Spaces:
Configuration error
Configuration error
File size: 14,459 Bytes
2b67076 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
#!/usr/bin/env python3
"""
Convert a Flux model from Diffusers (folder or single-file) into the original
single-file Flux transformer checkpoint used by Black Forest Labs / ComfyUI.
Input : /path/to/diffusers (root or .../transformer) OR /path/to/*.safetensors (single file)
Output : /path/to/flux1-your-model.safetensors (transformer only)
Usage:
python diffusers_to_flux_transformer.py /path/to/diffusers /out/flux1-dev.safetensors
python diffusers_to_flux_transformer.py /path/to/diffusion_pytorch_model.safetensors /out/flux1-dev.safetensors
# optional quantization:
# --fp8 (float8_e4m3fn, simple)
# --fp8-scaled (scaled float8 for 2D weights; adds .scale_weight tensors)
"""
import argparse
import json
from pathlib import Path
from collections import OrderedDict
import torch
from safetensors import safe_open
import safetensors.torch
from tqdm import tqdm
def parse_args():
ap = argparse.ArgumentParser()
ap.add_argument("diffusers_path", type=str,
help="Path to Diffusers checkpoint folder OR a single .safetensors file.")
ap.add_argument("output_path", type=str,
help="Output .safetensors path for the Flux transformer.")
ap.add_argument("--fp8", action="store_true",
help="Experimental: write weights as float8_e4m3fn via stochastic rounding (transformer only).")
ap.add_argument("--fp8-scaled", action="store_true",
help="Experimental: scaled float8_e4m3fn for 2D weight tensors; adds .scale_weight tensors.")
return ap.parse_args()
# Mapping from original Flux keys -> list of Diffusers keys (per block where applicable).
DIFFUSERS_MAP = {
# global embeds
"time_in.in_layer.weight": ["time_text_embed.timestep_embedder.linear_1.weight"],
"time_in.in_layer.bias": ["time_text_embed.timestep_embedder.linear_1.bias"],
"time_in.out_layer.weight": ["time_text_embed.timestep_embedder.linear_2.weight"],
"time_in.out_layer.bias": ["time_text_embed.timestep_embedder.linear_2.bias"],
"vector_in.in_layer.weight": ["time_text_embed.text_embedder.linear_1.weight"],
"vector_in.in_layer.bias": ["time_text_embed.text_embedder.linear_1.bias"],
"vector_in.out_layer.weight": ["time_text_embed.text_embedder.linear_2.weight"],
"vector_in.out_layer.bias": ["time_text_embed.text_embedder.linear_2.bias"],
"guidance_in.in_layer.weight": ["time_text_embed.guidance_embedder.linear_1.weight"],
"guidance_in.in_layer.bias": ["time_text_embed.guidance_embedder.linear_1.bias"],
"guidance_in.out_layer.weight": ["time_text_embed.guidance_embedder.linear_2.weight"],
"guidance_in.out_layer.bias": ["time_text_embed.guidance_embedder.linear_2.bias"],
"txt_in.weight": ["context_embedder.weight"],
"txt_in.bias": ["context_embedder.bias"],
"img_in.weight": ["x_embedder.weight"],
"img_in.bias": ["x_embedder.bias"],
# dual-stream (image/text) blocks
"double_blocks.().img_mod.lin.weight": ["norm1.linear.weight"],
"double_blocks.().img_mod.lin.bias": ["norm1.linear.bias"],
"double_blocks.().txt_mod.lin.weight": ["norm1_context.linear.weight"],
"double_blocks.().txt_mod.lin.bias": ["norm1_context.linear.bias"],
"double_blocks.().img_attn.qkv.weight": ["attn.to_q.weight", "attn.to_k.weight", "attn.to_v.weight"],
"double_blocks.().img_attn.qkv.bias": ["attn.to_q.bias", "attn.to_k.bias", "attn.to_v.bias"],
"double_blocks.().txt_attn.qkv.weight": ["attn.add_q_proj.weight", "attn.add_k_proj.weight", "attn.add_v_proj.weight"],
"double_blocks.().txt_attn.qkv.bias": ["attn.add_q_proj.bias", "attn.add_k_proj.bias", "attn.add_v_proj.bias"],
"double_blocks.().img_attn.norm.query_norm.scale": ["attn.norm_q.weight"],
"double_blocks.().img_attn.norm.key_norm.scale": ["attn.norm_k.weight"],
"double_blocks.().txt_attn.norm.query_norm.scale": ["attn.norm_added_q.weight"],
"double_blocks.().txt_attn.norm.key_norm.scale": ["attn.norm_added_k.weight"],
"double_blocks.().img_mlp.0.weight": ["ff.net.0.proj.weight"],
"double_blocks.().img_mlp.0.bias": ["ff.net.0.proj.bias"],
"double_blocks.().img_mlp.2.weight": ["ff.net.2.weight"],
"double_blocks.().img_mlp.2.bias": ["ff.net.2.bias"],
