1]:
alpha = (backbone_pos_i[end[1]] + (k - end[1]) / (end[1] - end[0]) * (backbone_pos_i[end[1]] - backbone_pos_i[end[0]]))[1: 2]
else:
alpha = (((k - near[k][0]) * backbone_pos_i[near[k][1]] + (near[k][1] - k) * backbone_pos_i[near[k][0]]) * 1 / (near[k][1] - near[k][0]))[1: 2]
res_X[ind][:4] = alpha + backbone @ quaternion_to_matrix(q=torch.randn(4, device=res_X.device)).t()
offset += len(residue_mask_i)
return res_X
class Pocket_Design_new(Module):
def __init__(self, config, protein_atom_feature_dim, ligand_atom_feature_dim, device):
super().__init__()
self.config = config
self.device = device
self.hidden_channels = config.hidden_channels
self.protein_atom_emb = nn.Embedding(protein_atom_feature_dim, int(config.hidden_channels/2-8))
self.ligand_atom_emb = Linear(ligand_atom_feature_dim, config.hidden_channels)
self.encoder = get_encoder(config.encoder, device)
self.residue_mlp = Linear(config.hidden_channels, 20)
self.Softmax = nn.Softmax(dim=1)
self.huber_loss = nn.SmoothL1Loss(reduction='mean')
self.dist_loss = torch.nn.MSELoss(reduction='mean')
self.pred_loss = nn.CrossEntropyLoss(reduction='mean')
self.interpolate_steps = 3
self.atom_pos_embedding = nn.Embedding(14, 8)
self.residue_embedding = nn.Embedding(21, int(config.hidden_channels/2 - 16)) # one embedding for mask
self.standard2alphabet = torch.tensor([1, 6, 13, 9, 19, 12, 5, 2, 17, 8, 0, 11, 16, 14, 10, 4, 7, 18, 15, 3]).to(device)
self.alphabet2standard = torch.tensor([10, 0, 7, 19, 15, 6, 1, 16, 9, 3, 14, 11, 5, 2, 13, 18, 12, 8, 17, 4]).to(device)
self.residue_atom_mask = residue_atom_mask.to(device)
self.write_pdb = True
self.write_whole_pdb = True
self.generate_id = 0
self.generate_id1 = 0
self.proteinloss = ProteinFeature()
self.pe = PositionalEncodings(16)
self.res_atom_type = torch.tensor(RES_ATOM_TYPE).to(device)
self.orig_data_path = config.orig_data_path
self.pocket10_path = config.pocket10_path
if config.encoder.esm[:4] == 'esm2':
encoder_args = {'_target_': 'esm2_adapter',
'encoder': {'d_model': 128,
'use_esm_alphabet': True},
'dropout': 0.1,
'adapter_layer_indices': [6, 20, 32]}
self.esmadapter = ESM2WithStructuralAdatper.from_pretrained(args=encoder_args, name=config.encoder.esm).to(device)
else:
encoder_args = {'_target_': 'esm_adapter',
'encoder': {'d_model': 128,
'n_enc_layers': 3,
'n_dec_layers': 3,
'use_esm_alphabet': True},
'adapter_layer_indices': [6, 20, 32]}
self.esmadapter = ProteinBertModelWithStructuralAdatper.from_pretrained(args=encoder_args).to(device)
def forward_(self, batch):
loss_list = [0., 0., 0.]
residue_mask = batch['protein_edit_residue']
full_seq = batch['seq']
ligand_mask = batch['ligand_mask'].bool()
label_ligand, pred_ligand = copy.deepcopy(batch['ligand_pos']), copy.deepcopy(batch['ligand_pos'])
# init res_X
label_X, res_X = copy.deepcopy(batch['residue_pos']), copy.deepcopy(batch['residue_pos'])
res_X = interpolation_init_new(res_X, residue_mask, copy.deepcopy(batch['backbone_pos']),batch['amino_acid_batch'])
for k in range(len(batch['amino_acid'])):
if residue_mask[k]:
pos = res_X[k]
pos[4:] = (pos[1].repeat(10, 1) + 0.1 * torch.randn(10, 3, device=self.device))
res_X[k] = pos
pred_ligand = label_ligand + torch.randn_like(label_ligand).to(self.device) * 0.5
ligand_feat = self.ligand_atom_emb(batch['ligand_feat'])
for t in range(self.interpolate_steps):
print(t)
res_S = copy.deepcopy(batch['amino_acid_processed'])
if t > 1:
'''
res_H[residue_mask] = res_H[residue_mask] + torch.matmul(pred_res_type[:, self.alphabet2standard].detach().float(), self.residue_embedding(torch.arange(1, 21).to(self.device))).unsqueeze(1)
res_H[~residue_mask] = res_H[~residue_mask] + self.residue_embedding(res_S[~residue_mask]).unsqueeze(-2)
'''
res_S[residue_mask] = self.alphabet2standard[sampled_type.detach().clone()] + 1
atom_emb = self.protein_atom_emb(self.res_atom_type[res_S]) # atom embedding
atom_pos_emb = self.atom_pos_embedding(torch.arange(14).to(self.device)).unsqueeze(0).repeat(res_S.shape[0], 1, 1) # pos embedding
res_emb = self.residue_embedding(res_S).unsqueeze(-2).repeat(1, 14, 1) # res embedding
res_pos_emb = self.pe(batch['res_idx']).unsqueeze(-2).repeat(1, 14, 1) # res pos embedding
res_H = torch.cat([atom_emb, atom_pos_emb, res_emb, res_pos_emb], dim=-1)
elif t <= 1:
atom_emb = self.protein_atom_emb(self.res_atom_type[res_S]) # atom embedding
atom_pos_emb = self.atom_pos_embedding(torch.arange(14).to(self.device)).unsqueeze(0).repeat(res_S.shape[0], 1, 1) # pos embedding
res_emb = self.residue_embedding(res_S).unsqueeze(-2).repeat(1, 14, 1) # res embedding
res_pos_emb = self.pe(batch['res_idx']).unsqueeze(-2).repeat(1, 14, 1) # res pos embedding
res_H = torch.cat([atom_emb, atom_pos_emb, res_emb, res_pos_emb], dim=-1)
_, res_X, pred_res_type, pred_ligand = self.encoder(res_H, res_X.detach().clone(), res_S, batch['amino_acid_batch'], full_seq, pred_ligand.detach().clone(),
ligand_feat, batch['ligand_mask'], batch['edit_residue_num'], residue_mask, self.esmadapter, batch['full_seq_mask'], batch['r10_mask'])
atom_mask = self.residue_atom_mask[batch['amino_acid'][residue_mask]].bool()
loss_list[0] += 2*self.huber_loss(res_X[residue_mask][atom_mask],label_X[residue_mask][atom_mask]) + self.huber_loss(pred_ligand[ligand_mask], label_ligand[ligand_mask])
loss_list[1] += self.pred_loss(pred_res_type, self.standard2alphabet[batch['amino_acid'][residue_mask] - 1])
# bond and angle loss
# loss_list[2] += 3*self.proteinloss.structure_loss(res_X[residue_mask], label_X[residue_mask], batch['amino_acid'][residue_mask] - 1, batch['res_idx'][residue_mask], batch['amino_acid_batch'][residue_mask])
loss_list[2] += 0.
sampled_type, _ = sample_from_categorical(pred_res_type.detach())
aar = (self.standard2alphabet[batch['amino_acid'][residue_mask] - 1] == sampled_type).sum() / len(res_S[residue_mask])
rmsd = torch.sqrt((res_X[residue_mask][:, :4].reshape(-1, 3) - label_X[residue_mask][:, :4].reshape(-1, 3)).norm(dim=1).sum() / len(res_S[residue_mask]) / 4)
return loss_list[1] + loss_list[0] + loss_list[2], loss_list, aar, rmsd
def init(self, batch):
residue_mask = batch['protein_edit_residue']
label_ligand, pred_ligand = copy.deepcopy(batch['ligand_pos']), copy.deepcopy(batch['ligand_pos'])
pred_ligand = label_ligand + torch.randn_like(label_ligand).to(self.device) * 0.5
res_X = copy.deepcopy(batch['residue_pos']) # init res_X
res_X = interpolation_init_new(res_X, residue_mask, copy.deepcopy(batch['backbone_pos']),
batch['amino_acid_batch'])
res_S = copy.deepcopy(batch['amino_acid_processed'])
for k in range(len(batch['amino_acid'])): # init side chain atoms of masked residues
if residue_mask[k]:
pos = res_X[k]
pos[4:] = (pos[1].repeat(10, 1) + 0.1 * torch.randn(10, 3, device=self.device))
res_X[k] = pos
ligand_feat = self.ligand_atom_emb(batch['ligand_feat'])
atom_emb = self.protein_atom_emb(self.res_atom_type[res_S]) # atom embedding
atom_pos_emb = self.atom_pos_embedding(torch.arange(14).to(self.device)).unsqueeze(0).repeat(res_S.shape[0], 1,
1) # pos embedding
res_emb = self.residue_embedding(res_S).unsqueeze(-2).repeat(1, 14, 1) # res embedding
res_pos_emb = self.pe(batch['res_idx']).unsqueeze(-2).repeat(1, 14, 1) # res pos embedding
res_H = torch.cat([atom_emb, atom_pos_emb, res_emb, res_pos_emb], dim=-1)
self.seq = batch['seq']
self.full_seq_mask = batch['full_seq_mask']
self.r10_mask = batch['r10_mask']
return res_H, res_X, res_S, batch['amino_acid_batch'], pred_ligand, ligand_feat, batch['ligand_mask'], batch['edit_residue_num'], residue_mask
def forward(self, res_H, res_X, res_S, res_batch, pred_ligand, ligand_feat, ligand_mask, edit_residue_num, residue_mask, use_esm=True):
'''
res_H[residue_mask] = res_H[residue_mask] + torch.matmul(pred_res_type[:, self.alphabet2standard].detach().float(), self.residue_embedding(torch.arange(1, 21).to(self.device))).unsqueeze(1)
res_H[~residue_mask] = res_H[~residue_mask] + self.residue_embedding(res_S[~residue_mask]).unsqueeze(-2)
'''
res_H, res_X, ligand_pos, ligand_feat, pred_res_type = self.encoder(res_H, res_X, res_S, res_batch, pred_ligand, ligand_feat, ligand_mask, edit_residue_num, residue_mask)
if use_esm and self.seq.shape[1] <= 1000:
h_residue = res_H.sum(-2)
batch_size = res_batch.max().item() + 1
encoder_out = {'feats': torch.zeros(batch_size, self.seq.shape[1], self.hidden_channels).to(self.device)}
encoder_out['feats'][self.r10_mask] = h_residue.view(-1, self.hidden_channels)
init_pred = self.seq
decode_logits = self.esmadapter(init_pred, encoder_out)['logits']
pred_res_type = decode_logits[self.full_seq_mask][:, 4:24]
