Spaces:
Runtime error
Runtime error
File size: 24,919 Bytes
edee58e bb4b2b8 edee58e bb4b2b8 edee58e bb4b2b8 edee58e bb4b2b8 edee58e bb4b2b8 edee58e bb4b2b8 edee58e bb4b2b8 edee58e bb4b2b8 edee58e bb4b2b8 edee58e bb4b2b8 edee58e bb4b2b8 edee58e bb4b2b8 edee58e bb4b2b8 edee58e bb4b2b8 edee58e bb4b2b8 edee58e bb4b2b8 edee58e bb4b2b8 edee58e bb4b2b8 edee58e bb4b2b8 edee58e bb4b2b8 edee58e bb4b2b8 edee58e bb4b2b8 edee58e bb4b2b8 edee58e bb4b2b8 edee58e bb4b2b8 edee58e bb4b2b8 edee58e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 |
"""
A comprehensive toolkit for generating and translating subtitles from media files.
This module provides functionalities to:
1. Download AI models from Hugging Face without requiring a token.
2. Transcribe audio from media files using a high-performance Whisper model.
3. Generate multiple formats of SRT subtitles (default, professional multi-line, word-level, and shorts-style).
4. Translate subtitles into different languages.
5. Orchestrate the entire process through a simple-to-use main function.
"""
# ==============================================================================
# --- 1. IMPORTS
# ==============================================================================
import os
import re
import gc
import uuid
import math
import shutil
import string
import requests
import urllib.request
import urllib.error
import torch
import pysrt
from tqdm.auto import tqdm
from faster_whisper import WhisperModel
from deep_translator import GoogleTranslator
# ==============================================================================
# --- 2. CONSTANTS & CONFIGURATION
# ==============================================================================
# Folder paths for storing generated files and temporary audio
SUBTITLE_FOLDER = "./generated_subtitle"
TEMP_FOLDER = "./subtitle_audio"
# Mapping of language names to their ISO 639-1 codes
LANGUAGE_CODE = {
'Akan': 'aka', 'Albanian': 'sq', 'Amharic': 'am', 'Arabic': 'ar', 'Armenian': 'hy',
'Assamese': 'as', 'Azerbaijani': 'az', 'Basque': 'eu', 'Bashkir': 'ba', 'Bengali': 'bn',
'Bosnian': 'bs', 'Bulgarian': 'bg', 'Burmese': 'my', 'Catalan': 'ca', 'Chinese': 'zh',
'Croatian': 'hr', 'Czech': 'cs', 'Danish': 'da', 'Dutch': 'nl', 'English': 'en',
'Estonian': 'et', 'Faroese': 'fo', 'Finnish': 'fi', 'French': 'fr', 'Galician': 'gl',
'Georgian': 'ka', 'German': 'de', 'Greek': 'el', 'Gujarati': 'gu', 'Haitian Creole': 'ht',
'Hausa': 'ha', 'Hebrew': 'he', 'Hindi': 'hi', 'Hungarian': 'hu', 'Icelandic': 'is',
'Indonesian': 'id', 'Italian': 'it', 'Japanese': 'ja', 'Kannada': 'kn', 'Kazakh': 'kk',
'Korean': 'ko', 'Kurdish': 'ckb', 'Kyrgyz': 'ky', 'Lao': 'lo', 'Lithuanian': 'lt',
'Luxembourgish': 'lb', 'Macedonian': 'mk', 'Malay': 'ms', 'Malayalam': 'ml', 'Maltese': 'mt',
'Maori': 'mi', 'Marathi': 'mr', 'Mongolian': 'mn', 'Nepali': 'ne', 'Norwegian': 'no',
'Norwegian Nynorsk': 'nn', 'Pashto': 'ps', 'Persian': 'fa', 'Polish': 'pl', 'Portuguese': 'pt',
'Punjabi': 'pa', 'Romanian': 'ro', 'Russian': 'ru', 'Serbian': 'sr', 'Sinhala': 'si',
'Slovak': 'sk', 'Slovenian': 'sl', 'Somali': 'so', 'Spanish': 'es', 'Sundanese': 'su',
'Swahili': 'sw', 'Swedish': 'sv', 'Tamil': 'ta', 'Telugu': 'te', 'Thai': 'th',
'Turkish': 'tr', 'Ukrainian': 'uk', 'Urdu': 'ur', 'Uzbek': 'uz', 'Vietnamese': 'vi',
'Welsh': 'cy', 'Yiddish': 'yi', 'Yoruba': 'yo', 'Zulu': 'zu'
}
# ==============================================================================
# --- 3. FILE & MODEL DOWNLOADING UTILITIES
# ==============================================================================
def download_file(url, download_file_path, redownload=False):
"""Download a single file with urllib and a tqdm progress bar."""
