Spaces:
Sleeping
Sleeping
File size: 48,648 Bytes
dcacefd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 |
import copy
import sys
sys.path.append("..")
import numpy as np
from rdkit import RDConfig
import random
import os
import torch
import torch.nn as nn
from torch.nn import Module, Linear, Embedding
from torch.nn import functional as F
from torch_scatter import scatter_add, scatter_mean
from torch_geometric.data import Data, Batch
from rdkit.Chem import ChemicalFeatures
from rdkit import Chem
from rdkit.Chem import rdchem
from .encoders import get_encoder, MLP
from .encoders.cftfm import residue_atom_mask
from .common import *
from .protein_features import *
from .esmadapter import *
from .esm2adapter import *
from utils.pdb_utils import VOCAB
from utils.rmsd import kabsch_torch
from utils.protein_ligand import PDBProtein
from utils.relax import openmm_relax
ATOM_FAMILIES = ['Acceptor', 'Donor', 'Aromatic', 'Hydrophobe', 'LumpedHydrophobe', 'NegIonizable', 'PosIonizable',
'ZnBinder']
ATOM_FAMILIES_ID = {s: i for i, s in enumerate(ATOM_FAMILIES)}
NUM_ATOMS = [4, 5, 11, 8, 8, 6, 9, 9, 4, 10, 8, 8, 9, 8, 11, 7, 6, 7, 14, 12, 7]
ATOM_TYPES = [
'', 'N', 'CA', 'C', 'O', 'CB', 'CG', 'CG1', 'CG2', 'OG', 'OG1', 'SG', 'CD',
'CD1', 'CD2', 'ND1', 'ND2', 'OD1', 'OD2', 'SD', 'CE', 'CE1', 'CE2', 'CE3',
'NE', 'NE1', 'NE2', 'OE1', 'OE2', 'CH2', 'NH1', 'NH2', 'OH', 'CZ', 'CZ2',
'CZ3', 'NZ', 'OXT'
]
RES_ATOM14 = [
[''] * 14,
['N', 'CA', 'C', 'O', 'CB', '', '', '', '', '', '', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD', 'NE', 'CZ', 'NH1', 'NH2', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'CG', 'OD1', 'ND2', '', '', '', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'CG', 'OD1', 'OD2', '', '', '', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'SG', '', '', '', '', '', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD', 'OE1', 'NE2', '', '', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD', 'OE1', 'OE2', '', '', '', '', ''],
['N', 'CA', 'C', 'O', '', '', '', '', '', '', '', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'CG', 'ND1', 'CD2', 'CE1', 'NE2', '', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'CG1', 'CG2', 'CD1', '', '', '', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD1', 'CD2', '', '', '', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD', 'CE', 'NZ', '', '', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'CG', 'SD', 'CE', '', '', '', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD1', 'CD2', 'CE1', 'CE2', 'CZ', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD', '', '', '', '', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'OG', '', '', '', '', '', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'OG1', 'CG2', '', '', '', '', '', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD1', 'CD2', 'NE1', 'CE2', 'CE3', 'CZ2', 'CZ3', 'CH2'],
['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD1', 'CD2', 'CE1', 'CE2', 'CZ', 'OH', '', ''],
['N', 'CA', 'C', 'O', 'CB', 'CG1', 'CG2', '', '', '', '', '', '', ''],
]
RES_ATOM_TYPE = [[ATOM_TYPES.index(a) for a in res]for res in RES_ATOM14]
AA_NUMBER_NAME = {1: 'ALA', 2: 'ARG', 3: 'ASN', 4: 'ASP', 5: 'CYS', 6: 'GLN', 7: 'GLU', 8: 'GLY', 9: 'HIS', 10: 'ILE',
11: 'LEU', 12: 'LYS', 13: 'MET', 14: 'PHE', 15: 'PRO', 16: 'SER', 17: 'THR', 18: 'TRP', 19: 'TYR',
20: 'VAL'}
RES_ATOMS = [[ATOM_TYPES.index(i) for i in res if i != ''] for res in RES_ATOM14]
BOND_TYPE = {1: rdchem.BondType.SINGLE, 2: rdchem.BondType.DOUBLE, 3: rdchem.BondType.TRIPLE,
12: rdchem.BondType.AROMATIC}
def quaternion_to_matrix(q):
"""Convert a quaternion to its corresponding rotation matrix."""
q = q / q.norm()
w, x, y, z = q
R = torch.zeros((3, 3), device=q.device)
R[0, 0] = 1 - 2 * (y ** 2 + z ** 2)
R[0, 1] = 2 * (x * y - z * w)
R[0, 2] = 2 * (x * z + y * w)
R[1, 0] = 2 * (x * y + z * w)
R[1, 1] = 1 - 2 * (x ** 2 + z ** 2)
R[1, 2] = 2 * (y * z - x * w)
R[2, 0] = 2 * (x * z - y * w)
R[2, 1] = 2 * (y * z + x * w)
R[2, 2] = 1 - 2 * (x ** 2 + y ** 2)
return R
def nearest(residue_mask):
index = [[0, 0] for _ in range(len(residue_mask))]
p, q = 0, len(residue_mask)
for i in range(len(residue_mask)):
if residue_mask[i] == 0:
p = i
else:
index[i][0] = p
for i in range(len(residue_mask) - 1, -1, -1):
if residue_mask[i] == 0:
q = i
else:
index[i][1] = q
return index
def interpolation_init(pred_X, residue_mask, backbone_pos, atom2residue, protein_atom_batch, residue_batch):