return res_H, res_X, ligand_pos, ligand_feat, pred_res_type
def generate(self, batch, target_path='./generate'):
print('Start Generating')
residue_mask = batch['protein_edit_residue']
res_S = batch['amino_acid_processed']
full_seq = batch['seq']
label_S = copy.deepcopy(batch['amino_acid'])
label_X, res_X = copy.deepcopy(batch['residue_pos']), copy.deepcopy(batch['residue_pos'])
label_ligand, pred_ligand = copy.deepcopy(batch['ligand_pos']), copy.deepcopy(batch['ligand_pos'])
res_X = interpolation_init_new(res_X, residue_mask, copy.deepcopy(batch['backbone_pos']), batch['amino_acid_batch'])
res_batch = batch['amino_acid_batch']
for k in range(len(batch['amino_acid'])):
if residue_mask[k]:
pos = res_X[k]
pos[4:] = (pos[1].repeat(10, 1) + 0.1 * torch.randn(10, 3, device=self.device))
res_X[k] = pos
ligand_feat = self.ligand_atom_emb(batch['ligand_feat'])
for t in range(self.interpolate_steps):
if t < -1:
res_S[residue_mask] = self.alphabet2standard[sampled_type.detach().clone()] + 1
atom_emb = self.protein_atom_emb(self.res_atom_type[res_S]) # atom embedding
atom_pos_emb = self.atom_pos_embedding(torch.arange(14).to(self.device)).unsqueeze(0).repeat(res_S.shape[0], 1, 1) # pos embedding
res_emb = self.residue_embedding(res_S).unsqueeze(-2).repeat(1, 14, 1) # res embedding
res_pos_emb = self.pe(batch['res_idx']).unsqueeze(-2).repeat(1, 14, 1) # res pos embedding
res_H = torch.cat([atom_emb, atom_pos_emb, res_emb, res_pos_emb], dim=-1)
elif t == 0:
atom_emb = self.protein_atom_emb(self.res_atom_type[res_S]) # atom embedding
atom_pos_emb = self.atom_pos_embedding(torch.arange(14).to(self.device)).unsqueeze(0).repeat(res_S.shape[0], 1, 1) # pos embedding
res_emb = self.residue_embedding(res_S).unsqueeze(-2).repeat(1, 14, 1) # res embedding
res_pos_emb = self.pe(batch['res_idx']).unsqueeze(-2).repeat(1, 14, 1) # res pos embedding
res_H = torch.cat([atom_emb, atom_pos_emb, res_emb, res_pos_emb], dim=-1)
res_H, res_X, pred_ligand, ligand_feat, pred_res_type, attend_logits = self.encoder(res_H, res_X, res_S, res_batch, pred_ligand, ligand_feat, batch['ligand_mask'], batch['edit_residue_num'], residue_mask)
if full_seq.shape[1] <= 1000:
h_residue = res_H.sum(-2)
batch_size = res_batch.max().item() + 1
encoder_out = {
'feats': torch.zeros(batch_size, full_seq.shape[1], self.hidden_channels).to(self.device)}
encoder_out['feats'][batch['r10_mask']] = h_residue.view(-1, self.hidden_channels)
init_pred = full_seq
decode_logits = self.esmadapter(init_pred, encoder_out)['logits']
pred_res_type = decode_logits[batch['full_seq_mask']][:, 4:24]
sampled_type, _ = sample_from_categorical(pred_res_type)
aar = (self.standard2alphabet[batch['amino_acid'][residue_mask] - 1] == sampled_type).sum() / len(label_S[residue_mask])
rmsd = torch.sqrt((res_X[residue_mask][:, :4].reshape(-1, 3) - label_X[residue_mask][:, :4].reshape(-1, 3)).norm(dim=1).sum() / len(label_S[residue_mask]) / 4)
if self.write_pdb:
res_S[residue_mask] = self.alphabet2standard[sampled_type.detach().clone()] + 1
to_sdf(pred_ligand, batch['ligand_element'].long(), batch['ligand_mask'].bool(), batch['ligand_batch'],batch['ligand_bond_type'].long(), batch['ligand_bond_index'].long(), batch['edge_batch'], self.generate_id, target_path)
to_pdb(label_X, batch['amino_acid'], batch['res_idx'], batch['amino_acid_batch'], self.generate_id, batch['protein_filename'], target_path, original=True)
self.generate_id = to_pdb(res_X, res_S, batch['res_idx'], batch['amino_acid_batch'], self.generate_id, batch['protein_filename'], target_path, original = False)
if self.write_whole_pdb:
self.generate_id1 = to_whole_pdb(res_X, res_S, batch['res_idx'], batch['amino_acid_batch'], self.generate_id1, batch['protein_filename'], batch['r10_mask'], self.orig_data_path, target_path)
return aar, rmsd, attend_logits
def sample_from_categorical(logits=None, temperature=3.0):
if temperature:
dist = torch.distributions.Categorical(logits=logits.div(temperature))
tokens = dist.sample()
scores = dist.log_prob(tokens)
else:
scores, tokens = logits.log_softmax(dim=-1).max(dim=-1)
return tokens, scores
def sample_from_topk(tensor, k=3):
"""
Apply softmax to the tensor, then randomly sample an index from the top k values.
:param tensor: Input tensor.
:param k: Number of top values to consider.
