Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import sys | |
| sys.path.insert(0, os.path.dirname(os.path.abspath(__file__))) | |
| # wan2.2-main/gradio_ti2v.py | |
| import gradio as gr | |
| import torch | |
| from huggingface_hub import snapshot_download | |
| from PIL import Image | |
| import random | |
| import numpy as np | |
| import spaces | |
| import cv2 | |
| import tempfile | |
| import wan | |
| from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES | |
| from wan.utils.utils import cache_video | |
| import gc | |
| # --- 1. Global Setup and Model Loading --- | |
| print("Starting Gradio App for Wan 2.2 TI2V-5B...") | |
| # Download model snapshots from Hugging Face Hub | |
| repo_id = "Wan-AI/Wan2.2-TI2V-5B" | |
| print(f"Downloading/loading checkpoints for {repo_id}...") | |
| ckpt_dir = snapshot_download(repo_id, local_dir_use_symlinks=False) | |
| print(f"Using checkpoints from {ckpt_dir}") | |
| # Load the model configuration | |
| TASK_NAME = 'ti2v-5B' | |
| cfg = WAN_CONFIGS[TASK_NAME] | |
| FIXED_FPS = 24 | |
| MIN_FRAMES_MODEL = 8 | |
| MAX_FRAMES_MODEL = 121 | |
| # Dimension calculation constants | |
| MOD_VALUE = 32 | |
| DEFAULT_H_SLIDER_VALUE = 704 | |
| DEFAULT_W_SLIDER_VALUE = 1280 | |
| NEW_FORMULA_MAX_AREA = 1280.0 * 704.0 | |
| SLIDER_MIN_H, SLIDER_MAX_H = 128, 1280 | |
| SLIDER_MIN_W, SLIDER_MAX_W = 128, 1280 | |
| # Instantiate the pipeline in the global scope | |
| print("Initializing WanTI2V pipeline...") | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| device_id = 0 if torch.cuda.is_available() else -1 | |
| pipeline = wan.WanTI2V( | |
| config=cfg, | |
| checkpoint_dir=ckpt_dir, | |
| device_id=device_id, | |
| rank=0, | |
| t5_fsdp=False, | |
| dit_fsdp=False, | |
| use_sp=False, | |
| t5_cpu=False, | |
| init_on_cpu=False, | |
| convert_model_dtype=True, | |
| ) | |
| print("Pipeline initialized and ready.") | |
| # --- Helper Functions --- | |
| def extract_first_frame_from_video(video_path): | |
| """ | |
| Extract the first frame from a video file. | |
| Args: | |
| video_path: Path to the video file | |
| Returns: | |
| PIL Image of the first frame, or None if extraction fails | |
| """ | |
| try: | |
| cap = cv2.VideoCapture(video_path) | |
| ret, frame = cap.read() | |
| cap.release() | |
| if ret: | |
| # Convert BGR to RGB | |
| frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
| return Image.fromarray(frame_rgb) | |
| return None | |
| except Exception as e: | |
| print(f"Error extracting frame from video: {e}") | |
| return None | |
| def get_video_dimensions(video_path): | |
| """ | |
| Get the dimensions of a video file. | |
| Args: | |
| video_path: Path to the video file | |
| Returns: | |
| Tuple of (width, height) or None if extraction fails | |
| """ | |
| try: | |
| cap = cv2.VideoCapture(video_path) | |
| width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
| height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
| cap.release() | |
| return width, height | |
| except Exception as e: | |
| print(f"Error getting video dimensions: {e}") | |
| return None | |
| def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area, | |
| min_slider_h, max_slider_h, | |
| min_slider_w, max_slider_w, | |
| default_h, default_w): | |
| orig_w, orig_h = pil_image.size | |
| if orig_w <= 0 or orig_h <= 0: | |
| return default_h, default_w | |
| aspect_ratio = orig_h / orig_w | |
| calc_h = round(np.sqrt(calculation_max_area * aspect_ratio)) | |
| calc_w = round(np.sqrt(calculation_max_area / aspect_ratio)) | |
| calc_h = max(mod_val, (calc_h // mod_val) * mod_val) | |
| calc_w = max(mod_val, (calc_w // mod_val) * mod_val) | |
| new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val)) | |
| new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val)) | |
| return new_h, new_w | |
| def handle_media_upload_for_dims_wan(uploaded_media, current_h_val, current_w_val): | |
| """ | |
| Handle image or video upload and calculate appropriate dimensions. | |
| Args: | |
| uploaded_media: The uploaded file (can be image or video path) | |
| current_h_val: Current height slider value | |
| current_w_val: Current width slider value | |
| Returns: | |
| Tuple of (gr.update for height, gr.update for width, first frame as numpy array or None) | |
| """ | |
| if uploaded_media is None: | |
| return (gr.update(value=DEFAULT_H_SLIDER_VALUE), | |