num_protein = protein_atom_batch.max().item() + 1
offset = 0
for i in range(num_protein):
residue_mask_i = residue_mask[residue_batch == i]
backbone_pos_i = backbone_pos[residue_batch == i]
if (~residue_mask_i).sum() <= 2:
offset += len(residue_mask_i)
continue
else:
residue_index = torch.arange(len(residue_mask_i)).to(protein_atom_batch.device)
front = residue_index[~residue_mask_i][:2]
end = residue_index[~residue_mask_i][-2:]
near = nearest(residue_mask_i)
for k in range(len(residue_mask_i)):
if residue_mask_i[k]:
mask = atom2residue == (k + offset)
if k < front[0]:
pred_X[mask] = backbone_pos_i[front[0]] + (k - front[0]) / (front[0] - front[1]) * (
backbone_pos_i[front[0]] - backbone_pos_i[front[1]])
elif k > end[1]:
pred_X[mask] = backbone_pos_i[end[1]] + (k - end[1]) / (end[1] - end[0]) * (
backbone_pos_i[end[1]] - backbone_pos_i[end[0]])
else:
pred_X[mask] = ((k - near[k][0]) * backbone_pos_i[near[k][1]] + (near[k][1] - k) *
backbone_pos_i[near[k][0]]) * 1 / (near[k][1] - near[k][0])
offset += len(residue_mask_i)
return pred_X
def interpolation_init_new(res_X, residue_mask, backbone_pos, residue_batch):
num_protein = residue_batch.max().item() + 1
offset = 0
backbone = torch.tensor([[-0.525, 1.363, 0.0], [0.0, 0.0, 0.0], [1.526, 0.0, 0.0], [0.627, 1.062, 0.0]],
device=res_X.device)
for i in range(num_protein):
residue_mask_i = residue_mask[residue_batch == i]
backbone_pos_i = backbone_pos[residue_batch == i]
if (~residue_mask_i).sum() <= 2:
offset += len(residue_mask_i)
continue
else:
residue_index = torch.arange(len(residue_mask_i)).to(res_X.device)
front = residue_index[~residue_mask_i][:2]
end = residue_index[~residue_mask_i][-2:]
near = nearest(residue_mask_i)
for k in range(len(residue_mask_i)):
if residue_mask_i[k]:
ind = k + offset
if k < front[0]:
alpha = (backbone_pos_i[front[0]] + (k - front[0]) / (front[0] - front[1]) * (backbone_pos_i[front[0]] - backbone_pos_i[front[1]]))[1: 2]
elif k > end[1]:
alpha = (backbone_pos_i[end[1]] + (k - end[1]) / (end[1] - end[0]) * (backbone_pos_i[end[1]] - backbone_pos_i[end[0]]))[1: 2]
else:
alpha = (((k - near[k][0]) * backbone_pos_i[near[k][1]] + (near[k][1] - k) * backbone_pos_i[near[k][0]]) * 1 / (near[k][1] - near[k][0]))[1: 2]
res_X[ind][:4] = alpha + backbone @ quaternion_to_matrix(q=torch.randn(4, device=res_X.device)).t()
offset += len(residue_mask_i)
return res_X
class Pocket_Design_new(Module):
def __init__(self, config, protein_atom_feature_dim, ligand_atom_feature_dim, device):
super().__init__()
self.config = config
self.device = device
self.hidden_channels = config.hidden_channels
self.protein_atom_emb = nn.Embedding(protein_atom_feature_dim, int(config.hidden_channels/2-8))
self.ligand_atom_emb = Linear(ligand_atom_feature_dim, config.hidden_channels)
self.encoder = get_encoder(config.encoder, device)
self.residue_mlp = Linear(config.hidden_channels, 20)
self.Softmax = nn.Softmax(dim=1)
self.huber_loss = nn.SmoothL1Loss(reduction='mean')
self.dist_loss = torch.nn.MSELoss(reduction='mean')
self.pred_loss = nn.CrossEntropyLoss(reduction='mean')
self.interpolate_steps = 3
self.atom_pos_embedding = nn.Embedding(14, 8)
self.residue_embedding = nn.Embedding(21, int(config.hidden_channels/2 - 16)) # one embedding for mask
self.standard2alphabet = torch.tensor([1, 6, 13, 9, 19, 12, 5, 2, 17, 8, 0, 11, 16, 14, 10, 4, 7, 18, 15, 3]).to(device)
self.alphabet2standard = torch.tensor([10, 0, 7, 19, 15, 6, 1, 16, 9, 3, 14, 11, 5, 2, 13, 18, 12, 8, 17, 4]).to(device)
self.residue_atom_mask = residue_atom_mask.to(device)
self.write_pdb = True
self.write_whole_pdb = True
self.generate_id = 0
self.generate_id1 = 0
self.proteinloss = ProteinFeature()
self.pe = PositionalEncodings(16)
self.res_atom_type = torch.tensor(RES_ATOM_TYPE).to(device)
self.orig_data_path = config.orig_data_path
self.pocket10_path = config.pocket10_path
if config.encoder.esm[:4] == 'esm2':
encoder_args = {'_target_': 'esm2_adapter',
'encoder': {'d_model': 128,
'use_esm_alphabet': True},
'dropout': 0.1,
'adapter_layer_indices': [6, 20, 32]}
self.esmadapter = ESM2WithStructuralAdatper.from_pretrained(args=encoder_args, name=config.encoder.esm).to(device)
else:
encoder_args = {'_target_': 'esm_adapter',
'encoder': {'d_model': 128,
'n_enc_layers': 3,
'n_dec_layers': 3,
'use_esm_alphabet': True},
'adapter_layer_indices': [6, 20, 32]}
self.esmadapter = ProteinBertModelWithStructuralAdatper.from_pretrained(args=encoder_args).to(device)
def forward_(self, batch):
loss_list = [0., 0., 0.]