:return: Index of the sampled value.
"""
# Apply softmax
probs = torch.nn.functional.softmax(tensor, dim=0)
# Get top k values and their indices
_, top_indices = torch.topk(probs, k)
sampled_indices = torch.randint(0, k, (top_indices.shape[0],))
# Use advanced indexing to gather the sampled elements from each row
sampled_elements = top_indices[torch.arange(top_indices.shape[0]), sampled_indices]
return sampled_elements, None
def random_mask(batch, device, mask=True):
if mask:
tmp = []
num_protein = batch['protein_atom_batch'].max() + 1
for i in range(num_protein):
mask = batch['amino_acid_batch'] == i
ind = torch.multinomial(batch['protein_edit_residue'][mask].float(), 1)
selected = torch.zeros_like(batch['protein_edit_residue'][mask], dtype=bool)
selected[ind] = 1
tmp.append(selected)
batch['random_mask_residue'] = torch.cat(tmp, dim=0)
# remove side chains for the masked atoms
index = torch.arange(len(batch['amino_acid']))[batch['random_mask_residue']]
for key in ['protein_pos', 'protein_atom_feature']:
tmp = []
for k in range(batch['atom2residue'].max() + 1):
mask = batch['atom2residue'] == k
if k in index:
if key == 'protein_atom_feature':
feature_mask = batch['protein_atom_feature'][mask]
feature_mask[:, -20:] = torch.zeros(20, device=device)
feature_mask[:, -21] = 1
batch['protein_atom_feature'][mask] = feature_mask
tmp.append(batch[key][mask][:4])
else:
tmp.append(batch[key][mask])
batch[key] = torch.cat(tmp, dim=0)
batch['residue_natoms'][batch['random_mask_residue']] = 4
batch['atom2residue'] = torch.repeat_interleave(torch.arange(len(batch['residue_natoms']), device=device),
batch['residue_natoms'])
batch['protein_edit_atom'] = torch.repeat_interleave(batch['protein_edit_residue'], batch['residue_natoms'],
dim=0)
batch['random_mask_atom'] = torch.repeat_interleave(batch['random_mask_residue'], batch['residue_natoms'],
dim=0)
else:
# reset protein pos and feature
index = torch.arange(len(batch['amino_acid']))[batch['random_mask_residue']]
num_residues = batch['atom2residue'].max() + 1
pos_tmp, feature_tmp, natoms_tmp = [], [], []
for k in range(num_residues):
mask = batch['atom2residue'] == k
res_type = batch['amino_acid'][k]
sidechain_size = NUM_ATOMS[res_type] - 4
if k in index:
pos_tmp.append(batch['protein_pos'][mask][:4])
if sidechain_size > 0:
pos_tmp.append(
batch['protein_pos'][mask][1:2].repeat(sidechain_size, 1) + 0.1 * torch.randn(sidechain_size, 3,
device=device))
feature_tmp.append(atom_feature(res_type, device))
natoms_tmp.append(NUM_ATOMS[res_type])
else:
pos_tmp.append(batch['protein_pos'][mask])
feature_tmp.append(batch['protein_atom_feature'][mask])
natoms_tmp.append(batch['protein_pos'][mask].shape[0])
batch['protein_pos'], batch['protein_atom_feature'] = torch.cat(pos_tmp, dim=0), torch.cat(feature_tmp, dim=0)
batch['protein_atom_feature'][:, -21] = 0
batch['residue_natoms'] = torch.tensor(natoms_tmp, device=device)
batch['atom2residue'] = torch.repeat_interleave(torch.arange(len(batch['residue_natoms']), device=device),
batch['residue_natoms'])
batch['protein_edit_atom'] = torch.repeat_interleave(batch['protein_edit_residue'], batch['residue_natoms'],
dim=0)
# follow batch
num_protein = batch['protein_atom_batch'].max() + 1
repeats = torch.tensor([batch['residue_natoms'][batch['amino_acid_batch'] == i].sum() for i in range(num_protein)])
batch['protein_atom_batch'] = torch.repeat_interleave(torch.arange(num_protein), repeats).to(device)
batch['edit_backbone'] = copy.deepcopy(batch['protein_edit_atom'])
index = torch.arange(len(batch['amino_acid']))[batch['protein_edit_residue']]
for k in range(len(batch['amino_acid'])):
mask = batch['atom2residue'] == k
if k in index:
data_mask = batch['edit_backbone'][mask]
data_mask[4:] = 0
batch['edit_backbone'][mask] = data_mask
return batch
def atom_feature(res_type, device):
atom_types = torch.arange(38)
max_num_aa = 21
atom_type = torch.tensor(RES_ATOMS[res_type]).view(-1, 1) == atom_types.view(1, -1)
amino_acid = F.one_hot(res_type, num_classes=max_num_aa).repeat(NUM_ATOMS[res_type], 1)
x = torch.cat([atom_type.to(device), amino_acid], dim=-1)
