NeuralFalcon commited on
Commit
edee58e
·
verified ·
1 Parent(s): a00a83a

Create subtitle.py

Browse files
Files changed (1) hide show
  1. subtitle.py +545 -0
subtitle.py ADDED
@@ -0,0 +1,545 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Code written by me, organized with the help of AI.
2
+ """
3
+ A comprehensive toolkit for generating and translating subtitles from media files.
4
+
5
+ This module provides functionalities to:
6
+ 1. Download AI models from Hugging Face without requiring a token.
7
+ 2. Transcribe audio from media files using a high-performance Whisper model.
8
+ 3. Generate multiple formats of SRT subtitles (default, professional multi-line, word-level, and shorts-style).
9
+ 4. Translate subtitles into different languages.
10
+ 5. Orchestrate the entire process through a simple-to-use main function.
11
+ """
12
+
13
+ # ==============================================================================
14
+ # --- 1. IMPORTS
15
+ # ==============================================================================
16
+
17
+ import os
18
+ import re
19
+ import gc
20
+ import uuid
21
+ import math
22
+ import shutil
23
+ import string
24
+ import requests
25
+ import urllib.request
26
+ import urllib.error
27
+
28
+ import torch
29
+ import pysrt
30
+ from tqdm.auto import tqdm
31
+ from faster_whisper import WhisperModel
32
+ from deep_translator import GoogleTranslator
33
+
34
+
35
+ # ==============================================================================
36
+ # --- 2. CONSTANTS & CONFIGURATION
37
+ # ==============================================================================
38
+
39
+ # Folder paths for storing generated files and temporary audio
40
+ SUBTITLE_FOLDER = "./generated_subtitle"
41
+ TEMP_FOLDER = "./subtitle_audio"
42
+
43
+ # Mapping of language names to their ISO 639-1 codes
44
+ LANGUAGE_CODE = {
45
+ 'Akan': 'aka', 'Albanian': 'sq', 'Amharic': 'am', 'Arabic': 'ar', 'Armenian': 'hy',
46
+ 'Assamese': 'as', 'Azerbaijani': 'az', 'Basque': 'eu', 'Bashkir': 'ba', 'Bengali': 'bn',
47
+ 'Bosnian': 'bs', 'Bulgarian': 'bg', 'Burmese': 'my', 'Catalan': 'ca', 'Chinese': 'zh',
48
+ 'Croatian': 'hr', 'Czech': 'cs', 'Danish': 'da', 'Dutch': 'nl', 'English': 'en',
49
+ 'Estonian': 'et', 'Faroese': 'fo', 'Finnish': 'fi', 'French': 'fr', 'Galician': 'gl',
50
+ 'Georgian': 'ka', 'German': 'de', 'Greek': 'el', 'Gujarati': 'gu', 'Haitian Creole': 'ht',
51
+ 'Hausa': 'ha', 'Hebrew': 'he', 'Hindi': 'hi', 'Hungarian': 'hu', 'Icelandic': 'is',
52
+ 'Indonesian': 'id', 'Italian': 'it', 'Japanese': 'ja', 'Kannada': 'kn', 'Kazakh': 'kk',
53
+ 'Korean': 'ko', 'Kurdish': 'ckb', 'Kyrgyz': 'ky', 'Lao': 'lo', 'Lithuanian': 'lt',
54
+ 'Luxembourgish': 'lb', 'Macedonian': 'mk', 'Malay': 'ms', 'Malayalam': 'ml', 'Maltese': 'mt',
55
+ 'Maori': 'mi', 'Marathi': 'mr', 'Mongolian': 'mn', 'Nepali': 'ne', 'Norwegian': 'no',
56
+ 'Norwegian Nynorsk': 'nn', 'Pashto': 'ps', 'Persian': 'fa', 'Polish': 'pl', 'Portuguese': 'pt',
57
+ 'Punjabi': 'pa', 'Romanian': 'ro', 'Russian': 'ru', 'Serbian': 'sr', 'Sinhala': 'si',
58
+ 'Slovak': 'sk', 'Slovenian': 'sl', 'Somali': 'so', 'Spanish': 'es', 'Sundanese': 'su',
59
+ 'Swahili': 'sw', 'Swedish': 'sv', 'Tamil': 'ta', 'Telugu': 'te', 'Thai': 'th',
60
+ 'Turkish': 'tr', 'Ukrainian': 'uk', 'Urdu': 'ur', 'Uzbek': 'uz', 'Vietnamese': 'vi',
61
+ 'Welsh': 'cy', 'Yiddish': 'yi', 'Yoruba': 'yo', 'Zulu': 'zu'
62
+ }
63
+
64
+
65
+ # ==============================================================================
66
+ # --- 3. FILE & MODEL DOWNLOADING UTILITIES
67
+ # ==============================================================================
68
+
69
+ def download_file(url, download_file_path, redownload=False):
70
+ """Download a single file with urllib and a tqdm progress bar."""