residue_mask = batch['protein_edit_residue']
full_seq = batch['seq']
ligand_mask = batch['ligand_mask'].bool()
label_ligand, pred_ligand = copy.deepcopy(batch['ligand_pos']), copy.deepcopy(batch['ligand_pos'])
# init res_X
label_X, res_X = copy.deepcopy(batch['residue_pos']), copy.deepcopy(batch['residue_pos'])
res_X = interpolation_init_new(res_X, residue_mask, copy.deepcopy(batch['backbone_pos']),batch['amino_acid_batch'])
for k in range(len(batch['amino_acid'])):
if residue_mask[k]:
pos = res_X[k]
pos[4:] = (pos[1].repeat(10, 1) + 0.1 * torch.randn(10, 3, device=self.device))
res_X[k] = pos
pred_ligand = label_ligand + torch.randn_like(label_ligand).to(self.device) * 0.5
ligand_feat = self.ligand_atom_emb(batch['ligand_feat'])
for t in range(self.interpolate_steps):
print(t)
res_S = copy.deepcopy(batch['amino_acid_processed'])
if t > 1:
'''
res_H[residue_mask] = res_H[residue_mask] + torch.matmul(pred_res_type[:, self.alphabet2standard].detach().float(), self.residue_embedding(torch.arange(1, 21).to(self.device))).unsqueeze(1)
res_H[~residue_mask] = res_H[~residue_mask] + self.residue_embedding(res_S[~residue_mask]).unsqueeze(-2)
'''
res_S[residue_mask] = self.alphabet2standard[sampled_type.detach().clone()] + 1
atom_emb = self.protein_atom_emb(self.res_atom_type[res_S]) # atom embedding
atom_pos_emb = self.atom_pos_embedding(torch.arange(14).to(self.device)).unsqueeze(0).repeat(res_S.shape[0], 1, 1) # pos embedding
res_emb = self.residue_embedding(res_S).unsqueeze(-2).repeat(1, 14, 1) # res embedding
res_pos_emb = self.pe(batch['res_idx']).unsqueeze(-2).repeat(1, 14, 1) # res pos embedding
res_H = torch.cat([atom_emb, atom_pos_emb, res_emb, res_pos_emb], dim=-1)
elif t <= 1:
atom_emb = self.protein_atom_emb(self.res_atom_type[res_S]) # atom embedding
atom_pos_emb = self.atom_pos_embedding(torch.arange(14).to(self.device)).unsqueeze(0).repeat(res_S.shape[0], 1, 1) # pos embedding
res_emb = self.residue_embedding(res_S).unsqueeze(-2).repeat(1, 14, 1) # res embedding
res_pos_emb = self.pe(batch['res_idx']).unsqueeze(-2).repeat(1, 14, 1) # res pos embedding
res_H = torch.cat([atom_emb, atom_pos_emb, res_emb, res_pos_emb], dim=-1)
_, res_X, pred_res_type, pred_ligand = self.encoder(res_H, res_X.detach().clone(), res_S, batch['amino_acid_batch'], full_seq, pred_ligand.detach().clone(),
ligand_feat, batch['ligand_mask'], batch['edit_residue_num'], residue_mask, self.esmadapter, batch['full_seq_mask'], batch['r10_mask'])
atom_mask = self.residue_atom_mask[batch['amino_acid'][residue_mask]].bool()
loss_list[0] += 2*self.huber_loss(res_X[residue_mask][atom_mask],label_X[residue_mask][atom_mask]) + self.huber_loss(pred_ligand[ligand_mask], label_ligand[ligand_mask])
loss_list[1] += self.pred_loss(pred_res_type, self.standard2alphabet[batch['amino_acid'][residue_mask] - 1])
# bond and angle loss
# loss_list[2] += 3*self.proteinloss.structure_loss(res_X[residue_mask], label_X[residue_mask], batch['amino_acid'][residue_mask] - 1, batch['res_idx'][residue_mask], batch['amino_acid_batch'][residue_mask])
loss_list[2] += 0.
sampled_type, _ = sample_from_categorical(pred_res_type.detach())
aar = (self.standard2alphabet[batch['amino_acid'][residue_mask] - 1] == sampled_type).sum() / len(res_S[residue_mask])
rmsd = torch.sqrt((res_X[residue_mask][:, :4].reshape(-1, 3) - label_X[residue_mask][:, :4].reshape(-1, 3)).norm(dim=1).sum() / len(res_S[residue_mask]) / 4)
return loss_list[1] + loss_list[0] + loss_list[2], loss_list, aar, rmsd
def init(self, batch):
residue_mask = batch['protein_edit_residue']
label_ligand, pred_ligand = copy.deepcopy(batch['ligand_pos']), copy.deepcopy(batch['ligand_pos'])
pred_ligand = label_ligand + torch.randn_like(label_ligand).to(self.device) * 0.5
res_X = copy.deepcopy(batch['residue_pos']) # init res_X
res_X = interpolation_init_new(res_X, residue_mask, copy.deepcopy(batch['backbone_pos']),
batch['amino_acid_batch'])
res_S = copy.deepcopy(batch['amino_acid_processed'])
for k in range(len(batch['amino_acid'])): # init side chain atoms of masked residues
if residue_mask[k]:
pos = res_X[k]
pos[4:] = (pos[1].repeat(10, 1) + 0.1 * torch.randn(10, 3, device=self.device))
res_X[k] = pos
ligand_feat = self.ligand_atom_emb(batch['ligand_feat'])
atom_emb = self.protein_atom_emb(self.res_atom_type[res_S]) # atom embedding
atom_pos_emb = self.atom_pos_embedding(torch.arange(14).to(self.device)).unsqueeze(0).repeat(res_S.shape[0], 1,
1) # pos embedding
res_emb = self.residue_embedding(res_S).unsqueeze(-2).repeat(1, 14, 1) # res embedding
res_pos_emb = self.pe(batch['res_idx']).unsqueeze(-2).repeat(1, 14, 1) # res pos embedding
res_H = torch.cat([atom_emb, atom_pos_emb, res_emb, res_pos_emb], dim=-1)
self.seq = batch['seq']
self.full_seq_mask = batch['full_seq_mask']
self.r10_mask = batch['r10_mask']
return res_H, res_X, res_S, batch['amino_acid_batch'], pred_ligand, ligand_feat, batch['ligand_mask'], batch['edit_residue_num'], residue_mask
def forward(self, res_H, res_X, res_S, res_batch, pred_ligand, ligand_feat, ligand_mask, edit_residue_num, residue_mask, use_esm=True):
'''