return x
def to_pdb(res_X, amino_acid, res_idx, res_batch, index, pocket_filename, target_path, original):
lines = ['HEADER POCKET', 'COMPND POCKET\n']
num_protein = res_batch.max().item() + 1
for n in range(num_protein):
#pdb_path = os.path.join(orig_data_path, pocket_filename[n])
pdb_path = pocket_filename[n]
with open(pdb_path, 'r') as f:
pdb_block = f.read()
protein = PDBProtein(pdb_block)
residues, atoms = protein.return_residues()
mask = (res_batch == n)
res_X_protein = res_X[mask]
amino_acid_protein = amino_acid[mask]
res_idx_protein = res_idx[mask]
atom_count = 0
if original:
path = os.path.join(target_path, str(index + n) + '_orig.pdb')
else:
path = os.path.join(target_path, str(index + n) + '.pdb')
with open(path, 'w') as f:
f.writelines(lines)
for k in range(len(res_X_protein)):
atom_type = RES_ATOM14[amino_acid_protein[k]]
chain = residues[k]['chain']
for i in range(NUM_ATOMS[amino_acid_protein[k]]):
j0 = str('ATOM').ljust(6) # atom#6s
j1 = str(atom_count).rjust(5) # aomnum#5d
j2 = str(atom_type[i]).center(4) # atomname$#4s
j3 = AA_NUMBER_NAME[amino_acid_protein[k].item()].ljust(3) # resname#1s
j4 = str(chain).rjust(1) # Astring
j5 = str(res_idx_protein[k].item()).rjust(4) # resnum
j6 = str('%8.3f' % (float(res_X_protein[k, i, 0]))).rjust(8) # x
j7 = str('%8.3f' % (float(res_X_protein[k, i, 1]))).rjust(8) # y
j8 = str('%8.3f' % (float(res_X_protein[k, i, 2]))).rjust(8) # z\
j9 = str('%6.2f' % (1.00)).rjust(6) # occ
j10 = str('%6.2f' % (25.02)).ljust(6) # temp
j11 = str(atom_type[i][0]).rjust(12) # elname
f.write("%s%s %s %s %s%s %s%s%s%s%s%s\n" % (j0, j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11))
atom_count += 1
f.write('END')
f.write('\n')
openmm_relax(path)
return index + num_protein
def to_whole_pdb(res_X, amino_acid, res_idx, res_batch, index, protein_filename, r10_mask, orig_data_path, target_path):
lines = ['HEADER POCKET', 'COMPND POCKET\n']
num_protein = res_batch.max().item() + 1
for n in range(num_protein):
pdb_path = protein_filename[n]
with open(pdb_path, 'r') as f:
pdb_block = f.read()
protein = PDBProtein(pdb_block)
residues, atoms = protein.return_residues()
mask = (res_batch == n)
res_X_protein = res_X[mask]
amino_acid_protein = amino_acid[mask]
res_idx_protein = res_idx[mask]
assert r10_mask[n].sum() == len(amino_acid_protein)
path = os.path.join(target_path, str(index + n) + '_whole.pdb')
atom_count = 0
stored_res_count = 0
with open(path, 'w') as f:
f.writelines(lines)
for k in range(len(residues)):
if r10_mask[n, k+1]:
chain = atoms[residues[k]['atoms'][0]]['line'][21:22].strip()
atom_type = RES_ATOM14[amino_acid_protein[stored_res_count]]
for i in range(NUM_ATOMS[amino_acid_protein[stored_res_count]]):
j0 = str('ATOM').ljust(6) # atom#6s
j1 = str(atom_count).rjust(5) # aomnum#5d
j2 = str(atom_type[i]).center(4) # atomname$#4s
j3 = AA_NUMBER_NAME[amino_acid_protein[stored_res_count].item()].ljust(3) # resname#1s
j4 = str(chain).rjust(1) # Astring
j5 = str(res_idx_protein[stored_res_count].item()).rjust(4) # resnum
j6 = str('%8.3f' % (float(res_X_protein[stored_res_count, i, 0]))).rjust(8) # x
j7 = str('%8.3f' % (float(res_X_protein[stored_res_count, i, 1]))).rjust(8) # y
j8 = str('%8.3f' % (float(res_X_protein[stored_res_count, i, 2]))).rjust(8) # z\
j9 = str('%6.2f' % (1.00)).rjust(6) # occ
j10 = str('%6.2f' % (25.02)).ljust(6) # temp
j11 = str(atom_type[i][0]).rjust(12) # elname
f.write("%s%s %s %s %s%s %s%s%s%s%s%s\n" % (j0, j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11))
atom_count += 1
stored_res_count += 1
else:
for atom_idx in residues[k]['atoms']:
line = atoms[atom_idx]['line']
line = line[:6] + str(atom_count).rjust(5) + line[11:] + "\n"
atom_count += 1
f.write(line)
f.write('END')
f.write('\n')
openmm_relax(path)
return index + num_protein
def to_sdf(pred_pos, elements, mask, ligand_batch, bond_types, bond_index, edge_batch, id, target_path):
num_ligand = edge_batch.max().item() + 1
for l in range(num_ligand):
filename = os.path.join(target_path, str(id + l) + '.sdf')
positions = pred_pos[l][mask[l]]
