File size: 14,307 Bytes
309fd4d
b9186cf
 
 
ba7cb71
 
 
 
 
 
 
46b3f7e
cf74ea1
 
ba7cb71
 
 
 
 
908b63e
 
ba7cb71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cb5326
8ff4968
0cb5326
 
 
8ff4968
0cb5326
 
8ff4968
ba7cb71
 
 
 
 
 
 
 
 
 
 
 
 
6961549
ba7cb71
 
 
 
cf74ea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ff4968
 
 
 
 
 
 
 
 
3113790
8ff4968
 
3113790
8ff4968
 
3113790
8ff4968
 
3113790
8ff4968
 
cf74ea1
535c73d
cf74ea1
535c73d
 
cf74ea1
535c73d
 
 
 
cf74ea1
535c73d
cf74ea1
 
 
 
 
8ff4968
cf74ea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ff4968
 
 
 
 
cf74ea1
 
 
 
 
 
8ff4968
cf74ea1
 
 
 
 
3113790
cf74ea1
 
176f1a8
8ff4968
 
176f1a8
 
 
 
 
 
3113790
f55df05
ba7cb71
 
3113790
ba7cb71
cf74ea1
 
ba7cb71
8ff4968
 
ba7cb71
f5e9ac3
6380ec4
f5e9ac3
 
ba7cb71
 
535c73d
cf74ea1
535c73d
 
cf74ea1
 
535c73d
 
 
 
 
 
 
 
 
 
 
 
 
ba7cb71
 
 
8ff4968
 
 
 
3113790
cf74ea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ff4968
ba7cb71
 
 
 
8ff4968
 
 
ba7cb71
 
 
8ff4968
 
cf74ea1
ba7cb71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
908b63e
 
ba7cb71
 
 
 
cf74ea1
ba7cb71
52f499a
cf74ea1
 
ba7cb71
 
 
cf74ea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba7cb71
 
 
 
 
 
 
 
 
 
8ff4968
cf74ea1
 
 
 
 
 
 
 
 
 
 
 
 
 
fc950c9
ba7cb71
 
 
 
8ff4968
 
ba7cb71
 
cf74ea1
 
 
 
 
3113790
 
cf74ea1
 
 
 
 
 
3113790
ba7cb71
 
 
 
d6627ef
8ff4968
 
ba7cb71
cf74ea1
ba7cb71
 
f5e9ac3
ba7cb71
 
 
 
cf74ea1
 
 
 
 
 
 
 
 
 
 
 
ba7cb71
 
 
 
535c73d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import os
import sys
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))

# wan2.2-main/gradio_ti2v.py
import gradio as gr
import torch
from huggingface_hub import snapshot_download
from PIL import Image
import random
import numpy as np
import spaces
import cv2
import tempfile

import wan
from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
from wan.utils.utils import cache_video

import gc

# --- 1. Global Setup and Model Loading ---

print("Starting Gradio App for Wan 2.2 TI2V-5B...")

# Download model snapshots from Hugging Face Hub
repo_id = "Wan-AI/Wan2.2-TI2V-5B"
print(f"Downloading/loading checkpoints for {repo_id}...")
ckpt_dir = snapshot_download(repo_id, local_dir_use_symlinks=False)
print(f"Using checkpoints from {ckpt_dir}")

# Load the model configuration
TASK_NAME = 'ti2v-5B'
cfg = WAN_CONFIGS[TASK_NAME]
FIXED_FPS = 24
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 121 

# Dimension calculation constants
MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 704
DEFAULT_W_SLIDER_VALUE = 1280
NEW_FORMULA_MAX_AREA = 1280.0 * 704.0

SLIDER_MIN_H, SLIDER_MAX_H = 128, 1280
SLIDER_MIN_W, SLIDER_MAX_W = 128, 1280

# Instantiate the pipeline in the global scope
print("Initializing WanTI2V pipeline...")
device = "cuda" if torch.cuda.is_available() else "cpu"
device_id = 0 if torch.cuda.is_available() else -1
pipeline = wan.WanTI2V(
    config=cfg,
    checkpoint_dir=ckpt_dir,
    device_id=device_id,
    rank=0,
    t5_fsdp=False,
    dit_fsdp=False,
    use_sp=False,
    t5_cpu=False,
    init_on_cpu=False,
    convert_model_dtype=True,
)
print("Pipeline initialized and ready.")

# --- Helper Functions ---

def extract_first_frame_from_video(video_path):
    """
    Extract the first frame from a video file.
    
    Args:
        video_path: Path to the video file
        
    Returns:
        PIL Image of the first frame, or None if extraction fails
    """
    try:
        cap = cv2.VideoCapture(video_path)
        ret, frame = cap.read()
        cap.release()
        
        if ret:
            # Convert BGR to RGB
            frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            return Image.fromarray(frame_rgb)
        return None
    except Exception as e:
        print(f"Error extracting frame from video: {e}")
        return None

def get_video_dimensions(video_path):
    """
    Get the dimensions of a video file.
    