res_H[residue_mask] = res_H[residue_mask] + torch.matmul(pred_res_type[:, self.alphabet2standard].detach().float(), self.residue_embedding(torch.arange(1, 21).to(self.device))).unsqueeze(1)
res_H[~residue_mask] = res_H[~residue_mask] + self.residue_embedding(res_S[~residue_mask]).unsqueeze(-2)
'''
res_H, res_X, ligand_pos, ligand_feat, pred_res_type = self.encoder(res_H, res_X, res_S, res_batch, pred_ligand, ligand_feat, ligand_mask, edit_residue_num, residue_mask)
if use_esm and self.seq.shape[1] <= 1000:
h_residue = res_H.sum(-2)
batch_size = res_batch.max().item() + 1
encoder_out = {'feats': torch.zeros(batch_size, self.seq.shape[1], self.hidden_channels).to(self.device)}
encoder_out['feats'][self.r10_mask] = h_residue.view(-1, self.hidden_channels)
init_pred = self.seq
decode_logits = self.esmadapter(init_pred, encoder_out)['logits']
pred_res_type = decode_logits[self.full_seq_mask][:, 4:24]
return res_H, res_X, ligand_pos, ligand_feat, pred_res_type
def generate(self, batch, target_path='./generate'):
print('Start Generating')
residue_mask = batch['protein_edit_residue']
res_S = batch['amino_acid_processed']
full_seq = batch['seq']
label_S = copy.deepcopy(batch['amino_acid'])
label_X, res_X = copy.deepcopy(batch['residue_pos']), copy.deepcopy(batch['residue_pos'])
label_ligand, pred_ligand = copy.deepcopy(batch['ligand_pos']), copy.deepcopy(batch['ligand_pos'])
res_X = interpolation_init_new(res_X, residue_mask, copy.deepcopy(batch['backbone_pos']), batch['amino_acid_batch'])
res_batch = batch['amino_acid_batch']
for k in range(len(batch['amino_acid'])):
if residue_mask[k]:
pos = res_X[k]
pos[4:] = (pos[1].repeat(10, 1) + 0.1 * torch.randn(10, 3, device=self.device))
res_X[k] = pos
ligand_feat = self.ligand_atom_emb(batch['ligand_feat'])
for t in range(self.interpolate_steps):
if t < -1:
res_S[residue_mask] = self.alphabet2standard[sampled_type.detach().clone()] + 1
atom_emb = self.protein_atom_emb(self.res_atom_type[res_S]) # atom embedding
atom_pos_emb = self.atom_pos_embedding(torch.arange(14).to(self.device)).unsqueeze(0).repeat(res_S.shape[0], 1, 1) # pos embedding
res_emb = self.residue_embedding(res_S).unsqueeze(-2).repeat(1, 14, 1) # res embedding
res_pos_emb = self.pe(batch['res_idx']).unsqueeze(-2).repeat(1, 14, 1) # res pos embedding
res_H = torch.cat([atom_emb, atom_pos_emb, res_emb, res_pos_emb], dim=-1)
elif t == 0:
atom_emb = self.protein_atom_emb(self.res_atom_type[res_S]) # atom embedding
atom_pos_emb = self.atom_pos_embedding(torch.arange(14).to(self.device)).unsqueeze(0).repeat(res_S.shape[0], 1, 1) # pos embedding
res_emb = self.residue_embedding(res_S).unsqueeze(-2).repeat(1, 14, 1) # res embedding
res_pos_emb = self.pe(batch['res_idx']).unsqueeze(-2).repeat(1, 14, 1) # res pos embedding
res_H = torch.cat([atom_emb, atom_pos_emb, res_emb, res_pos_emb], dim=-1)
res_H, res_X, pred_ligand, ligand_feat, pred_res_type, attend_logits = self.encoder(res_H, res_X, res_S, res_batch, pred_ligand, ligand_feat, batch['ligand_mask'], batch['edit_residue_num'], residue_mask)
if full_seq.shape[1] <= 1000:
h_residue = res_H.sum(-2)
batch_size = res_batch.max().item() + 1
encoder_out = {
'feats': torch.zeros(batch_size, full_seq.shape[1], self.hidden_channels).to(self.device)}
encoder_out['feats'][batch['r10_mask']] = h_residue.view(-1, self.hidden_channels)
init_pred = full_seq
decode_logits = self.esmadapter(init_pred, encoder_out)['logits']
pred_res_type = decode_logits[batch['full_seq_mask']][:, 4:24]
sampled_type, _ = sample_from_categorical(pred_res_type)
aar = (self.standard2alphabet[batch['amino_acid'][residue_mask] - 1] == sampled_type).sum() / len(label_S[residue_mask])
rmsd = torch.sqrt((res_X[residue_mask][:, :4].reshape(-1, 3) - label_X[residue_mask][:, :4].reshape(-1, 3)).norm(dim=1).sum() / len(label_S[residue_mask]) / 4)
if self.write_pdb:
res_S[residue_mask] = self.alphabet2standard[sampled_type.detach().clone()] + 1
to_sdf(pred_ligand, batch['ligand_element'].long(), batch['ligand_mask'].bool(), batch['ligand_batch'],batch['ligand_bond_type'].long(), batch['ligand_bond_index'].long(), batch['edge_batch'], self.generate_id, target_path)
to_pdb(label_X, batch['amino_acid'], batch['res_idx'], batch['amino_acid_batch'], self.generate_id, batch['protein_filename'], target_path, original=True)
self.generate_id = to_pdb(res_X, res_S, batch['res_idx'], batch['amino_acid_batch'], self.generate_id, batch['protein_filename'], target_path, original = False)
if self.write_whole_pdb:
self.generate_id1 = to_whole_pdb(res_X, res_S, batch['res_idx'], batch['amino_acid_batch'], self.generate_id1, batch['protein_filename'], batch['r10_mask'], self.orig_data_path, target_path)
return aar, rmsd, attend_logits
def sample_from_categorical(logits=None, temperature=3.0):
if temperature:
dist = torch.distributions.Categorical(logits=logits.div(temperature))
tokens = dist.sample()
scores = dist.log_prob(tokens)
else:
scores, tokens = logits.log_softmax(dim=-1).max(dim=-1)
return tokens, scores
def sample_from_topk(tensor, k=3):
"""
Apply softmax to the tensor, then randomly sample an index from the top k values.
:param tensor: Input tensor.
:param k: Number of top values to consider.
:return: Index of the sampled value.
