File size: 14,459 Bytes
2b67076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
#!/usr/bin/env python3
"""
Convert a Flux model from Diffusers (folder or single-file) into the original
single-file Flux transformer checkpoint used by Black Forest Labs / ComfyUI.

Input  : /path/to/diffusers   (root or .../transformer)  OR  /path/to/*.safetensors (single file)
Output : /path/to/flux1-your-model.safetensors  (transformer only)

Usage:
  python diffusers_to_flux_transformer.py /path/to/diffusers /out/flux1-dev.safetensors
  python diffusers_to_flux_transformer.py /path/to/diffusion_pytorch_model.safetensors /out/flux1-dev.safetensors
  # optional quantization:
  #   --fp8           (float8_e4m3fn, simple)
  #   --fp8-scaled    (scaled float8 for 2D weights; adds .scale_weight tensors)
"""

import argparse
import json
from pathlib import Path
from collections import OrderedDict

import torch
from safetensors import safe_open
import safetensors.torch
from tqdm import tqdm


def parse_args():
    ap = argparse.ArgumentParser()
    ap.add_argument("diffusers_path", type=str,
                    help="Path to Diffusers checkpoint folder OR a single .safetensors file.")
    ap.add_argument("output_path", type=str,
                    help="Output .safetensors path for the Flux transformer.")
    ap.add_argument("--fp8", action="store_true",
                    help="Experimental: write weights as float8_e4m3fn via stochastic rounding (transformer only).")
    ap.add_argument("--fp8-scaled", action="store_true",
                    help="Experimental: scaled float8_e4m3fn for 2D weight tensors; adds .scale_weight tensors.")
    return ap.parse_args()


# Mapping from original Flux keys -> list of Diffusers keys (per block where applicable).
DIFFUSERS_MAP = {
    # global embeds
    "time_in.in_layer.weight": ["time_text_embed.timestep_embedder.linear_1.weight"],
    "time_in.in_layer.bias":   ["time_text_embed.timestep_embedder.linear_1.bias"],
    "time_in.out_layer.weight": ["time_text_embed.timestep_embedder.linear_2.weight"],
    "time_in.out_layer.bias":   ["time_text_embed.timestep_embedder.linear_2.bias"],

    "vector_in.in_layer.weight": ["time_text_embed.text_embedder.linear_1.weight"],
    "vector_in.in_layer.bias":   ["time_text_embed.text_embedder.linear_1.bias"],
    "vector_in.out_layer.weight": ["time_text_embed.text_embedder.linear_2.weight"],
    "vector_in.out_layer.bias":   ["time_text_embed.text_embedder.linear_2.bias"],

    "guidance_in.in_layer.weight": ["time_text_embed.guidance_embedder.linear_1.weight"],
    "guidance_in.in_layer.bias":   ["time_text_embed.guidance_embedder.linear_1.bias"],
    "guidance_in.out_layer.weight": ["time_text_embed.guidance_embedder.linear_2.weight"],
    "guidance_in.out_layer.bias":   ["time_text_embed.guidance_embedder.linear_2.bias"],

    "txt_in.weight": ["context_embedder.weight"],
    "txt_in.bias":   ["context_embedder.bias"],
    "img_in.weight": ["x_embedder.weight"],
    "img_in.bias":   ["x_embedder.bias"],

    # dual-stream (image/text) blocks
    "double_blocks.().img_mod.lin.weight": ["norm1.linear.weight"],
    "double_blocks.().img_mod.lin.bias":   ["norm1.linear.bias"],
    "double_blocks.().txt_mod.lin.weight": ["norm1_context.linear.weight"],
    "double_blocks.().txt_mod.lin.bias":   ["norm1_context.linear.bias"],