71
+ base_path = os.path.dirname(download_file_path)
72
+ os.makedirs(base_path, exist_ok=True)
73
+
74
+ if os.path.exists(download_file_path):
75
+ if redownload:
76
+ os.remove(download_file_path)
77
+ tqdm.write(f"♻️ Redownloading: {os.path.basename(download_file_path)}")
78
+ elif os.path.getsize(download_file_path) > 0:
79
+ tqdm.write(f"✔️ Skipped (already exists): {os.path.basename(download_file_path)}")
80
+ return True
81
+
82
+ try:
83
+ request = urllib.request.urlopen(url)
84
+ total = int(request.headers.get('Content-Length', 0))
85
+ except urllib.error.URLError as e:
86
+ print(f"❌ Error: Unable to open URL: {url}")
87
+ print(f"Reason: {e.reason}")
88
+ return False
89
+
90
+ with tqdm(total=total, desc=os.path.basename(download_file_path), unit='B', unit_scale=True, unit_divisor=1024) as progress:
91
+ try:
92
+ urllib.request.urlretrieve(
93
+ url,
94
+ download_file_path,
95
+ reporthook=lambda count, block_size, total_size: progress.update(block_size)
96
+ )
97
+ except urllib.error.URLError as e:
98
+ print(f"❌ Error: Failed to download {url}")
99
+ print(f"Reason: {e.reason}")
100
+ return False
101
+
102
+ tqdm.write(f"⬇️ Downloaded: {os.path.basename(download_file_path)}")
103
+ return True
104
+
105
+
106
+ def download_model(repo_id, download_folder="./", redownload=False):
107
+ """
108
+ Downloads all files from a Hugging Face repository using the public API,
109
+ avoiding the need for a Hugging Face token for public models.
110
+ """
111
+ if not download_folder.strip():
112
+ download_folder = "."
113
+
114
+ api_url = f"https://huggingface.co/api/models/{repo_id}"
115
+ model_name = repo_id.split('/')[-1]
116
+ download_dir = os.path.abspath(f"{download_folder.rstrip('/')}/{model_name}")
117
+ os.makedirs(download_dir, exist_ok=True)
118
+
119
+ print(f"📂 Download directory: {download_dir}")
120
+
121
+ try:
122
+ response = requests.get(api_url)
123
+ response.raise_for_status()
124
+ except requests.exceptions.RequestException as e:
125
+ print(f"❌ Error fetching repo info: {e}")
126
+ return None
127
+
128
+ data = response.json()
129
+ files_to_download = [f["rfilename"] for f in data.get("siblings", [])]
130
+
131
+ if not files_to_download:
132
+ print(f"⚠️ No files found in repo '{repo_id}'.")
133
+ return None
134
+
135
+ print(f"📦 Found {len(files_to_download)} files in repo '{repo_id}'. Checking cache...")