"""
# Apply softmax
probs = torch.nn.functional.softmax(tensor, dim=0)
# Get top k values and their indices
_, top_indices = torch.topk(probs, k)
sampled_indices = torch.randint(0, k, (top_indices.shape[0],))
# Use advanced indexing to gather the sampled elements from each row
sampled_elements = top_indices[torch.arange(top_indices.shape[0]), sampled_indices]
return sampled_elements, None
def random_mask(batch, device, mask=True):
if mask:
tmp = []
num_protein = batch['protein_atom_batch'].max() + 1
for i in range(num_protein):
mask = batch['amino_acid_batch'] == i
ind = torch.multinomial(batch['protein_edit_residue'][mask].float(), 1)
selected = torch.zeros_like(batch['protein_edit_residue'][mask], dtype=bool)
selected[ind] = 1
tmp.append(selected)
batch['random_mask_residue'] = torch.cat(tmp, dim=0)
# remove side chains for the masked atoms
index = torch.arange(len(batch['amino_acid']))[batch['random_mask_residue']]
for key in ['protein_pos', 'protein_atom_feature']:
tmp = []
for k in range(batch['atom2residue'].max() + 1):
mask = batch['atom2residue'] == k
if k in index:
if key == 'protein_atom_feature':
feature_mask = batch['protein_atom_feature'][mask]
feature_mask[:, -20:] = torch.zeros(20, device=device)
feature_mask[:, -21] = 1
batch['protein_atom_feature'][mask] = feature_mask
tmp.append(batch[key][mask][:4])
else:
tmp.append(batch[key][mask])
batch[key] = torch.cat(tmp, dim=0)
batch['residue_natoms'][batch['random_mask_residue']] = 4
batch['atom2residue'] = torch.repeat_interleave(torch.arange(len(batch['residue_natoms']), device=device),
batch['residue_natoms'])
batch['protein_edit_atom'] = torch.repeat_interleave(batch['protein_edit_residue'], batch['residue_natoms'],
dim=0)
batch['random_mask_atom'] = torch.repeat_interleave(batch['random_mask_residue'], batch['residue_natoms'],
dim=0)
else:
# reset protein pos and feature
index = torch.arange(len(batch['amino_acid']))[batch['random_mask_residue']]
num_residues = batch['atom2residue'].max() + 1
pos_tmp, feature_tmp, natoms_tmp = [], [], []
for k in range(num_residues):
mask = batch['atom2residue'] == k
res_type = batch['amino_acid'][k]
sidechain_size = NUM_ATOMS[res_type] - 4
if k in index:
pos_tmp.append(batch['protein_pos'][mask][:4])
if sidechain_size > 0:
pos_tmp.append(
batch['protein_pos'][mask][1:2].repeat(sidechain_size, 1) + 0.1 * torch.randn(sidechain_size, 3,
device=device))
feature_tmp.append(atom_feature(res_type, device))
natoms_tmp.append(NUM_ATOMS[res_type])
else:
pos_tmp.append(batch['protein_pos'][mask])
feature_tmp.append(batch['protein_atom_feature'][mask])
natoms_tmp.append(batch['protein_pos'][mask].shape[0])
batch['protein_pos'], batch['protein_atom_feature'] = torch.cat(pos_tmp, dim=0), torch.cat(feature_tmp, dim=0)
batch['protein_atom_feature'][:, -21] = 0
batch['residue_natoms'] = torch.tensor(natoms_tmp, device=device)
batch['atom2residue'] = torch.repeat_interleave(torch.arange(len(batch['residue_natoms']), device=device),
batch['residue_natoms'])
batch['protein_edit_atom'] = torch.repeat_interleave(batch['protein_edit_residue'], batch['residue_natoms'],
dim=0)
# follow batch
num_protein = batch['protein_atom_batch'].max() + 1
repeats = torch.tensor([batch['residue_natoms'][batch['amino_acid_batch'] == i].sum() for i in range(num_protein)])
batch['protein_atom_batch'] = torch.repeat_interleave(torch.arange(num_protein), repeats).to(device)
batch['edit_backbone'] = copy.deepcopy(batch['protein_edit_atom'])
index = torch.arange(len(batch['amino_acid']))[batch['protein_edit_residue']]
for k in range(len(batch['amino_acid'])):
mask = batch['atom2residue'] == k
if k in index:
data_mask = batch['edit_backbone'][mask]
data_mask[4:] = 0
batch['edit_backbone'][mask] = data_mask
return batch
def atom_feature(res_type, device):
atom_types = torch.arange(38)
max_num_aa = 21
atom_type = torch.tensor(RES_ATOMS[res_type]).view(-1, 1) == atom_types.view(1, -1)
amino_acid = F.one_hot(res_type, num_classes=max_num_aa).repeat(NUM_ATOMS[res_type], 1)
x = torch.cat([atom_type.to(device), amino_acid], dim=-1)
return x
def to_pdb(res_X, amino_acid, res_idx, res_batch, index, pocket_filename, target_path, original):
lines = ['HEADER POCKET', 'COMPND POCKET\n']
num_protein = res_batch.max().item() + 1
for n in range(num_protein):
#pdb_path = os.path.join(orig_data_path, pocket_filename[n])
pdb_path = pocket_filename[n]
with open(pdb_path, 'r') as f:
pdb_block = f.read()
protein = PDBProtein(pdb_block)
residues, atoms = protein.return_residues()
mask = (res_batch == n)
res_X_protein = res_X[mask]
amino_acid_protein = amino_acid[mask]
res_idx_protein = res_idx[mask]
atom_count = 0
if original:
path = os.path.join(target_path, str(index + n) + '_orig.pdb')
else:
path = os.path.join(target_path, str(index + n) + '.pdb')
with open(path, 'w') as f:
f.writelines(lines)
for k in range(len(res_X_protein)):
atom_type = RES_ATOM14[amino_acid_protein[k]]
chain = residues[k]['chain']
for i in range(NUM_ATOMS[amino_acid_protein[k]]):
j0 = str('ATOM').ljust(6) # atom#6s
j1 = str(atom_count).rjust(5) # aomnum#5d
j2 = str(atom_type[i]).center(4) # atomname$#4s