base_path = os.path.dirname(download_file_path)
os.makedirs(base_path, exist_ok=True)
if os.path.exists(download_file_path):
if redownload:
os.remove(download_file_path)
tqdm.write(f"β»οΈ Redownloading: {os.path.basename(download_file_path)}")
elif os.path.getsize(download_file_path) > 0:
tqdm.write(f"βοΈ Skipped (already exists): {os.path.basename(download_file_path)}")
return True
try:
request = urllib.request.urlopen(url)
total = int(request.headers.get('Content-Length', 0))
except urllib.error.URLError as e:
print(f"β Error: Unable to open URL: {url}")
print(f"Reason: {e.reason}")
return False
with tqdm(total=total, desc=os.path.basename(download_file_path), unit='B', unit_scale=True, unit_divisor=1024) as progress:
try:
urllib.request.urlretrieve(
url,
download_file_path,
reporthook=lambda count, block_size, total_size: progress.update(block_size)
)
except urllib.error.URLError as e:
print(f"β Error: Failed to download {url}")
print(f"Reason: {e.reason}")
return False
tqdm.write(f"β¬οΈ Downloaded: {os.path.basename(download_file_path)}")
return True
def download_model(repo_id, download_folder="./", redownload=False):
"""
Downloads all files from a Hugging Face repository using the public API,
avoiding the need for a Hugging Face token for public models.
"""
if not download_folder.strip():
download_folder = "."
api_url = f"https://huggingface.co/api/models/{repo_id}"
model_name = repo_id.split('/')[-1]
download_dir = os.path.abspath(f"{download_folder.rstrip('/')}/{model_name}")
os.makedirs(download_dir, exist_ok=True)
print(f"π Download directory: {download_dir}")
try:
response = requests.get(api_url)
response.raise_for_status()
except requests.exceptions.RequestException as e:
print(f"β Error fetching repo info: {e}")
return None
data = response.json()
files_to_download = [f["rfilename"] for f in data.get("siblings", [])]
if not files_to_download:
print(f"β οΈ No files found in repo '{repo_id}'.")
return None
print(f"π¦ Found {len(files_to_download)} files in repo '{repo_id}'. Checking cache...")
for file in tqdm(files_to_download, desc="Processing files", unit="file"):
file_url = f"https://huggingface.co/{repo_id}/resolve/main/{file}"
file_path = os.path.join(download_dir, file)
download_file(file_url, file_path, redownload=redownload)
return download_dir
# ==============================================================================
# --- 4. CORE TRANSCRIPTION & PROCESSING LOGIC
# ==============================================================================
def get_language_name(code):
"""Retrieves the full language name from its code."""
for name, value in LANGUAGE_CODE.items():
if value == code:
return name
return None
def clean_file_name(file_path):
"""Generates a clean, unique file name to avoid path issues."""
dir_name = os.path.dirname(file_path)
base_name, extension = os.path.splitext(os.path.basename(file_path))
cleaned_base = re.sub(r'[^a-zA-Z\d]+', '_', base_name)
cleaned_base = re.sub(r'_+', '_', cleaned_base).strip('_')
random_uuid = uuid.uuid4().hex[:6]
return os.path.join(dir_name, f"{cleaned_base}_{random_uuid}{extension}")
def format_segments(segments):
"""Formats the raw segments from Whisper into structured lists."""