| gr.update(value=DEFAULT_W_SLIDER_VALUE), | |
| None) | |
| try: | |
| pil_image = None | |
| # Check if it's a video file | |
| if isinstance(uploaded_media, str) and uploaded_media.lower().endswith(('.mp4', '.avi', '.mov', '.mkv', '.webm')): | |
| # Extract first frame from video | |
| pil_image = extract_first_frame_from_video(uploaded_media) | |
| if pil_image is None: | |
| gr.Warning("Could not extract frame from video") | |
| return (gr.update(value=DEFAULT_H_SLIDER_VALUE), | |
| gr.update(value=DEFAULT_W_SLIDER_VALUE), | |
| None) | |
| else: | |
| # Handle as image | |
| if hasattr(uploaded_media, 'shape'): # numpy array | |
| pil_image = Image.fromarray(uploaded_media).convert("RGB") | |
| elif isinstance(uploaded_media, str): # file path | |
| pil_image = Image.open(uploaded_media).convert("RGB") | |
| else: # PIL Image | |
| pil_image = uploaded_media | |
| # Calculate dimensions | |
| new_h, new_w = _calculate_new_dimensions_wan( | |
| pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA, | |
| SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W, | |
| DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE | |
| ) | |
| # Convert PIL image to numpy array for display | |
| display_image = np.array(pil_image) | |
| return gr.update(value=new_h), gr.update(value=new_w), display_image | |
| except Exception as e: | |
| print(f"Error in handle_media_upload_for_dims_wan: {e}") | |
| gr.Warning("Error processing uploaded file") | |
| return (gr.update(value=DEFAULT_H_SLIDER_VALUE), | |
| gr.update(value=DEFAULT_W_SLIDER_VALUE), | |
| None) | |
| def get_duration(video_input, | |
| image_preview, | |
| prompt, | |
| height, | |
| width, | |
| duration_seconds, | |
| sampling_steps, | |
| guide_scale, | |
| shift, | |
| seed, | |
| progress): | |
| """Calculate dynamic GPU duration based on parameters.""" | |
| return sampling_steps * 15 | |
| # --- 2. Gradio Inference Function --- | |
| def generate_video( | |
| video_input, | |
| image_preview, | |
| prompt, | |
| height, | |
| width, | |
| duration_seconds, | |
| sampling_steps=38, | |
| guide_scale=cfg.sample_guide_scale, | |
| shift=cfg.sample_shift, | |
| seed=42, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| """ | |
| Generate a video from text prompt and optional image/video using the Wan 2.2 TI2V model. | |
| Args: | |
| video_input: Optional input video file path | |
| image_preview: Preview image (numpy array) extracted from video or uploaded image | |
| prompt: Text prompt describing the desired video | |
| height: Target video height in pixels | |
| width: Target video width in pixels | |
| duration_seconds: Desired video duration in seconds | |
| sampling_steps: Number of denoising steps for video generation | |
| guide_scale: Guidance scale for classifier-free guidance | |
| shift: Sample shift parameter for the model | |
| seed: Random seed for reproducibility (-1 for random) | |
| progress: Gradio progress tracker | |
| Returns: | |
| Path to the generated video file | |
| """ | |
| if seed == -1: | |
| seed = random.randint(0, sys.maxsize) | |
| # Ensure dimensions are multiples of MOD_VALUE | |
| target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE) | |
| target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE) | |
| input_image = None | |
| # Process video input if provided | |
| if video_input is not None: | |
| if isinstance(video_input, str) and video_input.lower().endswith(('.mp4', '.avi', '.mov', '.mkv', '.webm')): | |
| input_image = extract_first_frame_from_video(video_input) | |
| else: | |
| # Fallback to image preview | |
| if image_preview is not None: | |
| input_image = Image.fromarray(image_preview).convert("RGB") | |
| elif image_preview is not None: | |
| # Use image preview if no video input | |
| input_image = Image.fromarray(image_preview).convert("RGB") | |
| # Resize image to match target dimensions if we have an input image | |
| if input_image is not None: | |
| input_image = input_image.resize((target_w, target_h)) | |
| # Calculate number of frames based on duration | |
| num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL) | |
| # Create size string for the pipeline | |
| size_str = f"{target_h}*{target_w}" | |
| video_tensor = pipeline.generate( | |
| input_prompt=prompt, | |
| img=input_image, # Pass None for T2V, Image for I2V | |
| size=SIZE_CONFIGS.get(size_str, (target_h, target_w)), | |