j3 = AA_NUMBER_NAME[amino_acid_protein[k].item()].ljust(3) # resname#1s
j4 = str(chain).rjust(1) # Astring
j5 = str(res_idx_protein[k].item()).rjust(4) # resnum
j6 = str('%8.3f' % (float(res_X_protein[k, i, 0]))).rjust(8) # x
j7 = str('%8.3f' % (float(res_X_protein[k, i, 1]))).rjust(8) # y
j8 = str('%8.3f' % (float(res_X_protein[k, i, 2]))).rjust(8) # z\
j9 = str('%6.2f' % (1.00)).rjust(6) # occ
j10 = str('%6.2f' % (25.02)).ljust(6) # temp
j11 = str(atom_type[i][0]).rjust(12) # elname
f.write("%s%s %s %s %s%s %s%s%s%s%s%s\n" % (j0, j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11))
atom_count += 1
f.write('END')
f.write('\n')
openmm_relax(path)
return index + num_protein
def to_whole_pdb(res_X, amino_acid, res_idx, res_batch, index, protein_filename, r10_mask, orig_data_path, target_path):
lines = ['HEADER POCKET', 'COMPND POCKET\n']
num_protein = res_batch.max().item() + 1
for n in range(num_protein):
pdb_path = protein_filename[n]
with open(pdb_path, 'r') as f:
pdb_block = f.read()
protein = PDBProtein(pdb_block)
residues, atoms = protein.return_residues()
mask = (res_batch == n)
res_X_protein = res_X[mask]
amino_acid_protein = amino_acid[mask]
res_idx_protein = res_idx[mask]
assert r10_mask[n].sum() == len(amino_acid_protein)
path = os.path.join(target_path, str(index + n) + '_whole.pdb')
atom_count = 0
stored_res_count = 0
with open(path, 'w') as f:
f.writelines(lines)
for k in range(len(residues)):
if r10_mask[n, k+1]:
chain = atoms[residues[k]['atoms'][0]]['line'][21:22].strip()
atom_type = RES_ATOM14[amino_acid_protein[stored_res_count]]
for i in range(NUM_ATOMS[amino_acid_protein[stored_res_count]]):
j0 = str('ATOM').ljust(6) # atom#6s
j1 = str(atom_count).rjust(5) # aomnum#5d
j2 = str(atom_type[i]).center(4) # atomname$#4s
j3 = AA_NUMBER_NAME[amino_acid_protein[stored_res_count].item()].ljust(3) # resname#1s
j4 = str(chain).rjust(1) # Astring
j5 = str(res_idx_protein[stored_res_count].item()).rjust(4) # resnum
j6 = str('%8.3f' % (float(res_X_protein[stored_res_count, i, 0]))).rjust(8) # x
j7 = str('%8.3f' % (float(res_X_protein[stored_res_count, i, 1]))).rjust(8) # y
j8 = str('%8.3f' % (float(res_X_protein[stored_res_count, i, 2]))).rjust(8) # z\
j9 = str('%6.2f' % (1.00)).rjust(6) # occ
j10 = str('%6.2f' % (25.02)).ljust(6) # temp
j11 = str(atom_type[i][0]).rjust(12) # elname
f.write("%s%s %s %s %s%s %s%s%s%s%s%s\n" % (j0, j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11))
atom_count += 1
stored_res_count += 1
else:
for atom_idx in residues[k]['atoms']:
line = atoms[atom_idx]['line']
line = line[:6] + str(atom_count).rjust(5) + line[11:] + "\n"
atom_count += 1
f.write(line)
f.write('END')
f.write('\n')
openmm_relax(path)
return index + num_protein
def to_sdf(pred_pos, elements, mask, ligand_batch, bond_types, bond_index, edge_batch, id, target_path):
num_ligand = edge_batch.max().item() + 1
for l in range(num_ligand):
filename = os.path.join(target_path, str(id + l) + '.sdf')
positions = pred_pos[l][mask[l]]
elements_protein = elements[ligand_batch == l]
bond_types_protein = bond_types[edge_batch == l]
bond_index_protein = bond_index[:, edge_batch == l].transpose(0, 1)
mol = rdchem.EditableMol(Chem.Mol())
# Add atoms to molecule
for element in elements_protein:
atom = Chem.Atom(element.item())
mol.AddAtom(atom)
# Add bonds to molecule
edge_set = set()
for k, (bond_type, (start_idx, end_idx)) in enumerate(zip(bond_types_protein, bond_index_protein)):
if (start_idx.item(), end_idx.item()) not in edge_set:
edge_set.add((start_idx.item(), end_idx.item()))
edge_set.add((end_idx.item(), start_idx.item()))
mol.AddBond(start_idx.item(), end_idx.item(), BOND_TYPE[bond_type.item()])
# Set 3D coordinates (assuming positions are in 3D)
mol = mol.GetMol()
conf = Chem.Conformer(mol.GetNumAtoms())
for i, position in enumerate(positions):
conf.SetAtomPosition(i, position.tolist())
mol.AddConformer(conf)
writer = Chem.SDWriter(filename)
writer.write(mol)
writer.close()
return mol
def init_weight(m):
if isinstance(m, nn.Linear):
nn.init.xavier_normal_(m.weight)
elif isinstance(m, nn.Conv1d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.weight, 1)
class AminoAcidFeature(nn.Module):
def __init__(self, backbone_only=False) -> None:
super().__init__()
self.backbone_only = backbone_only
# number of classes
self.num_aa_type = len(VOCAB)
self.num_atom_type = VOCAB.get_num_atom_type()
self.num_atom_pos = VOCAB.get_num_atom_pos()
# atom-level special tokens
self.atom_mask_idx = VOCAB.get_atom_mask_idx()
self.atom_pad_idx = VOCAB.get_atom_pad_idx()
self.atom_pos_mask_idx = VOCAB.get_atom_pos_mask_idx()
self.atom_pos_pad_idx = VOCAB.get_atom_pos_pad_idx()
# global nodes and mask nodes
self.boa_idx = VOCAB.symbol_to_idx(VOCAB.BOA)
self.boh_idx = VOCAB.symbol_to_idx(VOCAB.BOH)
self.bol_idx = VOCAB.symbol_to_idx(VOCAB.BOL)
self.mask_idx = VOCAB.get_mask_idx()
# atoms encoding
residue_atom_type, residue_atom_pos = [], []
backbone = [VOCAB.atom_to_idx(atom[0]) for atom in VOCAB.backbone_atoms]
n_channel = VOCAB.MAX_ATOM_NUMBER if not backbone_only else 4