    Args:
        video_path: Path to the video file
        
    Returns:
        Tuple of (width, height) or None if extraction fails
    """
    try:
        cap = cv2.VideoCapture(video_path)
        width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        cap.release()
        return width, height
    except Exception as e:
        print(f"Error getting video dimensions: {e}")
        return None

def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
                                 min_slider_h, max_slider_h,
                                 min_slider_w, max_slider_w,
                                 default_h, default_w):
    orig_w, orig_h = pil_image.size
    if orig_w <= 0 or orig_h <= 0:
        return default_h, default_w

    aspect_ratio = orig_h / orig_w
    
    calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
    calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))

    calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
    calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
    
    new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
    new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
    
    return new_h, new_w

def handle_media_upload_for_dims_wan(uploaded_media, current_h_val, current_w_val):
    """
    Handle image or video upload and calculate appropriate dimensions.
    
    Args:
        uploaded_media: The uploaded file (can be image or video path)
        current_h_val: Current height slider value
        current_w_val: Current width slider value
        
    Returns:
        Tuple of (gr.update for height, gr.update for width, first frame as numpy array or None)
    """
    if uploaded_media is None:
        return (gr.update(value=DEFAULT_H_SLIDER_VALUE), 
                gr.update(value=DEFAULT_W_SLIDER_VALUE),
                None)
    
    try:
        pil_image = None
        
        # Check if it's a video file
        if isinstance(uploaded_media, str) and uploaded_media.lower().endswith(('.mp4', '.avi', '.mov', '.mkv', '.webm')):
            # Extract first frame from video
            pil_image = extract_first_frame_from_video(uploaded_media)
            if pil_image is None:
                gr.Warning("Could not extract frame from video")
                return (gr.update(value=DEFAULT_H_SLIDER_VALUE), 
                        gr.update(value=DEFAULT_W_SLIDER_VALUE),
                        None)
        else:
            # Handle as image
            if hasattr(uploaded_media, 'shape'):  # numpy array
                pil_image = Image.fromarray(uploaded_media).convert("RGB")
            elif isinstance(uploaded_media, str):  # file path
                pil_image = Image.open(uploaded_media).convert("RGB")
            else:  # PIL Image
                pil_image = uploaded_media
        
        # Calculate dimensions
        new_h, new_w = _calculate_new_dimensions_wan(
            pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
            SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
            DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
        )
        
        # Convert PIL image to numpy array for display
        display_image = np.array(pil_image)
        
        return gr.update(value=new_h), gr.update(value=new_w), display_image
        
    except Exception as e:
        print(f"Error in handle_media_upload_for_dims_wan: {e}")
        gr.Warning("Error processing uploaded file")
        return (gr.update(value=DEFAULT_H_SLIDER_VALUE), 
                gr.update(value=DEFAULT_W_SLIDER_VALUE),
                None)

def get_duration(video_input,
                 image_preview,
                 prompt, 
                 height,
                 width,
                 duration_seconds, 
                 sampling_steps, 
                 guide_scale, 
                 shift, 
                 seed,
                 progress):
    """Calculate dynamic GPU duration based on parameters."""
    return sampling_steps * 15

# --- 2. Gradio Inference Function ---
@spaces.GPU(duration=get_duration)
def generate_video(
    video_input,
    image_preview,
    prompt,
    height,
    width,
    duration_seconds,
    sampling_steps=38,
    guide_scale=cfg.sample_guide_scale,
    shift=cfg.sample_shift,
    seed=42,
    progress=gr.Progress(track_tqdm=True)
):
    """
    Generate a video from text prompt and optional image/video using the Wan 2.2 TI2V model.
    
    Args:
        video_input: Optional input video file path
        image_preview: Preview image (numpy array) extracted from video or uploaded image
        prompt: Text prompt describing the desired video
        height: Target video height in pixels
        width: Target video width in pixels
        duration_seconds: Desired video duration in seconds
        sampling_steps: Number of denoising steps for video generation
        guide_scale: Guidance scale for classifier-free guidance
        shift: Sample shift parameter for the model
        seed: Random seed for reproducibility (-1 for random)
        progress: Gradio progress tracker
        
    Returns:
        Path to the generated video file
    """
    if seed == -1:
        seed = random.randint(0, sys.maxsize)

    # Ensure dimensions are multiples of MOD_VALUE
    target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
    target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)

    input_image = None
    
    # Process video input if provided
    if video_input is not None:
        if isinstance(video_input, str) and video_input.lower().endswith(('.mp4', '.avi', '.mov', '.mkv', '.webm')):
            input_image = extract_first_frame_from_video(video_input)
        else:
            # Fallback to image preview
            if image_preview is not None:
                input_image = Image.fromarray(image_preview).convert("RGB")
    elif image_preview is not None:
        # Use image preview if no video input
        input_image = Image.fromarray(image_preview).convert("RGB")
    
    # Resize image to match target dimensions if we have an input image
    if input_image is not None:
        input_image = input_image.resize((target_w, target_h))
    