| max_area=MAX_AREA_CONFIGS.get(size_str, target_h * target_w), | |
| frame_num=num_frames, | |
| shift=shift, | |
| sample_solver='unipc', | |
| sampling_steps=int(sampling_steps), | |
| guide_scale=guide_scale, | |
| seed=seed, | |
| offload_model=True | |
| ) | |
| # Save the video to a temporary file | |
| video_path = cache_video( | |
| tensor=video_tensor[None], # Add a batch dimension | |
| save_file=None, # cache_video will create a temp file | |
| fps=cfg.sample_fps, | |
| normalize=True, | |
| value_range=(-1, 1) | |
| ) | |
| del video_tensor | |
| gc.collect() | |
| return video_path | |
| # --- 3. Gradio Interface --- | |
| css = ".gradio-container {max-width: 1200px !important; margin: 0 auto} #output_video {height: 500px;} #image_preview {height: 400px;}" | |
| with gr.Blocks(css=css, theme=gr.themes.Soft(), delete_cache=(60, 900)) as demo: | |
| gr.Markdown("# Wan 2.2 TI2V 5B - Video/Image to Video") | |
| gr.Markdown("Generate high quality videos using **Wan 2.2 5B Text-Image-to-Video model** with support for video input. [[model]](https://huggingface.co/Wan-AI/Wan2.2-TI2V-5B), [[paper]](https://arxiv.org/abs/2503.20314)") | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| video_input = gr.Video( | |
| label="Upload Video or Image (optional - blank for text-to-video)", | |
| sources=["upload"], | |
| ) | |
| image_preview = gr.Image( | |
| type="numpy", | |
| label="Preview (first frame will be extracted from video)", | |
| elem_id="image_preview", | |
| interactive=False | |
| ) | |
| prompt_input = gr.Textbox( | |
| label="Prompt", | |
| value="A beautiful waterfall in a lush jungle, cinematic.", | |
| lines=3 | |
| ) | |
| duration_input = gr.Slider( | |
| minimum=round(MIN_FRAMES_MODEL/FIXED_FPS, 1), | |
| maximum=round(MAX_FRAMES_MODEL/FIXED_FPS, 1), | |
| step=0.1, | |
| value=2.0, | |
| label="Duration (seconds)", | |
| info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps." | |
| ) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| with gr.Row(): | |
| height_input = gr.Slider( | |
| minimum=SLIDER_MIN_H, | |
| maximum=SLIDER_MAX_H, | |
| step=MOD_VALUE, | |
| value=DEFAULT_H_SLIDER_VALUE, | |
| label=f"Output Height (multiple of {MOD_VALUE})" | |
| ) | |
| width_input = gr.Slider( | |
| minimum=SLIDER_MIN_W, | |
| maximum=SLIDER_MAX_W, | |
| step=MOD_VALUE, | |
| value=DEFAULT_W_SLIDER_VALUE, | |
| label=f"Output Width (multiple of {MOD_VALUE})" | |
| ) | |
| steps_input = gr.Slider(label="Sampling Steps", minimum=10, maximum=50, value=38, step=1) | |
| scale_input = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, value=cfg.sample_guide_scale, step=0.1) | |
| shift_input = gr.Slider(label="Sample Shift", minimum=1.0, maximum=20.0, value=cfg.sample_shift, step=0.1) | |
| seed_input = gr.Number(label="Seed (-1 for random)", value=-1, precision=0) | |
| with gr.Column(scale=2): | |
| video_output = gr.Video(label="Generated Video", elem_id="output_video") | |
| run_button = gr.Button("Generate Video", variant="primary") | |
| # Add video/image upload handler | |
| video_input.upload( | |
| fn=handle_media_upload_for_dims_wan, | |
| inputs=[video_input, height_input, width_input], | |
| outputs=[height_input, width_input, image_preview] | |
| ) | |
| video_input.clear( | |
| fn=lambda: (gr.update(value=DEFAULT_H_SLIDER_VALUE), | |
| gr.update(value=DEFAULT_W_SLIDER_VALUE), | |
| None), | |
| inputs=[], | |
| outputs=[height_input, width_input, image_preview] | |
| ) | |
| example_image_path = os.path.join(os.path.dirname(__file__), "examples/i2v_input.JPG") | |
| gr.Examples( | |
| examples=[ | |
| [example_image_path, "The cat removes the glasses from its eyes.", 1088, 800, 1.5], | |
| [None, "A cinematic shot of a boat sailing on a calm sea at sunset.", 704, 1280, 2.0], | |
| [None, "Drone footage flying over a futuristic city with flying cars.", 704, 1280, 2.0], | |
| ], | |
| inputs=[video_input, prompt_input, height_input, width_input, duration_input], | |
| outputs=video_output, | |
| fn=generate_video, | |
| cache_examples="lazy", | |
| ) | |
| run_button.click( | |
| fn=generate_video, | |
| inputs=[ | |
| video_input, | |
| image_preview, | |
| prompt_input, | |
| height_input, | |
| width_input, | |
| duration_input, | |
| steps_input, | |
| scale_input, | |
| shift_input, | |
| seed_input | |
| ], | |
| outputs=video_output | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(mcp_server=True) |