special_mask = VOCAB.get_special_mask()
for i in range(len(VOCAB)):
if i == self.boa_idx or i == self.boh_idx or i == self.bol_idx or i == self.mask_idx:
# global nodes
residue_atom_type.append([self.atom_mask_idx for _ in range(n_channel)])
residue_atom_pos.append([self.atom_pos_mask_idx for _ in range(n_channel)])
elif special_mask[i] == 1:
# other special token (pad)
residue_atom_type.append([self.atom_pad_idx for _ in range(n_channel)])
residue_atom_pos.append([self.atom_pos_pad_idx for _ in range(n_channel)])
else:
# normal amino acids
sidechain_atoms = VOCAB.get_sidechain_info(VOCAB.idx_to_symbol(i))
atom_type = backbone
atom_pos = [VOCAB.atom_pos_to_idx(VOCAB.atom_pos_bb) for _ in backbone]
if not backbone_only:
sidechain_atoms = VOCAB.get_sidechain_info(VOCAB.idx_to_symbol(i))
atom_type = atom_type + [VOCAB.atom_to_idx(atom[0]) for atom in sidechain_atoms]
atom_pos = atom_pos + [VOCAB.atom_pos_to_idx(atom[1]) for atom in sidechain_atoms]
num_pad = n_channel - len(atom_type)
residue_atom_type.append(atom_type + [self.atom_pad_idx for _ in range(num_pad)])
residue_atom_pos.append(atom_pos + [self.atom_pos_pad_idx for _ in range(num_pad)])
# mapping from residue to atom types and positions
self.residue_atom_type = nn.parameter.Parameter(
torch.tensor(residue_atom_type, dtype=torch.long),
requires_grad=False)
self.residue_atom_pos = nn.parameter.Parameter(
torch.tensor(residue_atom_pos, dtype=torch.long),
requires_grad=False)
# sidechain geometry
if not backbone_only:
sc_bonds, sc_bonds_mask = [], []
sc_chi_atoms, sc_chi_atoms_mask = [], []
for i in range(len(VOCAB)):
if special_mask[i] == 1:
sc_bonds.append([])
sc_chi_atoms.append([])
else:
symbol = VOCAB.idx_to_symbol(i)
atom_type = VOCAB.backbone_atoms + VOCAB.get_sidechain_info(symbol)
atom2channel = {atom: i for i, atom in enumerate(atom_type)}
chi_atoms, bond_atoms = VOCAB.get_sidechain_geometry(symbol)
sc_chi_atoms.append(
[[atom2channel[atom] for atom in atoms] for atoms in chi_atoms]
)
bonds = []
for src_atom in bond_atoms:
for dst_atom in bond_atoms[src_atom]:
bonds.append((atom2channel[src_atom], atom2channel[dst_atom]))
sc_bonds.append(bonds)
max_num_chis = max([len(chis) for chis in sc_chi_atoms])
max_num_bonds = max([len(bonds) for bonds in sc_bonds])
for i in range(len(VOCAB)):
num_chis, num_bonds = len(sc_chi_atoms[i]), len(sc_bonds[i])
num_pad_chis, num_pad_bonds = max_num_chis - num_chis, max_num_bonds - num_bonds
sc_chi_atoms_mask.append(
[1 for _ in range(num_chis)] + [0 for _ in range(num_pad_chis)]
)
sc_bonds_mask.append(
[1 for _ in range(num_bonds)] + [0 for _ in range(num_pad_bonds)]
)
sc_chi_atoms[i].extend([[-1, -1, -1, -1] for _ in range(num_pad_chis)])
sc_bonds[i].extend([(-1, -1) for _ in range(num_pad_bonds)])
# mapping residues to their sidechain chi angle atoms and bonds
self.sidechain_chi_angle_atoms = nn.parameter.Parameter(
torch.tensor(sc_chi_atoms, dtype=torch.long),
requires_grad=False)
self.sidechain_chi_mask = nn.parameter.Parameter(
torch.tensor(sc_chi_atoms_mask, dtype=torch.bool),
requires_grad=False
)
self.sidechain_bonds = nn.parameter.Parameter(
torch.tensor(sc_bonds, dtype=torch.long),
requires_grad=False
)
self.sidechain_bonds_mask = nn.parameter.Parameter(
torch.tensor(sc_bonds_mask, dtype=torch.bool),
requires_grad=False
)
def _construct_residue_pos(self, S):
# construct residue position. global node is 1, the first residue is 2, ... (0 for padding)
glbl_node_mask = self._is_global(S)
glbl_node_idx = torch.nonzero(glbl_node_mask).flatten() # [batch_size * 3] (boa, boh, bol)
shift = F.pad(glbl_node_idx[:-1] - glbl_node_idx[1:] + 1, (1, 0), value=1) # [batch_size * 3]
residue_pos = torch.ones_like(S)
residue_pos[glbl_node_mask] = shift
residue_pos = torch.cumsum(residue_pos, dim=0)
return residue_pos
def _construct_segment_ids(self, res_idx, batch):
consecutive = (res_idx[1:] == res_idx[:-1]) & (batch[1:] == batch[:-1])
segment_ids = torch.zeros_like(res_idx).long()
id = 0
for i in range(1, len(segment_ids)):
if consecutive[i - 1]:
segment_ids[i] = id
else:
id += 1
segment_ids[i] = id
return segment_ids
def _construct_atom_type(self, S):
# construct atom types
return self.residue_atom_type[S]
def _construct_atom_pos(self, S):
# construct atom positions
return self.residue_atom_pos[S]
@torch.no_grad()
def get_sidechain_chi_angles_atoms(self, S):
chi_angles_atoms = self.sidechain_chi_angle_atoms[S] # [N, max_num_chis, 4]
chi_mask = self.sidechain_chi_mask[S] # [N, max_num_chis]
return chi_angles_atoms, chi_mask
@torch.no_grad()
def get_sidechain_bonds(self, S):
bonds = self.sidechain_bonds[S] # [N, max_num_bond, 2]
bond_mask = self.sidechain_bonds_mask[S]
return bonds, bond_mask
def forward(self, X, S, batch_id, k_neighbors):
H, (_, _, atom_pos) = self.embedding(S)
ctx_edges, inter_edges = self.construct_edges(
X, S, batch_id, k_neighbors, atom_pos=atom_pos)
return H, (ctx_edges, inter_edges)
class ProteinFeature(nn.Module):
def __init__(self, backbone_only=False):
super().__init__()
self.backbone_only = backbone_only
self.aa_feature = AminoAcidFeature()
def _cal_sidechain_bond_lengths(self, S, X):