136
+
137
+ for file in tqdm(files_to_download, desc="Processing files", unit="file"):
138
+ file_url = f"https://huggingface.co/{repo_id}/resolve/main/{file}"
139
+ file_path = os.path.join(download_dir, file)
140
+ download_file(file_url, file_path, redownload=redownload)
141
+
142
+ return download_dir
143
+
144
+
145
+ # ==============================================================================
146
+ # --- 4. CORE TRANSCRIPTION & PROCESSING LOGIC
147
+ # ==============================================================================
148
+
149
+ def get_language_name(code):
150
+ """Retrieves the full language name from its code."""
151
+ for name, value in LANGUAGE_CODE.items():
152
+ if value == code:
153
+ return name
154
+ return None
155
+
156
+ def clean_file_name(file_path):
157
+ """Generates a clean, unique file name to avoid path issues."""
158
+ dir_name = os.path.dirname(file_path)
159
+ base_name, extension = os.path.splitext(os.path.basename(file_path))
160
+
161
+ cleaned_base = re.sub(r'[^a-zA-Z\d]+', '_', base_name)
162
+ cleaned_base = re.sub(r'_+', '_', cleaned_base).strip('_')
163
+ random_uuid = uuid.uuid4().hex[:6]
164
+
165
+ return os.path.join(dir_name, f"{cleaned_base}_{random_uuid}{extension}")
166
+
167
+ def format_segments(segments):
168
+ """Formats the raw segments from Whisper into structured lists."""
169
+ sentence_timestamp = []
170
+ words_timestamp = []
171
+ speech_to_text = ""
172
+
173
+ for i in segments:
174
+ text = i.text.strip()
175
+ sentence_id = len(sentence_timestamp)
176
+ sentence_timestamp.append({
177
+ "id": sentence_id,
178
+ "text": text,
179
+ "start": i.start,
180
+ "end": i.end,
181
+ "words": []
182
+ })
183
+ speech_to_text += text + " "
184
+
185
+ for word in i.words:
186
+ word_data = {
187
+ "word": word.word.strip(),
188
+ "start": word.start,
189
+ "end": word.end
190
+ }
191
+ sentence_timestamp[sentence_id]["words"].append(word_data)
192
+ words_timestamp.append(word_data)
193
+
194
+ return sentence_timestamp, words_timestamp, speech_to_text.strip()
195
+
196
+ def get_audio_file(uploaded_file):
197
+ """Copies the uploaded media file to a temporary location for processing."""
198
+ temp_path = os.path.join(TEMP_FOLDER, os.path.basename(uploaded_file))
199
+ cleaned_path = clean_file_name(temp_path)
200
+ shutil.copy(uploaded_file, cleaned_path)
201
+ return cleaned_path
202
+
203
+ def whisper_subtitle(uploaded_file, source_language):
204
+ """
205
+ Main transcription function. Loads the model, transcribes the audio,
206
+ and generates subtitle files.