sentence_timestamp = []
words_timestamp = []
speech_to_text = ""
for i in segments:
text = i.text.strip()
sentence_id = len(sentence_timestamp)
sentence_timestamp.append({
"id": sentence_id,
"text": text,
"start": i.start,
"end": i.end,
"words": []
})
speech_to_text += text + " "
for word in i.words:
word_data = {
"word": word.word.strip(),
"start": word.start,
"end": word.end
}
sentence_timestamp[sentence_id]["words"].append(word_data)
words_timestamp.append(word_data)
return sentence_timestamp, words_timestamp, speech_to_text.strip()
def get_audio_file(uploaded_file):
"""Copies the uploaded media file to a temporary location for processing."""
temp_path = os.path.join(TEMP_FOLDER, os.path.basename(uploaded_file))
cleaned_path = clean_file_name(temp_path)
shutil.copy(uploaded_file, cleaned_path)
return cleaned_path
def whisper_subtitle(uploaded_file, source_language):
"""
Main transcription function. Loads the model, transcribes the audio,
and generates subtitle files.
"""
# 1. Configure device and model
device = "cuda" if torch.cuda.is_available() else "cpu"
compute_type = "float16" if torch.cuda.is_available() else "int8"
model_dir = download_model(
"deepdml/faster-whisper-large-v3-turbo-ct2",
download_folder="./",
redownload=False
)
model = WhisperModel(model_dir, device=device, compute_type=compute_type)
# model = WhisperModel("deepdml/faster-whisper-large-v3-turbo-ct2",device=device, compute_type=compute_type)
# 2. Process audio file
audio_file_path = get_audio_file(uploaded_file)
# 3. Transcribe
detected_language = source_language
if source_language == "Automatic":
segments, info = model.transcribe(audio_file_path, word_timestamps=True)
detected_lang_code = info.language
detected_language = get_language_name(detected_lang_code)
else:
lang_code = LANGUAGE_CODE[source_language]
segments, _ = model.transcribe(audio_file_path, word_timestamps=True, language=lang_code)
sentence_timestamps, word_timestamps, transcript_text = format_segments(segments)
# 4. Cleanup
if os.path.exists(audio_file_path):
os.remove(audio_file_path)
del model
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# 5. Prepare output file paths
base_filename = os.path.splitext(os.path.basename(uploaded_file))[0][:30]
srt_base = f"{SUBTITLE_FOLDER}/{base_filename}_{detected_language}.srt"
clean_srt_path = clean_file_name(srt_base)
txt_path = clean_srt_path.replace(".srt", ".txt")
word_srt_path = clean_srt_path.replace(".srt", "_word_level.srt")
custom_srt_path = clean_srt_path.replace(".srt", "_Multiline.srt")
shorts_srt_path = clean_srt_path.replace(".srt", "_shorts.srt")
# 6. Generate all subtitle files
generate_srt_from_sentences(sentence_timestamps, srt_path=clean_srt_path)
word_level_srt(word_timestamps, srt_path=word_srt_path)
shorts_json=write_sentence_srt(
word_timestamps, output_file=shorts_srt_path, max_lines=1,
max_duration_s=2.0, max_chars_per_line=17
)
sentence_json=write_sentence_srt(
word_timestamps, output_file=custom_srt_path, max_lines=2,
max_duration_s=7.0, max_chars_per_line=38
)
with open(txt_path, 'w', encoding='utf-8') as f:
f.write(transcript_text)
return (
clean_srt_path, custom_srt_path, word_srt_path, shorts_srt_path,
txt_path, transcript_text, sentence_json,shorts_json,detected_language
)
# ==============================================================================
# --- 5. SUBTITLE GENERATION & FORMATTING
# ==============================================================================
def convert_time_to_srt_format(seconds):
"""Converts seconds to the standard SRT time format (HH:MM:SS,ms)."""