    "double_blocks.().img_attn.qkv.weight": ["attn.to_q.weight", "attn.to_k.weight", "attn.to_v.weight"],
    "double_blocks.().img_attn.qkv.bias":   ["attn.to_q.bias",   "attn.to_k.bias",   "attn.to_v.bias"],
    "double_blocks.().txt_attn.qkv.weight": ["attn.add_q_proj.weight", "attn.add_k_proj.weight", "attn.add_v_proj.weight"],
    "double_blocks.().txt_attn.qkv.bias":   ["attn.add_q_proj.bias",   "attn.add_k_proj.bias",   "attn.add_v_proj.bias"],

    "double_blocks.().img_attn.norm.query_norm.scale": ["attn.norm_q.weight"],
    "double_blocks.().img_attn.norm.key_norm.scale":   ["attn.norm_k.weight"],
    "double_blocks.().txt_attn.norm.query_norm.scale": ["attn.norm_added_q.weight"],
    "double_blocks.().txt_attn.norm.key_norm.scale":   ["attn.norm_added_k.weight"],

    "double_blocks.().img_mlp.0.weight": ["ff.net.0.proj.weight"],
    "double_blocks.().img_mlp.0.bias":   ["ff.net.0.proj.bias"],
    "double_blocks.().img_mlp.2.weight": ["ff.net.2.weight"],
    "double_blocks.().img_mlp.2.bias":   ["ff.net.2.bias"],

    "double_blocks.().txt_mlp.0.weight": ["ff_context.net.0.proj.weight"],
    "double_blocks.().txt_mlp.0.bias":   ["ff_context.net.0.proj.bias"],
    "double_blocks.().txt_mlp.2.weight": ["ff_context.net.2.weight"],
    "double_blocks.().txt_mlp.2.bias":   ["ff_context.net.2.bias"],

    "double_blocks.().img_attn.proj.weight": ["attn.to_out.0.weight"],
    "double_blocks.().img_attn.proj.bias":   ["attn.to_out.0.bias"],
    "double_blocks.().txt_attn.proj.weight": ["attn.to_add_out.weight"],
    "double_blocks.().txt_attn.proj.bias":   ["attn.to_add_out.bias"],

    # single-stream blocks
    "single_blocks.().modulation.lin.weight": ["norm.linear.weight"],
    "single_blocks.().modulation.lin.bias":   ["norm.linear.bias"],
    "single_blocks.().linear1.weight":        ["attn.to_q.weight", "attn.to_k.weight", "attn.to_v.weight", "proj_mlp.weight"],
    "single_blocks.().linear1.bias":          ["attn.to_q.bias",   "attn.to_k.bias",   "attn.to_v.bias",   "proj_mlp.bias"],
    "single_blocks.().norm.query_norm.scale": ["attn.norm_q.weight"],
    "single_blocks.().norm.key_norm.scale":   ["attn.norm_k.weight"],
    "single_blocks.().linear2.weight":        ["proj_out.weight"],
    "single_blocks.().linear2.bias":          ["proj_out.bias"],

    # final
    "final_layer.linear.weight":              ["proj_out.weight"],
    "final_layer.linear.bias":                ["proj_out.bias"],
    # these two are built from norm_out.linear.{weight,bias} by swapping [shift,scale] -> [scale,shift]
    "final_layer.adaLN_modulation.1.weight":  ["norm_out.linear.weight"],
    "final_layer.adaLN_modulation.1.bias":    ["norm_out.linear.bias"],
}


class DiffusersSource:
    """
    Uniform interface over:
      1) Folder with index JSON + shards
      2) Folder with exactly one .safetensors (no index)
      3) Single .safetensors file
    Provides .has(key), .get(key)->Tensor, .base_keys (keys with 'model.' stripped for scanning)
    """

    POSSIBLE_PREFIXES = ["", "model."]  # try in this order

    def __init__(self, path: Path):
        p = Path(path)
        if p.is_dir():
            # use 'transformer' subfolder if present
            if (p / "transformer").is_dir():
                p = p / "transformer"
            self._init_from_dir(p)
        elif p.is_file() and p.suffix == ".safetensors":
            self._init_from_single_file(p)
        else:
            raise FileNotFoundError(f"Invalid path: {p}")