bonds, bonds_mask = self.aa_feature.get_sidechain_bonds(S)
n = torch.nonzero(bonds_mask)[:, 0] # [Nbonds]
src, dst = bonds[bonds_mask].T
src_X, dst_X = X[(n, src)], X[(n, dst)] # [Nbonds, 3]
bond_lengths = torch.norm(dst_X - src_X, dim=-1)
return bond_lengths
def _cal_sidechain_chis(self, S, X):
chi_atoms, chi_mask = self.aa_feature.get_sidechain_chi_angles_atoms(S)
n = torch.nonzero(chi_mask)[:, 0] # [Nchis]
a0, a1, a2, a3 = chi_atoms[chi_mask].T # [Nchis]
x0, x1, x2, x3 = X[(n, a0)], X[(n, a1)], X[(n, a2)], X[(n, a3)] # [Nchis, 3]
u_0, u_1, u_2 = (x1 - x0), (x2 - x1), (x3 - x2) # [Nchis, 3]
# normals of the two planes
n_1 = F.normalize(torch.cross(u_0, u_1), dim=-1) # [Nchis, 3]
n_2 = F.normalize(torch.cross(u_1, u_2), dim=-1) # [Nchis, 3]
cosChi = (n_1 * n_2).sum(-1) # [Nchis]
eps = 1e-7
cosChi = torch.clamp(cosChi, -1 + eps, 1 - eps)
return cosChi
def _cal_backbone_bond_lengths(self, X, seg_id):
# loss of backbone (...N-CA-C(O)-N...) bond length
# N-CA, CA-C, C=O
bl1 = torch.norm(X[:, 1:4] - X[:, :3], dim=-1) # [N, 3], (N-CA), (CA-C), (C=O)
# C-N
bl2 = torch.norm(X[1:, 0] - X[:-1, 2], dim=-1) # [N-1]
same_chain_mask = seg_id[1:] == seg_id[:-1]
bl2 = bl2[same_chain_mask]
bl = torch.cat([bl1.flatten(), bl2], dim=0)
return bl
def _cal_angles(self, X, seg_id):
ori_X = X
X = X[:, :3].reshape(-1, 3) # [N * 3, 3], N, CA, C
U = F.normalize(X[1:] - X[:-1], dim=-1) # [N * 3 - 1, 3]
# 1. dihedral angles
u_2, u_1, u_0 = U[:-2], U[1:-1], U[2:] # [N * 3 - 3, 3]
# backbone normals
n_2 = F.normalize(torch.cross(u_2, u_1), dim=-1)
n_1 = F.normalize(torch.cross(u_1, u_0), dim=-1)
# angle between normals
eps = 1e-7
cosD = (n_2 * n_1).sum(-1) # [(N-1) * 3]
cosD = torch.clamp(cosD, -1 + eps, 1 - eps)
# D = torch.sign((u_2 * n_1).sum(-1)) * torch.acos(cosD)
seg_id_atom = seg_id.repeat(1, 3).flatten() # [N * 3]
same_chain_mask = sequential_and(
seg_id_atom[:-3] == seg_id_atom[1:-2],
seg_id_atom[1:-2] == seg_id_atom[2:-1],
seg_id_atom[2:-1] == seg_id_atom[3:]
) # [N * 3 - 3]
# D = D[same_chain_mask]
cosD = cosD[same_chain_mask]
# 2. bond angles (C_{n-1}-N, N-CA), (N-CA, CA-C), (CA-C, C=O), (CA-C, C-N_{n+1}), (O=C, C-Nn)
u_0, u_1 = U[:-1], U[1:] # [N*3 - 2, 3]
cosA1 = ((-u_0) * u_1).sum(-1) # [N*3 - 2], (C_{n-1}-N, N-CA), (N-CA, CA-C), (CA-C, C-N_{n+1})
same_chain_mask = sequential_and(
seg_id_atom[:-2] == seg_id_atom[1:-1],
seg_id_atom[1:-1] == seg_id_atom[2:]
)
cosA1 = cosA1[same_chain_mask] # [N*3 - 2 * num_chain]
u_co = F.normalize(ori_X[:, 3] - ori_X[:, 2], dim=-1) # [N, 3], C=O
u_cca = -U[1::3] # [N, 3], C-CA
u_cn = U[2::3] # [N-1, 3], C-N_{n+1}
cosA2 = (u_co * u_cca).sum(-1) # [N], (C=O, C-CA)
cosA3 = (u_co[:-1] * u_cn).sum(-1) # [N-1], (C=O, C-N_{n+1})
same_chain_mask = (seg_id[:-1] == seg_id[1:]) # [N-1]
cosA3 = cosA3[same_chain_mask]
cosA = torch.cat([cosA1, cosA2, cosA3], dim=-1)
cosA = torch.clamp(cosA, -1 + eps, 1 - eps)
return cosD, cosA
def coord_loss(self, pred_X, true_X, batch_id, atom_mask, reference=None):
pred_bb, true_bb = pred_X[:, :4], true_X[:, :4]
bb_mask = atom_mask[:, :4]
true_X = true_X.clone()
ops = []
align_obj = pred_bb if reference is None else reference[:, :4]
for i in range(torch.max(batch_id) + 1):
is_cur_graph = batch_id == i
cur_bb_mask = bb_mask[is_cur_graph]
_, R, t = kabsch_torch(
true_bb[is_cur_graph][cur_bb_mask],
align_obj[is_cur_graph][cur_bb_mask],
requires_grad=True)
true_X[is_cur_graph] = torch.matmul(true_X[is_cur_graph], R.T) + t
ops.append((R.detach(), t.detach()))
xloss = F.smooth_l1_loss(
pred_X[atom_mask], true_X[atom_mask],
reduction='sum') / atom_mask.sum() # atom-level loss
bb_rmsd = torch.sqrt(((pred_X[:, :4] - true_X[:, :4]) ** 2).sum(-1).mean(-1)) # [N]
return xloss, bb_rmsd, ops
def structure_loss(self, pred_X, true_X, S, res_idx, batch, full_profile=True):
seg_id = self.aa_feature._construct_segment_ids(res_idx, batch)
# loss of backbone (...N-CA-C(O)-N...) bond length
true_bl = self._cal_backbone_bond_lengths(true_X, seg_id)
pred_bl = self._cal_backbone_bond_lengths(pred_X, seg_id)
bond_loss = F.smooth_l1_loss(pred_bl, true_bl)
# loss of backbone dihedral angles
if full_profile:
true_cosD, true_cosA = self._cal_angles(true_X, seg_id)
pred_cosD, pred_cosA = self._cal_angles(pred_X, seg_id)
angle_loss = F.smooth_l1_loss(pred_cosD, true_cosD)
bond_angle_loss = F.smooth_l1_loss(pred_cosA, true_cosA)
# loss of sidechain bonds
true_sc_bl = self._cal_sidechain_bond_lengths(S, true_X)
pred_sc_bl = self._cal_sidechain_bond_lengths(S, pred_X)
sc_bond_loss = F.smooth_l1_loss(pred_sc_bl, true_sc_bl)
# loss of sidechain chis
if full_profile:
true_sc_chi = self._cal_sidechain_chis(S, true_X)
pred_sc_chi = self._cal_sidechain_chis(S, pred_X)
sc_chi_loss = F.smooth_l1_loss(pred_sc_chi, true_sc_chi)
# exerting constraints on bond lengths only is sufficient
loss = bond_loss + sc_bond_loss
if full_profile:
details = (loss, bond_loss, bond_angle_loss, angle_loss, sc_bond_loss, sc_chi_loss)
else:
details = (loss, bond_loss, sc_bond_loss)
return loss
def sequential_and(*tensors):
res = tensors[0]
for mat in tensors[1:]:
res = torch.logical_and(res, mat)
return res
|