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
secs = int(seconds % 60)
milliseconds = round((seconds - int(seconds)) * 1000)
if milliseconds == 1000:
milliseconds = 0
secs += 1
if secs == 60:
secs, minutes = 0, minutes + 1
if minutes == 60:
minutes, hours = 0, hours + 1
return f"{hours:02}:{minutes:02}:{secs:02},{milliseconds:03}"
def split_line_by_char_limit(text, max_chars_per_line=38):
"""Splits a string into multiple lines based on a character limit."""
words = text.split()
lines = []
current_line = ""
for word in words:
if not current_line:
current_line = word
elif len(current_line + " " + word) <= max_chars_per_line:
current_line += " " + word
else:
lines.append(current_line)
current_line = word
if current_line:
lines.append(current_line)
return lines
def merge_punctuation_glitches(subtitles):
"""Cleans up punctuation artifacts at the boundaries of subtitle entries."""
if not subtitles:
return []
cleaned = [subtitles[0]]
for i in range(1, len(subtitles)):
prev = cleaned[-1]
curr = subtitles[i]
prev_text = prev["text"].rstrip()
curr_text = curr["text"].lstrip()
match = re.match(r'^([,.:;!?]+)(\s*)(.+)', curr_text)
if match:
punct, _, rest = match.groups()
if not prev_text.endswith(tuple(punct)):
prev["text"] = prev_text + punct
curr_text = rest.strip()
unwanted_chars = ['"', 'β', 'β', ';', ':']
for ch in unwanted_chars:
curr_text = curr_text.replace(ch, '')
curr_text = curr_text.strip()
if not curr_text or re.fullmatch(r'[.,!?]+', curr_text):
prev["end"] = curr["end"]
continue
curr["text"] = curr_text
prev["text"] = prev["text"].replace('"', '').replace('β', '').replace('β', '')
cleaned.append(curr)
return cleaned
import json
def write_sentence_srt(
word_level_timestamps, output_file="subtitles_professional.srt", max_lines=2,
max_duration_s=7.0, max_chars_per_line=38, hard_pause_threshold=0.5,
merge_pause_threshold=0.4
):
"""Creates professional-grade SRT files and a corresponding timestamp.json file."""
if not word_level_timestamps:
return
# Phase 1: Generate draft subtitles based on timing and length rules
draft_subtitles = []
i = 0
while i < len(word_level_timestamps):
start_time = word_level_timestamps[i]["start"]
# We'll now store the full word objects, not just the text
current_word_objects = []
j = i
while j < len(word_level_timestamps):
entry = word_level_timestamps[j]
# Create potential text from the word objects
potential_words = [w["word"] for w in current_word_objects] + [entry["word"]]
potential_text = " ".join(potential_words)
if len(split_line_by_char_limit(potential_text, max_chars_per_line)) > max_lines: break
if (entry["end"] - start_time) > max_duration_s and current_word_objects: break
if j > i:
prev_entry = word_level_timestamps[j-1]
pause = entry["start"] - prev_entry["end"]
if pause >= hard_pause_threshold: break
if prev_entry["word"].endswith(('.','!','?')): break
# Append the full word object
current_word_objects.append(entry)
j += 1
if not current_word_objects:
current_word_objects.append(word_level_timestamps[i])
j = i + 1
text = " ".join([w["word"] for w in current_word_objects])
end_time = word_level_timestamps[j - 1]["end"]
# Include the list of word objects in our draft subtitle
draft_subtitles.append({
"start": start_time,
"end": end_time,
"text": text,
"words": current_word_objects
})
i = j
# Phase 2: Post-process to merge single-word "orphan" subtitles
if not draft_subtitles: return
final_subtitles = [draft_subtitles[0]]
for k in range(1, len(draft_subtitles)):
prev_sub = final_subtitles[-1]
current_sub = draft_subtitles[k]
is_orphan = len(current_sub["text"].split()) == 1
pause_from_prev = current_sub["start"] - prev_sub["end"]
if is_orphan and pause_from_prev < merge_pause_threshold:
merged_text = prev_sub["text"] + " " + current_sub["text"]
if len(split_line_by_char_limit(merged_text, max_chars_per_line)) <= max_lines:
prev_sub["text"] = merged_text
prev_sub["end"] = current_sub["end"]
# Merge the word-level data as well
prev_sub["words"].extend(current_sub["words"])
continue
final_subtitles.append(current_sub)
final_subtitles = merge_punctuation_glitches(final_subtitles)
print(final_subtitles)
# ==============================================================================
# NEW CODE BLOCK: Generate JSON data and write files
# ==============================================================================
# This dictionary will hold the data for our JSON file
timestamps_data = {}
# Phase 3: Write the final SRT file (and prepare JSON data)
with open(output_file, "w", encoding="utf-8") as f:
for idx, sub in enumerate(final_subtitles, start=1):
# --- SRT Writing (Unchanged) ---
text = sub["text"].replace(" ,", ",").replace(" .", ".")
