Text_to_Video_Demo / shared /convert /convert_diffusers_to_flux.py
USF00's picture
Initial commit
2b67076
raw
history blame
14.5 kB
#!/usr/bin/env python3
"""
Convert a Flux model from Diffusers (folder or single-file) into the original
single-file Flux transformer checkpoint used by Black Forest Labs / ComfyUI.
Input : /path/to/diffusers (root or .../transformer) OR /path/to/*.safetensors (single file)
Output : /path/to/flux1-your-model.safetensors (transformer only)
Usage:
python diffusers_to_flux_transformer.py /path/to/diffusers /out/flux1-dev.safetensors
python diffusers_to_flux_transformer.py /path/to/diffusion_pytorch_model.safetensors /out/flux1-dev.safetensors
# optional quantization:
# --fp8 (float8_e4m3fn, simple)
# --fp8-scaled (scaled float8 for 2D weights; adds .scale_weight tensors)
"""
import argparse
import json
from pathlib import Path
from collections import OrderedDict
import torch
from safetensors import safe_open
import safetensors.torch
from tqdm import tqdm
def parse_args():
ap = argparse.ArgumentParser()
ap.add_argument("diffusers_path", type=str,
help="Path to Diffusers checkpoint folder OR a single .safetensors file.")
ap.add_argument("output_path", type=str,
help="Output .safetensors path for the Flux transformer.")
ap.add_argument("--fp8", action="store_true",
help="Experimental: write weights as float8_e4m3fn via stochastic rounding (transformer only).")
ap.add_argument("--fp8-scaled", action="store_true",
help="Experimental: scaled float8_e4m3fn for 2D weight tensors; adds .scale_weight tensors.")
return ap.parse_args()
# Mapping from original Flux keys -> list of Diffusers keys (per block where applicable).
DIFFUSERS_MAP = {
# global embeds
"time_in.in_layer.weight": ["time_text_embed.timestep_embedder.linear_1.weight"],
"time_in.in_layer.bias": ["time_text_embed.timestep_embedder.linear_1.bias"],
"time_in.out_layer.weight": ["time_text_embed.timestep_embedder.linear_2.weight"],
"time_in.out_layer.bias": ["time_text_embed.timestep_embedder.linear_2.bias"],
"vector_in.in_layer.weight": ["time_text_embed.text_embedder.linear_1.weight"],
"vector_in.in_layer.bias": ["time_text_embed.text_embedder.linear_1.bias"],
"vector_in.out_layer.weight": ["time_text_embed.text_embedder.linear_2.weight"],
"vector_in.out_layer.bias": ["time_text_embed.text_embedder.linear_2.bias"],
"guidance_in.in_layer.weight": ["time_text_embed.guidance_embedder.linear_1.weight"],
"guidance_in.in_layer.bias": ["time_text_embed.guidance_embedder.linear_1.bias"],
"guidance_in.out_layer.weight": ["time_text_embed.guidance_embedder.linear_2.weight"],
"guidance_in.out_layer.bias": ["time_text_embed.guidance_embedder.linear_2.bias"],
"txt_in.weight": ["context_embedder.weight"],
"txt_in.bias": ["context_embedder.bias"],
"img_in.weight": ["x_embedder.weight"],
"img_in.bias": ["x_embedder.bias"],
# dual-stream (image/text) blocks
"double_blocks.().img_mod.lin.weight": ["norm1.linear.weight"],
"double_blocks.().img_mod.lin.bias": ["norm1.linear.bias"],
"double_blocks.().txt_mod.lin.weight": ["norm1_context.linear.weight"],
"double_blocks.().txt_mod.lin.bias": ["norm1_context.linear.bias"],
"double_blocks.().img_attn.qkv.weight": ["attn.to_q.weight", "attn.to_k.weight", "attn.to_v.weight"],
"double_blocks.().img_attn.qkv.bias": ["attn.to_q.bias", "attn.to_k.bias", "attn.to_v.bias"],
"double_blocks.().txt_attn.qkv.weight": ["attn.add_q_proj.weight", "attn.add_k_proj.weight", "attn.add_v_proj.weight"],
"double_blocks.().txt_attn.qkv.bias": ["attn.add_q_proj.bias", "attn.add_k_proj.bias", "attn.add_v_proj.bias"],
"double_blocks.().img_attn.norm.query_norm.scale": ["attn.norm_q.weight"],
"double_blocks.().img_attn.norm.key_norm.scale": ["attn.norm_k.weight"],
"double_blocks.().txt_attn.norm.query_norm.scale": ["attn.norm_added_q.weight"],
"double_blocks.().txt_attn.norm.key_norm.scale": ["attn.norm_added_k.weight"],
"double_blocks.().img_mlp.0.weight": ["ff.net.0.proj.weight"],
"double_blocks.().img_mlp.0.bias": ["ff.net.0.proj.bias"],
"double_blocks.().img_mlp.2.weight": ["ff.net.2.weight"],
"double_blocks.().img_mlp.2.bias": ["ff.net.2.bias"],