"double_blocks.().txt_mlp.0.weight": ["ff_context.net.0.proj.weight"],
"double_blocks.().txt_mlp.0.bias": ["ff_context.net.0.proj.bias"],
"double_blocks.().txt_mlp.2.weight": ["ff_context.net.2.weight"],
"double_blocks.().txt_mlp.2.bias": ["ff_context.net.2.bias"],
"double_blocks.().img_attn.proj.weight": ["attn.to_out.0.weight"],
"double_blocks.().img_attn.proj.bias": ["attn.to_out.0.bias"],
"double_blocks.().txt_attn.proj.weight": ["attn.to_add_out.weight"],
"double_blocks.().txt_attn.proj.bias": ["attn.to_add_out.bias"],
# single-stream blocks
"single_blocks.().modulation.lin.weight": ["norm.linear.weight"],
"single_blocks.().modulation.lin.bias": ["norm.linear.bias"],
"single_blocks.().linear1.weight": ["attn.to_q.weight", "attn.to_k.weight", "attn.to_v.weight", "proj_mlp.weight"],
"single_blocks.().linear1.bias": ["attn.to_q.bias", "attn.to_k.bias", "attn.to_v.bias", "proj_mlp.bias"],
"single_blocks.().norm.query_norm.scale": ["attn.norm_q.weight"],
"single_blocks.().norm.key_norm.scale": ["attn.norm_k.weight"],
"single_blocks.().linear2.weight": ["proj_out.weight"],
"single_blocks.().linear2.bias": ["proj_out.bias"],
# final
"final_layer.linear.weight": ["proj_out.weight"],
"final_layer.linear.bias": ["proj_out.bias"],
# these two are built from norm_out.linear.{weight,bias} by swapping [shift,scale] -> [scale,shift]
"final_layer.adaLN_modulation.1.weight": ["norm_out.linear.weight"],
"final_layer.adaLN_modulation.1.bias": ["norm_out.linear.bias"],
}
class DiffusersSource:
"""
Uniform interface over:
1) Folder with index JSON + shards
2) Folder with exactly one .safetensors (no index)
3) Single .safetensors file
Provides .has(key), .get(key)->Tensor, .base_keys (keys with 'model.' stripped for scanning)
"""
POSSIBLE_PREFIXES = ["", "model."] # try in this order
def __init__(self, path: Path):
p = Path(path)
if p.is_dir():
# use 'transformer' subfolder if present
if (p / "transformer").is_dir():
p = p / "transformer"
self._init_from_dir(p)
elif p.is_file() and p.suffix == ".safetensors":
self._init_from_single_file(p)
else:
raise FileNotFoundError(f"Invalid path: {p}")
# ---------- common helpers ----------
@staticmethod
def _strip_prefix(k: str) -> str:
return k[6:] if k.startswith("model.") else k
def _resolve(self, want: str):
"""
Return the actual stored key matching `want` by trying known prefixes.
"""
for pref in self.POSSIBLE_PREFIXES:
k = pref + want
if k in self._all_keys:
return k
return None
def has(self, want: str) -> bool:
return self._resolve(want) is not None
def get(self, want: str) -> torch.Tensor:
real_key = self._resolve(want)
if real_key is None:
raise KeyError(f"Missing key: {want}")
return self._get_by_real_key(real_key).to("cpu")
@property
def base_keys(self):
# keys without 'model.' prefix for scanning
return [self._strip_prefix(k) for k in self._all_keys]
# ---------- modes ----------
def _init_from_single_file(self, file_path: Path):
self._mode = "single"
self._file = file_path
self._handle = safe_open(file_path, framework="pt", device="cpu")
self._all_keys = list(self._handle.keys())
def _get_by_real_key(real_key: str):
return self._handle.get_tensor(real_key)
self._get_by_real_key = _get_by_real_key
def _init_from_dir(self, dpath: Path):
index_json = dpath / "diffusion_pytorch_model.safetensors.index.json"
if index_json.exists():
with open(index_json, "r", encoding="utf-8") as f:
index = json.load(f)
weight_map = index["weight_map"] # full mapping
self._mode = "sharded"
self._dpath = dpath
self._weight_map = {k: dpath / v for k, v in weight_map.items()}
self._all_keys = list(self._weight_map.keys())
self._open_handles = {}
def _get_by_real_key(real_key: str):
fpath = self._weight_map[real_key]
h = self._open_handles.get(fpath)
if h is None:
h = safe_open(fpath, framework="pt", device="cpu")
self._open_handles[fpath] = h
return h.get_tensor(real_key)
self._get_by_real_key = _get_by_real_key
return
# no index: try exactly one safetensors in folder
files = sorted(dpath.glob("*.safetensors"))
if len(files) != 1:
raise FileNotFoundError(
f"No index found and {dpath} does not contain exactly one .safetensors file."