    # ---------- common helpers ----------

    @staticmethod
    def _strip_prefix(k: str) -> str:
        return k[6:] if k.startswith("model.") else k

    def _resolve(self, want: str):
        """
        Return the actual stored key matching `want` by trying known prefixes.
        """
        for pref in self.POSSIBLE_PREFIXES:
            k = pref + want
            if k in self._all_keys:
                return k
        return None

    def has(self, want: str) -> bool:
        return self._resolve(want) is not None

    def get(self, want: str) -> torch.Tensor:
        real_key = self._resolve(want)
        if real_key is None:
            raise KeyError(f"Missing key: {want}")
        return self._get_by_real_key(real_key).to("cpu")

    @property
    def base_keys(self):
        # keys without 'model.' prefix for scanning
        return [self._strip_prefix(k) for k in self._all_keys]

    # ---------- modes ----------

    def _init_from_single_file(self, file_path: Path):
        self._mode = "single"
        self._file = file_path
        self._handle = safe_open(file_path, framework="pt", device="cpu")
        self._all_keys = list(self._handle.keys())

        def _get_by_real_key(real_key: str):
            return self._handle.get_tensor(real_key)

        self._get_by_real_key = _get_by_real_key

    def _init_from_dir(self, dpath: Path):
        index_json = dpath / "diffusion_pytorch_model.safetensors.index.json"
        if index_json.exists():
            with open(index_json, "r", encoding="utf-8") as f:
                index = json.load(f)
            weight_map = index["weight_map"]  # full mapping
            self._mode = "sharded"
            self._dpath = dpath
            self._weight_map = {k: dpath / v for k, v in weight_map.items()}
            self._all_keys = list(self._weight_map.keys())
            self._open_handles = {}

            def _get_by_real_key(real_key: str):
                fpath = self._weight_map[real_key]
                h = self._open_handles.get(fpath)
                if h is None:
                    h = safe_open(fpath, framework="pt", device="cpu")
                    self._open_handles[fpath] = h
                return h.get_tensor(real_key)

            self._get_by_real_key = _get_by_real_key
            return

        # no index: try exactly one safetensors in folder
        files = sorted(dpath.glob("*.safetensors"))
        if len(files) != 1:
            raise FileNotFoundError(
                f"No index found and {dpath} does not contain exactly one .safetensors file."
            )
        self._init_from_single_file(files[0])


def main():
    args = parse_args()
    src = DiffusersSource(Path(args.diffusers_path))

    # Count blocks by scanning base keys (with any 'model.' prefix removed)
    num_dual = 0
    num_single = 0
    for k in src.base_keys:
        if k.startswith("transformer_blocks."):
            try:
                i = int(k.split(".")[1])
                num_dual = max(num_dual, i + 1)
            except Exception:
                pass
        elif k.startswith("single_transformer_blocks."):
            try:
                i = int(k.split(".")[1])
                num_single = max(num_single, i + 1)
            except Exception:
                pass
    print(f"Found {num_dual} dual-stream blocks, {num_single} single-stream blocks")

    # Swap [shift, scale] -> [scale, shift] (weights are concatenated along dim=0)
    def swap_scale_shift(vec: torch.Tensor) -> torch.Tensor:
        shift, scale = vec.chunk(2, dim=0)
        return torch.cat([scale, shift], dim=0)

    orig = {}

    # Per-block (dual)
    for b in range(num_dual):
        prefix = f"transformer_blocks.{b}."
        for okey, dvals in DIFFUSERS_MAP.items():
            if not okey.startswith("double_blocks."):
                continue
            dkeys = [prefix + v for v in dvals]
            if not all(src.has(k) for k in dkeys):
                continue
            if len(dkeys) == 1:
                orig[okey.replace("()", str(b))] = src.get(dkeys[0])
            else:
                orig[okey.replace("()", str(b))] = torch.cat([src.get(k) for k in dkeys], dim=0)