207
+ """
208
+ # 1. Configure device and model
209
+ device = "cuda" if torch.cuda.is_available() else "cpu"
210
+ compute_type = "float16" if torch.cuda.is_available() else "int8"
211
+ model_dir = download_model(
212
+ "deepdml/faster-whisper-large-v3-turbo-ct2",
213
+ download_folder="./",
214
+ redownload=False
215
+ )
216
+ model = WhisperModel(model_dir, device=device, compute_type=compute_type)
217
+ # model = WhisperModel("deepdml/faster-whisper-large-v3-turbo-ct2",device=device, compute_type=compute_type)
218
+
219
+
220
+ # 2. Process audio file
221
+ audio_file_path = get_audio_file(uploaded_file)
222
+
223
+ # 3. Transcribe
224
+ detected_language = source_language
225
+ if source_language == "Automatic":
226
+ segments, info = model.transcribe(audio_file_path, word_timestamps=True)
227
+ detected_lang_code = info.language
228
+ detected_language = get_language_name(detected_lang_code)
229
+ else:
230
+ lang_code = LANGUAGE_CODE[source_language]
231
+ segments, _ = model.transcribe(audio_file_path, word_timestamps=True, language=lang_code)
232
+
233
+ sentence_timestamps, word_timestamps, transcript_text = format_segments(segments)
234
+
235
+ # 4. Cleanup
236
+ if os.path.exists(audio_file_path):
237
+ os.remove(audio_file_path)
238
+ del model
239
+ gc.collect()
240
+ if torch.cuda.is_available():
241
+ torch.cuda.empty_cache()
242
+
243
+ # 5. Prepare output file paths
244
+ base_filename = os.path.splitext(os.path.basename(uploaded_file))[0][:30]
245
+ srt_base = f"{SUBTITLE_FOLDER}/{base_filename}_{detected_language}.srt"
246
+ clean_srt_path = clean_file_name(srt_base)
247
+ txt_path = clean_srt_path.replace(".srt", ".txt")
248
+ word_srt_path = clean_srt_path.replace(".srt", "_word_level.srt")
249
+ custom_srt_path = clean_srt_path.replace(".srt", "_Multiline.srt")
250
+ shorts_srt_path = clean_srt_path.replace(".srt", "_shorts.srt")
251
+
252
+ # 6. Generate all subtitle files
253
+ generate_srt_from_sentences(sentence_timestamps, srt_path=clean_srt_path)
254
+ word_level_srt(word_timestamps, srt_path=word_srt_path)
255
+ write_sentence_srt(
256
+ word_timestamps, output_file=shorts_srt_path, max_lines=1,
257
+ max_duration_s=3.0, max_chars_per_line=17
258
+ )
259
+ write_sentence_srt(
260
+ word_timestamps, output_file=custom_srt_path, max_lines=2,
261
+ max_duration_s=7.0, max_chars_per_line=38
262
+ )
263
+
264
+ with open(txt_path, 'w', encoding='utf-8') as f:
265
+ f.write(transcript_text)
266
+
267
+ return (
268
+ clean_srt_path, custom_srt_path, word_srt_path, shorts_srt_path,
269
+ txt_path, transcript_text, detected_language
270
+ )
271
+
272
+
273
+ # ==============================================================================
274
+ # --- 5. SUBTITLE GENERATION & FORMATTING
275
+ # ==============================================================================
276
+
277
+ def convert_time_to_srt_format(seconds):
278
+ """Converts seconds to the standard SRT time format (HH:MM:SS,ms)."""
279
+ hours = int(seconds // 3600)
280
+ minutes = int((seconds % 3600) // 60)
281
+ secs = int(seconds % 60)
282
+ milliseconds = round((seconds - int(seconds)) * 1000)
283
+
284
+ if milliseconds == 1000:
285
+ milliseconds = 0
286
+ secs += 1
287
+ if secs == 60:
288
+ secs, minutes = 0, minutes + 1
289
+ if minutes == 60:
290
+ minutes, hours = 0, hours + 1
291
+
292
+ return f"{hours:02}:{minutes:02}:{secs:02},{milliseconds:03}"
293
+
294
+ def split_line_by_char_limit(text, max_chars_per_line=38):
295
+ """Splits a string into multiple lines based on a character limit."""
296
+ words = text.split()
297
+ lines = []
298
+ current_line = ""
299
+ for word in words:
300
+ if not current_line:
301
+ current_line = word
302
+ elif len(current_line + " " + word) <= max_chars_per_line:
303
+ current_line += " " + word
304
+ else:
305
+ lines.append(current_line)
306
+ current_line = word
307
+ if current_line:
308
+ lines.append(current_line)
309
+ return lines
310
+
311
+ def merge_punctuation_glitches(subtitles):
312
+ """Cleans up punctuation artifacts at the boundaries of subtitle entries."""