)
self._init_from_single_file(files[0])
def main():
args = parse_args()
src = DiffusersSource(Path(args.diffusers_path))
# Count blocks by scanning base keys (with any 'model.' prefix removed)
num_dual = 0
num_single = 0
for k in src.base_keys:
if k.startswith("transformer_blocks."):
try:
i = int(k.split(".")[1])
num_dual = max(num_dual, i + 1)
except Exception:
pass
elif k.startswith("single_transformer_blocks."):
try:
i = int(k.split(".")[1])
num_single = max(num_single, i + 1)
except Exception:
pass
print(f"Found {num_dual} dual-stream blocks, {num_single} single-stream blocks")
# Swap [shift, scale] -> [scale, shift] (weights are concatenated along dim=0)
def swap_scale_shift(vec: torch.Tensor) -> torch.Tensor:
shift, scale = vec.chunk(2, dim=0)
return torch.cat([scale, shift], dim=0)
orig = {}
# Per-block (dual)
for b in range(num_dual):
prefix = f"transformer_blocks.{b}."
for okey, dvals in DIFFUSERS_MAP.items():
if not okey.startswith("double_blocks."):
continue
dkeys = [prefix + v for v in dvals]
if not all(src.has(k) for k in dkeys):
continue
if len(dkeys) == 1:
orig[okey.replace("()", str(b))] = src.get(dkeys[0])
else:
orig[okey.replace("()", str(b))] = torch.cat([src.get(k) for k in dkeys], dim=0)
# Per-block (single)
for b in range(num_single):
prefix = f"single_transformer_blocks.{b}."
for okey, dvals in DIFFUSERS_MAP.items():
if not okey.startswith("single_blocks."):
continue
dkeys = [prefix + v for v in dvals]
if not all(src.has(k) for k in dkeys):
continue
if len(dkeys) == 1:
orig[okey.replace("()", str(b))] = src.get(dkeys[0])
else:
orig[okey.replace("()", str(b))] = torch.cat([src.get(k) for k in dkeys], dim=0)
# Globals (non-block)
for okey, dvals in DIFFUSERS_MAP.items():
if okey.startswith(("double_blocks.", "single_blocks.")):
continue
dkeys = dvals
if not all(src.has(k) for k in dkeys):
continue
if len(dkeys) == 1:
orig[okey] = src.get(dkeys[0])
else:
orig[okey] = torch.cat([src.get(k) for k in dkeys], dim=0)
# Fix final_layer.adaLN_modulation.1.{weight,bias} by swapping scale/shift halves
if "final_layer.adaLN_modulation.1.weight" in orig:
orig["final_layer.adaLN_modulation.1.weight"] = swap_scale_shift(
orig["final_layer.adaLN_modulation.1.weight"]
)
if "final_layer.adaLN_modulation.1.bias" in orig:
orig["final_layer.adaLN_modulation.1.bias"] = swap_scale_shift(
orig["final_layer.adaLN_modulation.1.bias"]
)
# Optional FP8 variants (experimental; not required for ComfyUI/BFL)
if args.fp8 or args.fp8_scaled:
dtype = torch.float8_e4m3fn # noqa
minv, maxv = torch.finfo(dtype).min, torch.finfo(dtype).max
def stochastic_round_to(t):
t = t.float().clamp(minv, maxv)
lower = torch.floor(t * 256) / 256
upper = torch.ceil(t * 256) / 256
prob = torch.where(upper != lower, (t - lower) / (upper - lower), torch.zeros_like(t))
rnd = torch.rand_like(t)
out = torch.where(rnd < prob, upper, lower)
return out.to(dtype)
def scale_to_8bit(weight, target_max=416.0):
absmax = weight.abs().max()
scale = absmax / target_max if absmax > 0 else torch.tensor(1.0)
scaled = (weight / scale).clamp(minv, maxv).to(dtype)
return scaled, scale
scales = {}
for k in tqdm(list(orig.keys()), desc="Quantizing to fp8"):
t = orig[k]
if args.fp8:
orig[k] = stochastic_round_to(t)
else:
if k.endswith(".weight") and t.dim() == 2:
qt, s = scale_to_8bit(t)
orig[k] = qt
scales[k[:-len(".weight")] + ".scale_weight"] = s
else:
orig[k] = t.clamp(minv, maxv).to(dtype)
if args.fp8_scaled:
orig.update(scales)
orig["scaled_fp8"] = torch.tensor([], dtype=dtype)
else:
# Default: save in bfloat16
for k in list(orig.keys()):
orig[k] = orig[k].to(torch.bfloat16).cpu()
out_path = Path(args.output_path)
out_path.parent.mkdir(parents=True, exist_ok=True)
meta = OrderedDict()
meta["format"] = "pt"
meta["modelspec.date"] = __import__("datetime").date.today().strftime("%Y-%m-%d")
print(f"Saving transformer to: {out_path}")
safetensors.torch.save_file(orig, str(out_path), metadata=meta)
print("Done.")
if __name__ == "__main__":
main()
|