    # Per-block (single)
    for b in range(num_single):
        prefix = f"single_transformer_blocks.{b}."
        for okey, dvals in DIFFUSERS_MAP.items():
            if not okey.startswith("single_blocks."):
                continue
            dkeys = [prefix + v for v in dvals]
            if not all(src.has(k) for k in dkeys):
                continue
            if len(dkeys) == 1:
                orig[okey.replace("()", str(b))] = src.get(dkeys[0])
            else:
                orig[okey.replace("()", str(b))] = torch.cat([src.get(k) for k in dkeys], dim=0)

    # Globals (non-block)
    for okey, dvals in DIFFUSERS_MAP.items():
        if okey.startswith(("double_blocks.", "single_blocks.")):
            continue
        dkeys = dvals
        if not all(src.has(k) for k in dkeys):
            continue
        if len(dkeys) == 1:
            orig[okey] = src.get(dkeys[0])
        else:
            orig[okey] = torch.cat([src.get(k) for k in dkeys], dim=0)

    # Fix final_layer.adaLN_modulation.1.{weight,bias} by swapping scale/shift halves
    if "final_layer.adaLN_modulation.1.weight" in orig:
        orig["final_layer.adaLN_modulation.1.weight"] = swap_scale_shift(
            orig["final_layer.adaLN_modulation.1.weight"]
        )
    if "final_layer.adaLN_modulation.1.bias" in orig:
        orig["final_layer.adaLN_modulation.1.bias"] = swap_scale_shift(
            orig["final_layer.adaLN_modulation.1.bias"]
        )

    # Optional FP8 variants (experimental; not required for ComfyUI/BFL)
    if args.fp8 or args.fp8_scaled:
        dtype = torch.float8_e4m3fn  # noqa
        minv, maxv = torch.finfo(dtype).min, torch.finfo(dtype).max

        def stochastic_round_to(t):
            t = t.float().clamp(minv, maxv)
            lower = torch.floor(t * 256) / 256
            upper = torch.ceil(t * 256) / 256
            prob = torch.where(upper != lower, (t - lower) / (upper - lower), torch.zeros_like(t))
            rnd = torch.rand_like(t)
            out = torch.where(rnd < prob, upper, lower)
            return out.to(dtype)

        def scale_to_8bit(weight, target_max=416.0):
            absmax = weight.abs().max()
            scale = absmax / target_max if absmax > 0 else torch.tensor(1.0)
            scaled = (weight / scale).clamp(minv, maxv).to(dtype)
            return scaled, scale

        scales = {}
        for k in tqdm(list(orig.keys()), desc="Quantizing to fp8"):
            t = orig[k]
            if args.fp8:
                orig[k] = stochastic_round_to(t)
            else:
                if k.endswith(".weight") and t.dim() == 2:
                    qt, s = scale_to_8bit(t)
                    orig[k] = qt
                    scales[k[:-len(".weight")] + ".scale_weight"] = s
                else:
                    orig[k] = t.clamp(minv, maxv).to(dtype)
        if args.fp8_scaled:
            orig.update(scales)
            orig["scaled_fp8"] = torch.tensor([], dtype=dtype)
    else:
        # Default: save in bfloat16
        for k in list(orig.keys()):
            orig[k] = orig[k].to(torch.bfloat16).cpu()

    out_path = Path(args.output_path)
    out_path.parent.mkdir(parents=True, exist_ok=True)
    meta = OrderedDict()
    meta["format"] = "pt"
    meta["modelspec.date"] = __import__("datetime").date.today().strftime("%Y-%m-%d")
    print(f"Saving transformer to: {out_path}")
    safetensors.torch.save_file(orig, str(out_path), metadata=meta)
    print("Done.")


if __name__ == "__main__":
    main()