Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,307 Bytes
309fd4d b9186cf ba7cb71 46b3f7e cf74ea1 ba7cb71 908b63e ba7cb71 0cb5326 8ff4968 0cb5326 8ff4968 0cb5326 8ff4968 ba7cb71 6961549 ba7cb71 cf74ea1 8ff4968 3113790 8ff4968 3113790 8ff4968 3113790 8ff4968 3113790 8ff4968 cf74ea1 535c73d cf74ea1 535c73d cf74ea1 535c73d cf74ea1 535c73d cf74ea1 8ff4968 cf74ea1 8ff4968 cf74ea1 8ff4968 cf74ea1 3113790 cf74ea1 176f1a8 8ff4968 176f1a8 3113790 f55df05 ba7cb71 3113790 ba7cb71 cf74ea1 ba7cb71 8ff4968 ba7cb71 f5e9ac3 6380ec4 f5e9ac3 ba7cb71 535c73d cf74ea1 535c73d cf74ea1 535c73d ba7cb71 8ff4968 3113790 cf74ea1 8ff4968 ba7cb71 8ff4968 ba7cb71 8ff4968 cf74ea1 ba7cb71 908b63e ba7cb71 cf74ea1 ba7cb71 52f499a cf74ea1 ba7cb71 cf74ea1 ba7cb71 8ff4968 cf74ea1 fc950c9 ba7cb71 8ff4968 ba7cb71 cf74ea1 3113790 cf74ea1 3113790 ba7cb71 d6627ef 8ff4968 ba7cb71 cf74ea1 ba7cb71 f5e9ac3 ba7cb71 cf74ea1 ba7cb71 535c73d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
import os
import sys
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
# wan2.2-main/gradio_ti2v.py
import gradio as gr
import torch
from huggingface_hub import snapshot_download
from PIL import Image
import random
import numpy as np
import spaces
import cv2
import tempfile
import wan
from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
from wan.utils.utils import cache_video
import gc
# --- 1. Global Setup and Model Loading ---
print("Starting Gradio App for Wan 2.2 TI2V-5B...")
# Download model snapshots from Hugging Face Hub
repo_id = "Wan-AI/Wan2.2-TI2V-5B"
print(f"Downloading/loading checkpoints for {repo_id}...")
ckpt_dir = snapshot_download(repo_id, local_dir_use_symlinks=False)
print(f"Using checkpoints from {ckpt_dir}")
# Load the model configuration
TASK_NAME = 'ti2v-5B'
cfg = WAN_CONFIGS[TASK_NAME]
FIXED_FPS = 24
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 121
# Dimension calculation constants
MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 704
DEFAULT_W_SLIDER_VALUE = 1280
NEW_FORMULA_MAX_AREA = 1280.0 * 704.0
SLIDER_MIN_H, SLIDER_MAX_H = 128, 1280
SLIDER_MIN_W, SLIDER_MAX_W = 128, 1280
# Instantiate the pipeline in the global scope
print("Initializing WanTI2V pipeline...")
device = "cuda" if torch.cuda.is_available() else "cpu"
device_id = 0 if torch.cuda.is_available() else -1
pipeline = wan.WanTI2V(
config=cfg,
checkpoint_dir=ckpt_dir,
device_id=device_id,
rank=0,
t5_fsdp=False,
dit_fsdp=False,
use_sp=False,
t5_cpu=False,
init_on_cpu=False,
convert_model_dtype=True,
)
print("Pipeline initialized and ready.")
# --- Helper Functions ---
def extract_first_frame_from_video(video_path):
"""
Extract the first frame from a video file.
Args:
video_path: Path to the video file
Returns:
PIL Image of the first frame, or None if extraction fails
"""
try:
cap = cv2.VideoCapture(video_path)
ret, frame = cap.read()
cap.release()
if ret:
# Convert BGR to RGB
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return Image.fromarray(frame_rgb)
return None
except Exception as e:
print(f"Error extracting frame from video: {e}")
return None
def get_video_dimensions(video_path):
"""
Get the dimensions of a video file.