formatted_lines = split_line_by_char_limit(text, max_chars_per_line)
start_time_str = convert_time_to_srt_format(sub['start'])
end_time_str = convert_time_to_srt_format(sub['end'])
f.write(f"{idx}\n")
f.write(f"{start_time_str} --> {end_time_str}\n")
f.write("\n".join(formatted_lines) + "\n\n")
# --- JSON Data Population (New) ---
# Create the list of word dictionaries for the current subtitle
word_data = []
for word_obj in sub["words"]:
word_data.append({
"word": word_obj["word"],
"start": convert_time_to_srt_format(word_obj["start"]),
"end": convert_time_to_srt_format(word_obj["end"])
})
# Add the complete entry to our main dictionary
timestamps_data[str(idx)] = {
"text": "\n".join(formatted_lines),
"start": start_time_str,
"end": end_time_str,
"words": word_data
}
# Write the collected data to the JSON file
json_output_file = output_file.replace(".srt",".json")
with open(json_output_file, "w", encoding="utf-8") as f_json:
json.dump(timestamps_data, f_json, indent=4, ensure_ascii=False)
print(f"Successfully generated SRT file: {output_file}")
print(f"Successfully generated JSON file: {json_output_file}")
return json_output_file
def write_subtitles_to_file(subtitles, filename="subtitles.srt"):
"""Writes a dictionary of subtitles to a standard SRT file."""
with open(filename, 'w', encoding='utf-8') as f:
for id, entry in subtitles.items():
if entry['start'] is None or entry['end'] is None:
print(f"Skipping subtitle ID {id} due to missing timestamps.")
continue
start_time = convert_time_to_srt_format(entry['start'])
end_time = convert_time_to_srt_format(entry['end'])
f.write(f"{id}\n")
f.write(f"{start_time} --> {end_time}\n")
f.write(f"{entry['text']}\n\n")
def word_level_srt(words_timestamp, srt_path="word_level_subtitle.srt", shorts=False):
"""Generates an SRT file with one word per subtitle entry."""
punctuation = re.compile(r'[.,!?;:"\ββ_~^+*|]')
with open(srt_path, 'w', encoding='utf-8') as srt_file:
for i, word_info in enumerate(words_timestamp, start=1):
start = convert_time_to_srt_format(word_info['start'])
end = convert_time_to_srt_format(word_info['end'])
word = re.sub(punctuation, '', word_info['word'])
if word.strip().lower() == 'i': word = "I"
if not shorts: word = word.replace("-", "")
srt_file.write(f"{i}\n{start} --> {end}\n{word}\n\n")
def generate_srt_from_sentences(sentence_timestamp, srt_path="default_subtitle.srt"):
"""Generates a standard SRT file from sentence-level timestamps."""