313
+ if not subtitles:
314
+ return []
315
+
316
+ cleaned = [subtitles[0]]
317
+ for i in range(1, len(subtitles)):
318
+ prev = cleaned[-1]
319
+ curr = subtitles[i]
320
+
321
+ prev_text = prev["text"].rstrip()
322
+ curr_text = curr["text"].lstrip()
323
+
324
+ match = re.match(r'^([,.:;!?]+)(\s*)(.+)', curr_text)
325
+ if match:
326
+ punct, _, rest = match.groups()
327
+ if not prev_text.endswith(tuple(punct)):
328
+ prev["text"] = prev_text + punct
329
+ curr_text = rest.strip()
330
+
331
+ unwanted_chars = ['"', '“', '”', ';', ':']
332
+ for ch in unwanted_chars:
333
+ curr_text = curr_text.replace(ch, '')
334
+ curr_text = curr_text.strip()
335
+
336
+ if not curr_text or re.fullmatch(r'[.,!?]+', curr_text):
337
+ prev["end"] = curr["end"]
338
+ continue
339
+
340
+ curr["text"] = curr_text
341
+ prev["text"] = prev["text"].replace('"', '').replace('“', '').replace('”', '')
342
+ cleaned.append(curr)
343
+
344
+ return cleaned
345
+
346
+ def write_sentence_srt(
347
+ word_level_timestamps, output_file="subtitles_professional.srt", max_lines=2,
348
+ max_duration_s=7.0, max_chars_per_line=38, hard_pause_threshold=0.5,
349
+ merge_pause_threshold=0.4
350
+ ):
351
+ """Creates professional-grade SRT files with smart line breaking and merging."""
352
+ if not word_level_timestamps:
353
+ return
354
+
355
+ # Phase 1: Generate draft subtitles based on timing and length rules
356
+ draft_subtitles = []
357
+ i = 0
358
+ while i < len(word_level_timestamps):
359
+ start_time = word_level_timestamps[i]["start"]
360
+ current_words = []
361
+ j = i
362
+ while j < len(word_level_timestamps):
363
+ entry = word_level_timestamps[j]
364
+ potential_text = " ".join(current_words + [entry["word"]])
365
+
366
+ if len(split_line_by_char_limit(potential_text, max_chars_per_line)) > max_lines: break
367
+ if (entry["end"] - start_time) > max_duration_s and current_words: break
368
+
369
+ if j > i:
370
+ prev_entry = word_level_timestamps[j-1]
371
+ pause = entry["start"] - prev_entry["end"]
372
+ if pause >= hard_pause_threshold: break
373
+ if prev_entry["word"].endswith(('.','!','?')): break
374
+
375
+ current_words.append(entry["word"])
376
+ j += 1
377
+
378
+ if not current_words:
379
+ current_words.append(word_level_timestamps[i]["word"])
380
+ j = i + 1
381
+
382
+ text = " ".join(current_words)
383
+ end_time = word_level_timestamps[j - 1]["end"]
384
+ draft_subtitles.append({ "start": start_time, "end": end_time, "text": text })
385
+ i = j
386
+
387
+ # Phase 2: Post-process to merge single-word "orphan" subtitles
388
+ if not draft_subtitles: return
389
+ final_subtitles = [draft_subtitles[0]]
390
+ for k in range(1, len(draft_subtitles)):
391
+ prev_sub = final_subtitles[-1]
392
+ current_sub = draft_subtitles[k]
393
+ is_orphan = len(current_sub["text"].split()) == 1
394
+ pause_from_prev = current_sub["start"] - prev_sub["end"]
395
+
396
+ if is_orphan and pause_from_prev < merge_pause_threshold:
397
+ merged_text = prev_sub["text"] + " " + current_sub["text"]
398
+ if len(split_line_by_char_limit(merged_text, max_chars_per_line)) <= max_lines:
399
+ prev_sub["text"] = merged_text
400
+ prev_sub["end"] = current_sub["end"]
401
+ continue
402
+
403
+ final_subtitles.append(current_sub)
404
+
405
+ final_subtitles = merge_punctuation_glitches(final_subtitles)
406
+
407
+ # Phase 3: Write the final SRT file
408
+ with open(output_file, "w", encoding="utf-8") as f:
409
+ for idx, sub in enumerate(final_subtitles, start=1):
410
+ text = sub["text"].replace(" ,", ",").replace(" .", ".")