    # Calculate number of frames based on duration
    num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)

    # Create size string for the pipeline
    size_str = f"{target_h}*{target_w}"

    video_tensor = pipeline.generate(
        input_prompt=prompt,
        img=input_image,  # Pass None for T2V, Image for I2V
        size=SIZE_CONFIGS.get(size_str, (target_h, target_w)),
        max_area=MAX_AREA_CONFIGS.get(size_str, target_h * target_w),
        frame_num=num_frames,
        shift=shift,
        sample_solver='unipc',
        sampling_steps=int(sampling_steps),
        guide_scale=guide_scale,
        seed=seed,
        offload_model=True
    )

    # Save the video to a temporary file
    video_path = cache_video(
        tensor=video_tensor[None],  # Add a batch dimension
        save_file=None,  # cache_video will create a temp file
        fps=cfg.sample_fps,
        normalize=True,
        value_range=(-1, 1)
    )
    del video_tensor
    gc.collect()
    return video_path


# --- 3. Gradio Interface ---
css = ".gradio-container {max-width: 1200px !important; margin: 0 auto} #output_video {height: 500px;} #image_preview {height: 400px;}"

with gr.Blocks(css=css, theme=gr.themes.Soft(), delete_cache=(60, 900)) as demo:
    gr.Markdown("# Wan 2.2 TI2V 5B - Video/Image to Video")
    gr.Markdown("Generate high quality videos using **Wan 2.2 5B Text-Image-to-Video model** with support for video input. [[model]](https://huggingface.co/Wan-AI/Wan2.2-TI2V-5B), [[paper]](https://arxiv.org/abs/2503.20314)")

    with gr.Row():
        with gr.Column(scale=2):
            video_input = gr.Video(
                label="Upload Video or Image (optional - blank for text-to-video)",
                sources=["upload"],
            )
            image_preview = gr.Image(
                type="numpy", 
                label="Preview (first frame will be extracted from video)",
                elem_id="image_preview",
                interactive=False
            )
            prompt_input = gr.Textbox(
                label="Prompt", 
                value="A beautiful waterfall in a lush jungle, cinematic.", 
                lines=3
            )
            duration_input = gr.Slider(
                minimum=round(MIN_FRAMES_MODEL/FIXED_FPS, 1), 
                maximum=round(MAX_FRAMES_MODEL/FIXED_FPS, 1), 
                step=0.1, 
                value=2.0, 
                label="Duration (seconds)", 
                info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
            )
            
            with gr.Accordion("Advanced Settings", open=False):
                with gr.Row():
                    height_input = gr.Slider(
                        minimum=SLIDER_MIN_H, 
                        maximum=SLIDER_MAX_H, 
                        step=MOD_VALUE, 
                        value=DEFAULT_H_SLIDER_VALUE, 
                        label=f"Output Height (multiple of {MOD_VALUE})"
                    )
                    width_input = gr.Slider(
                        minimum=SLIDER_MIN_W, 
                        maximum=SLIDER_MAX_W, 
                        step=MOD_VALUE, 
                        value=DEFAULT_W_SLIDER_VALUE, 
                        label=f"Output Width (multiple of {MOD_VALUE})"
                    )
                steps_input = gr.Slider(label="Sampling Steps", minimum=10, maximum=50, value=38, step=1)
                scale_input = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, value=cfg.sample_guide_scale, step=0.1)
                shift_input = gr.Slider(label="Sample Shift", minimum=1.0, maximum=20.0, value=cfg.sample_shift, step=0.1)
                seed_input = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)

        with gr.Column(scale=2):
            video_output = gr.Video(label="Generated Video", elem_id="output_video")
            run_button = gr.Button("Generate Video", variant="primary")
            
    # Add video/image upload handler
    video_input.upload(
        fn=handle_media_upload_for_dims_wan,
        inputs=[video_input, height_input, width_input],
        outputs=[height_input, width_input, image_preview]
    )
    
    video_input.clear(
        fn=lambda: (gr.update(value=DEFAULT_H_SLIDER_VALUE), 
                   gr.update(value=DEFAULT_W_SLIDER_VALUE),
                   None),
        inputs=[],
        outputs=[height_input, width_input, image_preview]
    )

    example_image_path = os.path.join(os.path.dirname(__file__), "examples/i2v_input.JPG")
    gr.Examples(
        examples=[
            [example_image_path, "The cat removes the glasses from its eyes.", 1088, 800, 1.5],
            [None, "A cinematic shot of a boat sailing on a calm sea at sunset.", 704, 1280, 2.0],
            [None, "Drone footage flying over a futuristic city with flying cars.", 704, 1280, 2.0],
        ],
        inputs=[video_input, prompt_input, height_input, width_input, duration_input],
        outputs=video_output,
        fn=generate_video,
        cache_examples="lazy",
    )

    run_button.click(
        fn=generate_video,
        inputs=[
            video_input, 
            image_preview, 
            prompt_input, 
            height_input, 
            width_input, 
            duration_input, 
            steps_input, 
            scale_input, 
            shift_input, 
            seed_input
        ],
        outputs=video_output
    )

if __name__ == "__main__":
    demo.launch(mcp_server=True)