elements_protein = elements[ligand_batch == l]
bond_types_protein = bond_types[edge_batch == l]
bond_index_protein = bond_index[:, edge_batch == l].transpose(0, 1)
mol = rdchem.EditableMol(Chem.Mol())
# Add atoms to molecule
for element in elements_protein:
atom = Chem.Atom(element.item())
mol.AddAtom(atom)
# Add bonds to molecule
edge_set = set()
for k, (bond_type, (start_idx, end_idx)) in enumerate(zip(bond_types_protein, bond_index_protein)):
if (start_idx.item(), end_idx.item()) not in edge_set:
edge_set.add((start_idx.item(), end_idx.item()))
edge_set.add((end_idx.item(), start_idx.item()))
mol.AddBond(start_idx.item(), end_idx.item(), BOND_TYPE[bond_type.item()])
# Set 3D coordinates (assuming positions are in 3D)
mol = mol.GetMol()
conf = Chem.Conformer(mol.GetNumAtoms())
for i, position in enumerate(positions):
conf.SetAtomPosition(i, position.tolist())
mol.AddConformer(conf)
writer = Chem.SDWriter(filename)
writer.write(mol)
writer.close()
return mol
def init_weight(m):
if isinstance(m, nn.Linear):
nn.init.xavier_normal_(m.weight)
elif isinstance(m, nn.Conv1d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.weight, 1)
class AminoAcidFeature(nn.Module):
def __init__(self, backbone_only=False) -> None:
super().__init__()
self.backbone_only = backbone_only
# number of classes
self.num_aa_type = len(VOCAB)
self.num_atom_type = VOCAB.get_num_atom_type()
self.num_atom_pos = VOCAB.get_num_atom_pos()
# atom-level special tokens
self.atom_mask_idx = VOCAB.get_atom_mask_idx()
self.atom_pad_idx = VOCAB.get_atom_pad_idx()
self.atom_pos_mask_idx = VOCAB.get_atom_pos_mask_idx()
self.atom_pos_pad_idx = VOCAB.get_atom_pos_pad_idx()
# global nodes and mask nodes
self.boa_idx = VOCAB.symbol_to_idx(VOCAB.BOA)
self.boh_idx = VOCAB.symbol_to_idx(VOCAB.BOH)
self.bol_idx = VOCAB.symbol_to_idx(VOCAB.BOL)
self.mask_idx = VOCAB.get_mask_idx()
# atoms encoding
residue_atom_type, residue_atom_pos = [], []
backbone = [VOCAB.atom_to_idx(atom[0]) for atom in VOCAB.backbone_atoms]
n_channel = VOCAB.MAX_ATOM_NUMBER if not backbone_only else 4
special_mask = VOCAB.get_special_mask()
for i in range(len(VOCAB)):
if i == self.boa_idx or i == self.boh_idx or i == self.bol_idx or i == self.mask_idx:
# global nodes
residue_atom_type.append([self.atom_mask_idx for _ in range(n_channel)])
residue_atom_pos.append([self.atom_pos_mask_idx for _ in range(n_channel)])
elif special_mask[i] == 1:
# other special token (pad)
residue_atom_type.append([self.atom_pad_idx for _ in range(n_channel)])
residue_atom_pos.append([self.atom_pos_pad_idx for _ in range(n_channel)])
else:
# normal amino acids
sidechain_atoms = VOCAB.get_sidechain_info(VOCAB.idx_to_symbol(i))
atom_type = backbone
atom_pos = [VOCAB.atom_pos_to_idx(VOCAB.atom_pos_bb) for _ in backbone]
if not backbone_only:
sidechain_atoms = VOCAB.get_sidechain_info(VOCAB.idx_to_symbol(i))
atom_type = atom_type + [VOCAB.atom_to_idx(atom[0]) for atom in sidechain_atoms]
atom_pos = atom_pos + [VOCAB.atom_pos_to_idx(atom[1]) for atom in sidechain_atoms]
num_pad = n_channel - len(atom_type)
residue_atom_type.append(atom_type + [self.atom_pad_idx for _ in range(num_pad)])
residue_atom_pos.append(atom_pos + [self.atom_pos_pad_idx for _ in range(num_pad)])
# mapping from residue to atom types and positions
self.residue_atom_type = nn.parameter.Parameter(
torch.tensor(residue_atom_type, dtype=torch.long),
requires_grad=False)
self.residue_atom_pos = nn.parameter.Parameter(
torch.tensor(residue_atom_pos, dtype=torch.long),
requires_grad=False)
# sidechain geometry
if not backbone_only:
sc_bonds, sc_bonds_mask = [], []
sc_chi_atoms, sc_chi_atoms_mask = [], []
for i in range(len(VOCAB)):
if special_mask[i] == 1:
sc_bonds.append([])
sc_chi_atoms.append([])
else:
symbol = VOCAB.idx_to_symbol(i)
atom_type = VOCAB.backbone_atoms + VOCAB.get_sidechain_info(symbol)
atom2channel = {atom: i for i, atom in enumerate(atom_type)}
chi_atoms, bond_atoms = VOCAB.get_sidechain_geometry(symbol)
sc_chi_atoms.append(
[[atom2channel[atom] for atom in atoms] for atoms in chi_atoms]
)
bonds = []
for src_atom in bond_atoms:
for dst_atom in bond_atoms[src_atom]:
bonds.append((atom2channel[src_atom], atom2channel[dst_atom]))
sc_bonds.append(bonds)
max_num_chis = max([len(chis) for chis in sc_chi_atoms])
max_num_bonds = max([len(bonds) for bonds in sc_bonds])
for i in range(len(VOCAB)):
num_chis, num_bonds = len(sc_chi_atoms[i]), len(sc_bonds[i])
num_pad_chis, num_pad_bonds = max_num_chis - num_chis, max_num_bonds - num_bonds
sc_chi_atoms_mask.append(
[1 for _ in range(num_chis)] + [0 for _ in range(num_pad_chis)]
)
sc_bonds_mask.append(
[1 for _ in range(num_bonds)] + [0 for _ in range(num_pad_bonds)]
)
sc_chi_atoms[i].extend([[-1, -1, -1, -1] for _ in range(num_pad_chis)])
sc_bonds[i].extend([(-1, -1) for _ in range(num_pad_bonds)])
# mapping residues to their sidechain chi angle atoms and bonds
self.sidechain_chi_angle_atoms = nn.parameter.Parameter(
torch.tensor(sc_chi_atoms, dtype=torch.long),
requires_grad=False)
self.sidechain_chi_mask = nn.parameter.Parameter(
torch.tensor(sc_chi_atoms_mask, dtype=torch.bool),
requires_grad=False
)
self.sidechain_bonds = nn.parameter.Parameter(
torch.tensor(sc_bonds, dtype=torch.long),
requires_grad=False
)
self.sidechain_bonds_mask = nn.parameter.Parameter(
torch.tensor(sc_bonds_mask, dtype=torch.bool),
requires_grad=False
)
def _construct_residue_pos(self, S):
# construct residue position. global node is 1, the first residue is 2, ... (0 for padding)
glbl_node_mask = self._is_global(S)
glbl_node_idx = torch.nonzero(glbl_node_mask).flatten() # [batch_size * 3] (boa, boh, bol)
shift = F.pad(glbl_node_idx[:-1] - glbl_node_idx[1:] + 1, (1, 0), value=1) # [batch_size * 3]
residue_pos = torch.ones_like(S)
residue_pos[glbl_node_mask] = shift
residue_pos = torch.cumsum(residue_pos, dim=0)
return residue_pos
def _construct_segment_ids(self, res_idx, batch):
consecutive = (res_idx[1:] == res_idx[:-1]) & (batch[1:] == batch[:-1])
segment_ids = torch.zeros_like(res_idx).long()
id = 0
for i in range(1, len(segment_ids)):
if consecutive[i - 1]:
segment_ids[i] = id
else:
id += 1
segment_ids[i] = id
return segment_ids
def _construct_atom_type(self, S):
# construct atom types
return self.residue_atom_type[S]
def _construct_atom_pos(self, S):
# construct atom positions
return self.residue_atom_pos[S]
@torch.no_grad()
def get_sidechain_chi_angles_atoms(self, S):
chi_angles_atoms = self.sidechain_chi_angle_atoms[S] # [N, max_num_chis, 4]
chi_mask = self.sidechain_chi_mask[S] # [N, max_num_chis]
return chi_angles_atoms, chi_mask
@torch.no_grad()
def get_sidechain_bonds(self, S):
bonds = self.sidechain_bonds[S] # [N, max_num_bond, 2]
bond_mask = self.sidechain_bonds_mask[S]
return bonds, bond_mask
def forward(self, X, S, batch_id, k_neighbors):
H, (_, _, atom_pos) = self.embedding(S)
ctx_edges, inter_edges = self.construct_edges(
X, S, batch_id, k_neighbors, atom_pos=atom_pos)
return H, (ctx_edges, inter_edges)
class ProteinFeature(nn.Module):
def __init__(self, backbone_only=False):
super().__init__()
self.backbone_only = backbone_only
self.aa_feature = AminoAcidFeature()
def _cal_sidechain_bond_lengths(self, S, X):
bonds, bonds_mask = self.aa_feature.get_sidechain_bonds(S)
n = torch.nonzero(bonds_mask)[:, 0] # [Nbonds]
src, dst = bonds[bonds_mask].T
src_X, dst_X = X[(n, src)], X[(n, dst)] # [Nbonds, 3]
bond_lengths = torch.norm(dst_X - src_X, dim=-1)
return bond_lengths
def _cal_sidechain_chis(self, S, X):
chi_atoms, chi_mask = self.aa_feature.get_sidechain_chi_angles_atoms(S)
n = torch.nonzero(chi_mask)[:, 0] # [Nchis]
a0, a1, a2, a3 = chi_atoms[chi_mask].T # [Nchis]
x0, x1, x2, x3 = X[(n, a0)], X[(n, a1)], X[(n, a2)], X[(n, a3)] # [Nchis, 3]
u_0, u_1, u_2 = (x1 - x0), (x2 - x1), (x3 - x2) # [Nchis, 3]
# normals of the two planes
n_1 = F.normalize(torch.cross(u_0, u_1), dim=-1) # [Nchis, 3]
n_2 = F.normalize(torch.cross(u_1, u_2), dim=-1) # [Nchis, 3]
cosChi = (n_1 * n_2).sum(-1) # [Nchis]
eps = 1e-7
cosChi = torch.clamp(cosChi, -1 + eps, 1 - eps)
return cosChi
def _cal_backbone_bond_lengths(self, X, seg_id):
# loss of backbone (...N-CA-C(O)-N...) bond length
# N-CA, CA-C, C=O
bl1 = torch.norm(X[:, 1:4] - X[:, :3], dim=-1) # [N, 3], (N-CA), (CA-C), (C=O)