"double_blocks.().txt_mlp.0.weight": ["ff_context.net.0.proj.weight"],
"double_blocks.().txt_mlp.0.bias": ["ff_context.net.0.proj.bias"],
"double_blocks.().txt_mlp.2.weight": ["ff_context.net.2.weight"],
"double_blocks.().txt_mlp.2.bias": ["ff_context.net.2.bias"],
"double_blocks.().img_attn.proj.weight": ["attn.to_out.0.weight"],
"double_blocks.().img_attn.proj.bias": ["attn.to_out.0.bias"],
"double_blocks.().txt_attn.proj.weight": ["attn.to_add_out.weight"],
"double_blocks.().txt_attn.proj.bias": ["attn.to_add_out.bias"],
# single-stream blocks
"single_blocks.().modulation.lin.weight": ["norm.linear.weight"],
"single_blocks.().modulation.lin.bias": ["norm.linear.bias"],
"single_blocks.().linear1.weight": ["attn.to_q.weight", "attn.to_k.weight", "attn.to_v.weight", "proj_mlp.weight"],
"single_blocks.().linear1.bias": ["attn.to_q.bias", "attn.to_k.bias", "attn.to_v.bias", "proj_mlp.bias"],
"single_blocks.().norm.query_norm.scale": ["attn.norm_q.weight"],
"single_blocks.().norm.key_norm.scale": ["attn.norm_k.weight"],
"single_blocks.().linear2.weight": ["proj_out.weight"],
"single_blocks.().linear2.bias": ["proj_out.bias"],
# final
"final_layer.linear.weight": ["proj_out.weight"],
"final_layer.linear.bias": ["proj_out.bias"],
# these two are built from norm_out.linear.{weight,bias} by swapping [shift,scale] -> [scale,shift]
"final_layer.adaLN_modulation.1.weight": ["norm_out.linear.weight"],
"final_layer.adaLN_modulation.1.bias": ["norm_out.linear.bias"],
}
class DiffusersSource:
"""
Uniform interface over:
1) Folder with index JSON + shards
2) Folder with exactly one .safetensors (no index)
3) Single .safetensors file
Provides .has(key), .get(key)->Tensor, .base_keys (keys with 'model.' stripped for scanning)
"""
POSSIBLE_PREFIXES = ["", "model."] # try in this order
def __init__(self, path: Path):
p = Path(path)
if p.is_dir():
# use 'transformer' subfolder if present
if (p / "transformer").is_dir():
p = p / "transformer"
self._init_from_dir(p)
elif p.is_file() and p.suffix == ".safetensors":
self._init_from_single_file(p)
else:
raise FileNotFoundError(f"Invalid path: {p}")
# ---------- common helpers ----------
@staticmethod
def _strip_prefix(k: str) -> str:
return k[6:] if k.startswith("model.") else k
def _resolve(self, want: str):
"""
Return the actual stored key matching `want` by trying known prefixes.
"""
for pref in self.POSSIBLE_PREFIXES:
k = pref + want
if k in self._all_keys:
return k
return None
def has(self, want: str) -> bool:
return self._resolve(want) is not None
def get(self, want: str) -> torch.Tensor:
real_key = self._resolve(want)
if real_key is None:
raise KeyError(f"Missing key: {want}")
return self._get_by_real_key(real_key).to("cpu")
@property
def base_keys(self):
# keys without 'model.' prefix for scanning
return [self._strip_prefix(k) for k in self._all_keys]
# ---------- modes ----------
def _init_from_single_file(self, file_path: Path):
self._mode = "single"
self._file = file_path
self._handle = safe_open(file_path, framework="pt", device="cpu")
self._all_keys = list(self._handle.keys())
def _get_by_real_key(real_key: str):
return self._handle.get_tensor(real_key)
self._get_by_real_key = _get_by_real_key
def _init_from_dir(self, dpath: Path):
index_json = dpath / "diffusion_pytorch_model.safetensors.index.json"
if index_json.exists():
with open(index_json, "r", encoding="utf-8") as f:
index = json.load(f)
weight_map = index["weight_map"] # full mapping
self._mode = "sharded"
self._dpath = dpath
self._weight_map = {k: dpath / v for k, v in weight_map.items()}
self._all_keys = list(self._weight_map.keys())
self._open_handles = {}
def _get_by_real_key(real_key: str):
fpath = self._weight_map[real_key]
h = self._open_handles.get(fpath)
if h is None:
h = safe_open(fpath, framework="pt", device="cpu")
self._open_handles[fpath] = h
return h.get_tensor(real_key)
self._get_by_real_key = _get_by_real_key
return
# no index: try exactly one safetensors in folder
files = sorted(dpath.glob("*.safetensors"))
if len(files) != 1:
raise FileNotFoundError(
f"No index found and {dpath} does not contain exactly one .safetensors file."