411
+ formatted_lines = split_line_by_char_limit(text, max_chars_per_line)
412
+ f.write(f"{idx}\n")
413
+ f.write(f"{convert_time_to_srt_format(sub['start'])} --> {convert_time_to_srt_format(sub['end'])}\n")
414
+ f.write("\n".join(formatted_lines) + "\n\n")
415
+
416
+ def write_subtitles_to_file(subtitles, filename="subtitles.srt"):
417
+ """Writes a dictionary of subtitles to a standard SRT file."""
418
+ with open(filename, 'w', encoding='utf-8') as f:
419
+ for id, entry in subtitles.items():
420
+ if entry['start'] is None or entry['end'] is None:
421
+ print(f"Skipping subtitle ID {id} due to missing timestamps.")
422
+ continue
423
+ start_time = convert_time_to_srt_format(entry['start'])
424
+ end_time = convert_time_to_srt_format(entry['end'])
425
+ f.write(f"{id}\n")
426
+ f.write(f"{start_time} --> {end_time}\n")
427
+ f.write(f"{entry['text']}\n\n")
428
+
429
+ def word_level_srt(words_timestamp, srt_path="word_level_subtitle.srt", shorts=False):
430
+ """Generates an SRT file with one word per subtitle entry."""
431
+ punctuation = re.compile(r'[.,!?;:"\–—_~^+*|]')
432
+ with open(srt_path, 'w', encoding='utf-8') as srt_file:
433
+ for i, word_info in enumerate(words_timestamp, start=1):
434
+ start = convert_time_to_srt_format(word_info['start'])
435
+ end = convert_time_to_srt_format(word_info['end'])
436
+ word = re.sub(punctuation, '', word_info['word'])
437
+ if word.strip().lower() == 'i': word = "I"
438
+ if not shorts: word = word.replace("-", "")
439
+ srt_file.write(f"{i}\n{start} --> {end}\n{word}\n\n")
440
+
441
+ def generate_srt_from_sentences(sentence_timestamp, srt_path="default_subtitle.srt"):
442
+ """Generates a standard SRT file from sentence-level timestamps."""
443
+ with open(srt_path, 'w', encoding='utf-8') as srt_file:
444
+ for index, sentence in enumerate(sentence_timestamp, start=1):
445
+ start = convert_time_to_srt_format(sentence['start'])
446
+ end = convert_time_to_srt_format(sentence['end'])
447
+ srt_file.write(f"{index}\n{start} --> {end}\n{sentence['text']}\n\n")
448
+
449
+
450
+ # ==============================================================================
451
+ # --- 6. TRANSLATION UTILITIES
452
+ # ==============================================================================
453
+
454
+ def translate_text(text, source_language, destination_language):
455
+ """Translates a single block of text using GoogleTranslator."""
456
+ source_code = LANGUAGE_CODE[source_language]
457
+ target_code = LANGUAGE_CODE[destination_language]
458
+ if destination_language == "Chinese":
459
+ target_code = 'zh-CN'
460
+
461
+ translator = GoogleTranslator(source=source_code, target=target_code)
462
+ return str(translator.translate(text.strip()))
463
+
464
+ def translate_subtitle(subtitles, source_language, destination_language):
465
+ """Translates the text content of a pysrt Subtitle object."""