with open(srt_path, 'w', encoding='utf-8') as srt_file:
for index, sentence in enumerate(sentence_timestamp, start=1):
start = convert_time_to_srt_format(sentence['start'])
end = convert_time_to_srt_format(sentence['end'])
srt_file.write(f"{index}\n{start} --> {end}\n{sentence['text']}\n\n")
# ==============================================================================
# --- 6. TRANSLATION UTILITIES
# ==============================================================================
def translate_text(text, source_language, destination_language):
"""Translates a single block of text using GoogleTranslator."""
source_code = LANGUAGE_CODE[source_language]
target_code = LANGUAGE_CODE[destination_language]
if destination_language == "Chinese":
target_code = 'zh-CN'
translator = GoogleTranslator(source=source_code, target=target_code)
return str(translator.translate(text.strip()))
def translate_subtitle(subtitles, source_language, destination_language):
"""Translates the text content of a pysrt Subtitle object."""
translated_text_dump = ""
for sub in subtitles:
translated_text = translate_text(sub.text, source_language, destination_language)
sub.text = translated_text
translated_text_dump += translated_text.strip() + " "
return subtitles, translated_text_dump.strip()
# ==============================================================================
# --- 7. MAIN ORCHESTRATOR FUNCTION
# ==============================================================================
def subtitle_maker(media_file, source_lang, target_lang):
"""
The main entry point to generate and optionally translate subtitles.
Args:
media_file (str): Path to the input media file.
source_lang (str): The source language ('Automatic' for detection).
target_lang (str): The target language for translation.
Returns:
A tuple containing paths to all generated files and the transcript text.
"""
try:
(
default_srt, custom_srt, word_srt, shorts_srt,
txt_path, transcript, sentence_json,word_json,detected_lang
) = whisper_subtitle(media_file, source_lang)
except Exception as e:
print(f"β An error occurred during transcription: {e}")
return (None, None, None, None, None, None,None,None, f"Error: {e}")
translated_srt_path = None
if detected_lang and detected_lang != target_lang:
print(f"TRANSLATING from {detected_lang} to {target_lang}")
original_subs = pysrt.open(default_srt, encoding='utf-8')
translated_subs, _ = translate_subtitle(original_subs, detected_lang, target_lang)
base_name, ext = os.path.splitext(os.path.basename(default_srt))
translated_filename = f"{base_name}_to_{target_lang}{ext}"
translated_srt_path = os.path.join(SUBTITLE_FOLDER, translated_filename)
translated_subs.save(translated_srt_path, encoding='utf-8')
return (
default_srt, translated_srt_path, custom_srt, word_srt,
shorts_srt, txt_path,sentence_json,word_json, transcript
)
# ==============================================================================
# --- 8. INITIALIZATION
# ==============================================================================
os.makedirs(SUBTITLE_FOLDER, exist_ok=True)
os.makedirs(TEMP_FOLDER, exist_ok=True)
# from subtitle import subtitle_maker
# media_file = "video.mp4"
# source_lang = "English"
# target_lang = "English"
# default_srt, translated_srt_path, custom_srt, word_srt, shorts_srt, txt_path,sentence_json,word_json, transcript= subtitle_maker(
# media_file, source_lang, target_lang
# )
# If source_lang and target_lang are the same, translation will be skipped.
# default_srt -> Original subtitles generated directly by Whisper-Large-V3-Turbo-CT2
# translated_srt -> Translated subtitles (only generated if source_lang β target_lang,
# e.g., English β Hindi)
# custom_srt -> Modified version of default subtitles with shorter segments
# (better readability for horizontal videos, Maximum 38 characters per segment. )
# word_srt -> Word-level timestamps (useful for creating YouTube Shorts/Reels)
# shorts_srt -> Optimized subtitles for vertical videos (displays 3β4 words at a time , Maximum 17 characters per segment.)
# txt_path -> Full transcript as plain text (useful for video summarization or for asking questions about the video or audio data with other LLM tools)
# sentence_json,word_json --> To Generate .ass file later
# transcript -> Transcript text directly returned by the function, if you just need the transcript
# All functionality is contained in a single file, making it portable
# and reusable across multiple projects for different purposes. |