Args:
video_path: Path to the video file
Returns:
Tuple of (width, height) or None if extraction fails
"""
try:
cap = cv2.VideoCapture(video_path)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
cap.release()
return width, height
except Exception as e:
print(f"Error getting video dimensions: {e}")
return None
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
min_slider_h, max_slider_h,
min_slider_w, max_slider_w,
default_h, default_w):
orig_w, orig_h = pil_image.size
if orig_w <= 0 or orig_h <= 0:
return default_h, default_w
aspect_ratio = orig_h / orig_w
calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
return new_h, new_w
def handle_media_upload_for_dims_wan(uploaded_media, current_h_val, current_w_val):
"""
Handle image or video upload and calculate appropriate dimensions.
Args:
uploaded_media: The uploaded file (can be image or video path)
current_h_val: Current height slider value
current_w_val: Current width slider value
Returns:
Tuple of (gr.update for height, gr.update for width, first frame as numpy array or None)
"""
if uploaded_media is None:
return (gr.update(value=DEFAULT_H_SLIDER_VALUE),
gr.update(value=DEFAULT_W_SLIDER_VALUE),
None)
try:
pil_image = None
# Check if it's a video file
if isinstance(uploaded_media, str) and uploaded_media.lower().endswith(('.mp4', '.avi', '.mov', '.mkv', '.webm')):
# Extract first frame from video
pil_image = extract_first_frame_from_video(uploaded_media)
if pil_image is None:
gr.Warning("Could not extract frame from video")
return (gr.update(value=DEFAULT_H_SLIDER_VALUE),
gr.update(value=DEFAULT_W_SLIDER_VALUE),
None)
else:
# Handle as image
if hasattr(uploaded_media, 'shape'): # numpy array
pil_image = Image.fromarray(uploaded_media).convert("RGB")
elif isinstance(uploaded_media, str): # file path
pil_image = Image.open(uploaded_media).convert("RGB")
else: # PIL Image
pil_image = uploaded_media
# Calculate dimensions
new_h, new_w = _calculate_new_dimensions_wan(
pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
)
# Convert PIL image to numpy array for display
display_image = np.array(pil_image)
return gr.update(value=new_h), gr.update(value=new_w), display_image
except Exception as e:
print(f"Error in handle_media_upload_for_dims_wan: {e}")
gr.Warning("Error processing uploaded file")
return (gr.update(value=DEFAULT_H_SLIDER_VALUE),
gr.update(value=DEFAULT_W_SLIDER_VALUE),
None)
def get_duration(video_input,
image_preview,
prompt,
height,
width,
duration_seconds,
sampling_steps,
guide_scale,
shift,
seed,
progress):
"""Calculate dynamic GPU duration based on parameters."""
return sampling_steps * 15
# --- 2. Gradio Inference Function ---
@spaces.GPU(duration=get_duration)
def generate_video(
video_input,
image_preview,
prompt,
height,
width,
duration_seconds,
sampling_steps=38,
guide_scale=cfg.sample_guide_scale,
shift=cfg.sample_shift,
seed=42,
progress=gr.Progress(track_tqdm=True)
):
"""
Generate a video from text prompt and optional image/video using the Wan 2.2 TI2V model.
Args:
video_input: Optional input video file path
image_preview: Preview image (numpy array) extracted from video or uploaded image
prompt: Text prompt describing the desired video
height: Target video height in pixels
width: Target video width in pixels
duration_seconds: Desired video duration in seconds
sampling_steps: Number of denoising steps for video generation
guide_scale: Guidance scale for classifier-free guidance
shift: Sample shift parameter for the model
seed: Random seed for reproducibility (-1 for random)
progress: Gradio progress tracker
Returns:
Path to the generated video file
"""
if seed == -1:
seed = random.randint(0, sys.maxsize)
# Ensure dimensions are multiples of MOD_VALUE
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
input_image = None
# Process video input if provided
if video_input is not None:
if isinstance(video_input, str) and video_input.lower().endswith(('.mp4', '.avi', '.mov', '.mkv', '.webm')):
input_image = extract_first_frame_from_video(video_input)
else:
# Fallback to image preview
if image_preview is not None:
input_image = Image.fromarray(image_preview).convert("RGB")
elif image_preview is not None:
# Use image preview if no video input
input_image = Image.fromarray(image_preview).convert("RGB")