# C-N
bl2 = torch.norm(X[1:, 0] - X[:-1, 2], dim=-1) # [N-1]
same_chain_mask = seg_id[1:] == seg_id[:-1]
bl2 = bl2[same_chain_mask]
bl = torch.cat([bl1.flatten(), bl2], dim=0)
return bl
def _cal_angles(self, X, seg_id):
ori_X = X
X = X[:, :3].reshape(-1, 3) # [N * 3, 3], N, CA, C
U = F.normalize(X[1:] - X[:-1], dim=-1) # [N * 3 - 1, 3]
# 1. dihedral angles
u_2, u_1, u_0 = U[:-2], U[1:-1], U[2:] # [N * 3 - 3, 3]
# backbone normals
n_2 = F.normalize(torch.cross(u_2, u_1), dim=-1)
n_1 = F.normalize(torch.cross(u_1, u_0), dim=-1)
# angle between normals
eps = 1e-7
cosD = (n_2 * n_1).sum(-1) # [(N-1) * 3]
cosD = torch.clamp(cosD, -1 + eps, 1 - eps)
# D = torch.sign((u_2 * n_1).sum(-1)) * torch.acos(cosD)
seg_id_atom = seg_id.repeat(1, 3).flatten() # [N * 3]
same_chain_mask = sequential_and(
seg_id_atom[:-3] == seg_id_atom[1:-2],
seg_id_atom[1:-2] == seg_id_atom[2:-1],
seg_id_atom[2:-1] == seg_id_atom[3:]
) # [N * 3 - 3]
# D = D[same_chain_mask]
cosD = cosD[same_chain_mask]
# 2. bond angles (C_{n-1}-N, N-CA), (N-CA, CA-C), (CA-C, C=O), (CA-C, C-N_{n+1}), (O=C, C-Nn)
u_0, u_1 = U[:-1], U[1:] # [N*3 - 2, 3]
cosA1 = ((-u_0) * u_1).sum(-1) # [N*3 - 2], (C_{n-1}-N, N-CA), (N-CA, CA-C), (CA-C, C-N_{n+1})
same_chain_mask = sequential_and(
seg_id_atom[:-2] == seg_id_atom[1:-1],
seg_id_atom[1:-1] == seg_id_atom[2:]
)
cosA1 = cosA1[same_chain_mask] # [N*3 - 2 * num_chain]
u_co = F.normalize(ori_X[:, 3] - ori_X[:, 2], dim=-1) # [N, 3], C=O
u_cca = -U[1::3] # [N, 3], C-CA
u_cn = U[2::3] # [N-1, 3], C-N_{n+1}
cosA2 = (u_co * u_cca).sum(-1) # [N], (C=O, C-CA)
cosA3 = (u_co[:-1] * u_cn).sum(-1) # [N-1], (C=O, C-N_{n+1})
same_chain_mask = (seg_id[:-1] == seg_id[1:]) # [N-1]
cosA3 = cosA3[same_chain_mask]
cosA = torch.cat([cosA1, cosA2, cosA3], dim=-1)
cosA = torch.clamp(cosA, -1 + eps, 1 - eps)
return cosD, cosA
def coord_loss(self, pred_X, true_X, batch_id, atom_mask, reference=None):
pred_bb, true_bb = pred_X[:, :4], true_X[:, :4]
bb_mask = atom_mask[:, :4]
true_X = true_X.clone()
ops = []
align_obj = pred_bb if reference is None else reference[:, :4]
for i in range(torch.max(batch_id) + 1):
is_cur_graph = batch_id == i
cur_bb_mask = bb_mask[is_cur_graph]
_, R, t = kabsch_torch(
true_bb[is_cur_graph][cur_bb_mask],
align_obj[is_cur_graph][cur_bb_mask],
requires_grad=True)
true_X[is_cur_graph] = torch.matmul(true_X[is_cur_graph], R.T) + t
ops.append((R.detach(), t.detach()))
xloss = F.smooth_l1_loss(
pred_X[atom_mask], true_X[atom_mask],
reduction='sum') / atom_mask.sum() # atom-level loss
bb_rmsd = torch.sqrt(((pred_X[:, :4] - true_X[:, :4]) ** 2).sum(-1).mean(-1)) # [N]
return xloss, bb_rmsd, ops
def structure_loss(self, pred_X, true_X, S, res_idx, batch, full_profile=True):
seg_id = self.aa_feature._construct_segment_ids(res_idx, batch)
# loss of backbone (...N-CA-C(O)-N...) bond length
true_bl = self._cal_backbone_bond_lengths(true_X, seg_id)
pred_bl = self._cal_backbone_bond_lengths(pred_X, seg_id)
bond_loss = F.smooth_l1_loss(pred_bl, true_bl)
# loss of backbone dihedral angles
if full_profile:
true_cosD, true_cosA = self._cal_angles(true_X, seg_id)
pred_cosD, pred_cosA = self._cal_angles(pred_X, seg_id)
angle_loss = F.smooth_l1_loss(pred_cosD, true_cosD)
bond_angle_loss = F.smooth_l1_loss(pred_cosA, true_cosA)
# loss of sidechain bonds
true_sc_bl = self._cal_sidechain_bond_lengths(S, true_X)
pred_sc_bl = self._cal_sidechain_bond_lengths(S, pred_X)
sc_bond_loss = F.smooth_l1_loss(pred_sc_bl, true_sc_bl)
# loss of sidechain chis
if full_profile:
true_sc_chi = self._cal_sidechain_chis(S, true_X)
pred_sc_chi = self._cal_sidechain_chis(S, pred_X)
sc_chi_loss = F.smooth_l1_loss(pred_sc_chi, true_sc_chi)
# exerting constraints on bond lengths only is sufficient
loss = bond_loss + sc_bond_loss
if full_profile:
details = (loss, bond_loss, bond_angle_loss, angle_loss, sc_bond_loss, sc_chi_loss)
else:
details = (loss, bond_loss, sc_bond_loss)
return loss
def sequential_and(*tensors):
res = tensors[0]
for mat in tensors[1:]:
res = torch.logical_and(res, mat)
return res