)
self._init_from_single_file(files[0])
def main():
args = parse_args()
src = DiffusersSource(Path(args.diffusers_path))
# Count blocks by scanning base keys (with any 'model.' prefix removed)
num_dual = 0
num_single = 0
for k in src.base_keys:
if k.startswith("transformer_blocks."):
try:
i = int(k.split(".")[1])
num_dual = max(num_dual, i + 1)
except Exception:
pass
elif k.startswith("single_transformer_blocks."):
try:
i = int(k.split(".")[1])
num_single = max(num_single, i + 1)
except Exception:
pass
print(f"Found {num_dual} dual-stream blocks, {num_single} single-stream blocks")
# Swap [shift, scale] -> [scale, shift] (weights are concatenated along dim=0)
def swap_scale_shift(vec: torch.Tensor) -> torch.Tensor:
shift, scale = vec.chunk(2, dim=0)
return torch.cat([scale, shift], dim=0)
orig = {}
# Per-block (dual)
for b in range(num_dual):
prefix = f"transformer_blocks.{b}."
for okey, dvals in DIFFUSERS_MAP.items():
if not okey.startswith("double_blocks."):
continue
dkeys = [prefix + v for v in dvals]
if not all(src.has(k) for k in dkeys):
continue
if len(dkeys) == 1:
orig[okey.replace("()", str(b))] = src.get(dkeys[0])
else:
orig[okey.replace("()", str(b))] = torch.cat([src.get(k) for k in dkeys], dim=0)
# Per-block (single)
for b in range(num_single):
prefix = f"single_transformer_blocks.{b}."
for okey, dvals in DIFFUSERS_MAP.items():
if not okey.startswith("single_blocks."):
continue
dkeys = [prefix + v for v in dvals]
if not all(src.has(k) for k in dkeys):
continue
if len(dkeys) == 1:
orig[okey.replace("()", str(b))] = src.get(dkeys[0])
else:
orig[okey.replace("()", str(b))] = torch.cat([src.get(k) for k in dkeys], dim=0)
# Globals (non-block)
for okey, dvals in DIFFUSERS_MAP.items():
if okey.startswith(("double_blocks.", "single_blocks.")):
continue
dkeys = dvals
if not all(src.has(k) for k in dkeys):
continue
if len(dkeys) == 1:
orig[okey] = src.get(dkeys[0])
else:
orig[okey] = torch.cat([src.get(k) for k in dkeys], dim=0)
# Fix final_layer.adaLN_modulation.1.{weight,bias} by swapping scale/shift halves
if "final_layer.adaLN_modulation.1.weight" in orig:
orig["final_layer.adaLN_modulation.1.weight"] = swap_scale_shift(
orig["final_layer.adaLN_modulation.1.weight"]
)
if "final_layer.adaLN_modulation.1.bias" in orig:
orig["final_layer.adaLN_modulation.1.bias"] = swap_scale_shift(
orig["final_layer.adaLN_modulation.1.bias"]
)
# Optional FP8 variants (experimental; not required for ComfyUI/BFL)
if args.fp8 or args.fp8_scaled:
dtype = torch.float8_e4m3fn # noqa
minv, maxv = torch.finfo(dtype).min, torch.finfo(dtype).max
def stochastic_round_to(t):
t = t.float().clamp(minv, maxv)
lower = torch.floor(t * 256) / 256
upper = torch.ceil(t * 256) / 256
prob = torch.where(upper != lower, (t - lower) / (upper - lower), torch.zeros_like(t))
rnd = torch.rand_like(t)
out = torch.where(rnd < prob, upper, lower)
return out.to(dtype)
def scale_to_8bit(weight, target_max=416.0):
absmax = weight.abs().max()
scale = absmax / target_max if absmax > 0 else torch.tensor(1.0)
scaled = (weight / scale).clamp(minv, maxv).to(dtype)
return scaled, scale
scales = {}
for k in tqdm(list(orig.keys()), desc="Quantizing to fp8"):
t = orig[k]
if args.fp8:
orig[k] = stochastic_round_to(t)
else:
if k.endswith(".weight") and t.dim() == 2:
qt, s = scale_to_8bit(t)
orig[k] = qt
scales[k[:-len(".weight")] + ".scale_weight"] = s
else:
orig[k] = t.clamp(minv, maxv).to(dtype)
if args.fp8_scaled:
orig.update(scales)
orig["scaled_fp8"] = torch.tensor([], dtype=dtype)
else:
# Default: save in bfloat16
for k in list(orig.keys()):
orig[k] = orig[k].to(torch.bfloat16).cpu()
out_path = Path(args.output_path)
out_path.parent.mkdir(parents=True, exist_ok=True)
meta = OrderedDict()
meta["format"] = "pt"
meta["modelspec.date"] = __import__("datetime").date.today().strftime("%Y-%m-%d")
print(f"Saving transformer to: {out_path}")
safetensors.torch.save_file(orig, str(out_path), metadata=meta)
print("Done.")
if __name__ == "__main__":
main()