466
+ translated_text_dump = ""
467
+ for sub in subtitles:
468
+ translated_text = translate_text(sub.text, source_language, destination_language)
469
+ sub.text = translated_text
470
+ translated_text_dump += translated_text.strip() + " "
471
+ return subtitles, translated_text_dump.strip()
472
+
473
+
474
+ # ==============================================================================
475
+ # --- 7. MAIN ORCHESTRATOR FUNCTION
476
+ # ==============================================================================
477
+
478
+ def subtitle_maker(media_file, source_lang, target_lang):
479
+ """
480
+ The main entry point to generate and optionally translate subtitles.
481
+
482
+ Args:
483
+ media_file (str): Path to the input media file.
484
+ source_lang (str): The source language ('Automatic' for detection).
485
+ target_lang (str): The target language for translation.
486
+
487
+ Returns:
488
+ A tuple containing paths to all generated files and the transcript text.
489
+ """
490
+ try:
491
+ (
492
+ default_srt, custom_srt, word_srt, shorts_srt,
493
+ txt_path, transcript, detected_lang
494
+ ) = whisper_subtitle(media_file, source_lang)
495
+ except Exception as e:
496
+ print(f"❌ An error occurred during transcription: {e}")
497
+ return (None, None, None, None, None, None, f"Error: {e}")
498
+
499
+ translated_srt_path = None
500
+ if detected_lang and detected_lang != target_lang:
501
+ print(f"TRANSLATING from {detected_lang} to {target_lang}")
502
+ original_subs = pysrt.open(default_srt, encoding='utf-8')
503
+ translated_subs, _ = translate_subtitle(original_subs, detected_lang, target_lang)
504
+ base_name, ext = os.path.splitext(os.path.basename(default_srt))
505
+ translated_filename = f"{base_name}_to_{target_lang}{ext}"
506
+ translated_srt_path = os.path.join(SUBTITLE_FOLDER, translated_filename)
507
+ translated_subs.save(translated_srt_path, encoding='utf-8')
508
+
509
+
510
+ return (
511
+ default_srt, translated_srt_path, custom_srt, word_srt,
512
+ shorts_srt, txt_path, transcript
513
+ )
514
+
515
+
516
+ # ==============================================================================
517
+ # --- 8. INITIALIZATION
518
+ # ==============================================================================
519
+ os.makedirs(SUBTITLE_FOLDER, exist_ok=True)
520
+ os.makedirs(TEMP_FOLDER, exist_ok=True)
521
+
522
+
523
+ # from subtitle import subtitle_maker
524
+
525
+ # media_file = "video.mp4"
526
+ # source_lang = "English"
527
+ # target_lang = "English"
528
+
529
+ # default_srt, translated_srt, custom_srt, word_srt, shorts_srt, txt_path, transcript = subtitle_maker(
530
+ # media_file, source_lang, target_lang
531
+ # )
532
+ # If source_lang and target_lang are the same, translation will be skipped.
533
+
534
+ # default_srt -> Original subtitles generated directly by Whisper-Large-V3-Turbo-CT2
535
+ # translated_srt -> Translated subtitles (only generated if source_lang ≠ target_lang,
536
+ # e.g., English → Hindi)
537
+ # custom_srt -> Modified version of default subtitles with shorter segments
538
+ # (better readability for horizontal videos, Maximum 38 characters per segment. )
539
+ # word_srt -> Word-level timestamps (useful for creating YouTube Shorts/Reels)
540
+ # shorts_srt -> Optimized subtitles for vertical videos (displays 3–4 words at a time , Maximum 17 characters per segment.)
541
+ # txt_path -> Full transcript as plain text (useful for video summarization or for asking questions about the video or audio data with other LLM tools)
542
+ # transcript -> Transcript text directly returned by the function, if you just need the transcript
543
+
544
+ # All functionality is contained in a single file, making it portable
545
+ # and reusable across multiple projects for different purposes.