# Resize image to match target dimensions if we have an input image
if input_image is not None:
input_image = input_image.resize((target_w, target_h))
# Calculate number of frames based on duration
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
# Create size string for the pipeline
size_str = f"{target_h}*{target_w}"
video_tensor = pipeline.generate(
input_prompt=prompt,
img=input_image, # Pass None for T2V, Image for I2V
size=SIZE_CONFIGS.get(size_str, (target_h, target_w)),
max_area=MAX_AREA_CONFIGS.get(size_str, target_h * target_w),
frame_num=num_frames,
shift=shift,
sample_solver='unipc',
sampling_steps=int(sampling_steps),
guide_scale=guide_scale,
seed=seed,
offload_model=True
)
# Save the video to a temporary file
video_path = cache_video(
tensor=video_tensor[None], # Add a batch dimension
save_file=None, # cache_video will create a temp file
fps=cfg.sample_fps,
normalize=True,
value_range=(-1, 1)
)
del video_tensor
gc.collect()
return video_path
# --- 3. Gradio Interface ---
css = ".gradio-container {max-width: 1200px !important; margin: 0 auto} #output_video {height: 500px;} #image_preview {height: 400px;}"
with gr.Blocks(css=css, theme=gr.themes.Soft(), delete_cache=(60, 900)) as demo:
gr.Markdown("# Wan 2.2 TI2V 5B - Video/Image to Video")
gr.Markdown("Generate high quality videos using **Wan 2.2 5B Text-Image-to-Video model** with support for video input. [[model]](https://huggingface.co/Wan-AI/Wan2.2-TI2V-5B), [[paper]](https://arxiv.org/abs/2503.20314)")
with gr.Row():
with gr.Column(scale=2):
video_input = gr.Video(
label="Upload Video or Image (optional - blank for text-to-video)",
sources=["upload"],
)
image_preview = gr.Image(
type="numpy",
label="Preview (first frame will be extracted from video)",
elem_id="image_preview",
interactive=False
)
prompt_input = gr.Textbox(
label="Prompt",
value="A beautiful waterfall in a lush jungle, cinematic.",
lines=3
)
duration_input = gr.Slider(
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS, 1),
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS, 1),
step=0.1,
value=2.0,
label="Duration (seconds)",
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
height_input = gr.Slider(
minimum=SLIDER_MIN_H,
maximum=SLIDER_MAX_H,
step=MOD_VALUE,
value=DEFAULT_H_SLIDER_VALUE,
label=f"Output Height (multiple of {MOD_VALUE})"
)
width_input = gr.Slider(
minimum=SLIDER_MIN_W,
maximum=SLIDER_MAX_W,
step=MOD_VALUE,
value=DEFAULT_W_SLIDER_VALUE,
label=f"Output Width (multiple of {MOD_VALUE})"
)
steps_input = gr.Slider(label="Sampling Steps", minimum=10, maximum=50, value=38, step=1)
scale_input = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, value=cfg.sample_guide_scale, step=0.1)
shift_input = gr.Slider(label="Sample Shift", minimum=1.0, maximum=20.0, value=cfg.sample_shift, step=0.1)
seed_input = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)
with gr.Column(scale=2):
video_output = gr.Video(label="Generated Video", elem_id="output_video")
run_button = gr.Button("Generate Video", variant="primary")
# Add video/image upload handler
video_input.upload(
fn=handle_media_upload_for_dims_wan,
inputs=[video_input, height_input, width_input],
outputs=[height_input, width_input, image_preview]
)
video_input.clear(
fn=lambda: (gr.update(value=DEFAULT_H_SLIDER_VALUE),
gr.update(value=DEFAULT_W_SLIDER_VALUE),
None),
inputs=[],
outputs=[height_input, width_input, image_preview]
)
example_image_path = os.path.join(os.path.dirname(__file__), "examples/i2v_input.JPG")
gr.Examples(
examples=[
[example_image_path, "The cat removes the glasses from its eyes.", 1088, 800, 1.5],
[None, "A cinematic shot of a boat sailing on a calm sea at sunset.", 704, 1280, 2.0],
[None, "Drone footage flying over a futuristic city with flying cars.", 704, 1280, 2.0],
],
inputs=[video_input, prompt_input, height_input, width_input, duration_input],
outputs=video_output,
fn=generate_video,
cache_examples="lazy",
)
run_button.click(
fn=generate_video,
inputs=[
video_input,
image_preview,
prompt_input,
height_input,
width_input,
duration_input,
steps_input,
scale_input,
shift_input,
seed_input
],
outputs=video_output
)
if __name__ == "__main__":
demo.launch(mcp_server=True) |