Spaces:
Configuration error
Configuration error
| # Modified from ``https://github.com/wyhsirius/LIA`` | |
| # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
| import torch | |
| import torch.nn as nn | |
| from torch.nn import functional as F | |
| import math | |
| def custom_qr(input_tensor): | |
| original_dtype = input_tensor.dtype | |
| if original_dtype in [torch.bfloat16, torch.float16]: | |
| q, r = torch.linalg.qr(input_tensor.to(torch.float32)) | |
| return q.to(original_dtype), r.to(original_dtype) | |
| return torch.linalg.qr(input_tensor) | |
| def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): | |
| return F.leaky_relu(input + bias, negative_slope) * scale | |
| def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1): | |
| _, minor, in_h, in_w = input.shape | |
| kernel_h, kernel_w = kernel.shape | |
| out = input.view(-1, minor, in_h, 1, in_w, 1) | |
| out = F.pad(out, [0, up_x - 1, 0, 0, 0, up_y - 1, 0, 0]) | |
| out = out.view(-1, minor, in_h * up_y, in_w * up_x) | |
| out = F.pad(out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) | |
| out = out[:, :, max(-pad_y0, 0): out.shape[2] - max(-pad_y1, 0), | |
| max(-pad_x0, 0): out.shape[3] - max(-pad_x1, 0), ] | |
| out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) | |
| w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) | |
| out = F.conv2d(out, w) | |
| out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, | |
| in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, ) | |
| return out[:, :, ::down_y, ::down_x] | |
| def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): | |
| return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]) | |
| def make_kernel(k): | |
| k = torch.tensor(k, dtype=torch.float32) | |
| if k.ndim == 1: | |
| k = k[None, :] * k[:, None] | |
| k /= k.sum() | |
| return k | |
| class FusedLeakyReLU(nn.Module): | |
| def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5): | |
| super().__init__() | |
| self.bias = nn.Parameter(torch.zeros(1, channel, 1, 1)) | |
| self.negative_slope = negative_slope | |
| self.scale = scale | |
| def forward(self, input): | |
| out = fused_leaky_relu(input, self.bias, self.negative_slope, self.scale) | |
| return out | |
| class Blur(nn.Module): | |
| def __init__(self, kernel, pad, upsample_factor=1): | |
| super().__init__() | |
| kernel = make_kernel(kernel) | |
| if upsample_factor > 1: | |
| kernel = kernel * (upsample_factor ** 2) | |
| self.register_buffer('kernel', kernel) | |
| self.pad = pad | |
| def forward(self, input): | |
| return upfirdn2d(input, self.kernel, pad=self.pad) | |
| class ScaledLeakyReLU(nn.Module): | |
| def __init__(self, negative_slope=0.2): | |
| super().__init__() | |
| self.negative_slope = negative_slope | |
| def forward(self, input): | |
| return F.leaky_relu(input, negative_slope=self.negative_slope) | |
| class EqualConv2d(nn.Module): | |
| def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True): | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.randn(out_channel, in_channel, kernel_size, kernel_size)) | |
| self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2) | |
| self.stride = stride | |
| self.padding = padding | |
| if bias: | |
| self.bias = nn.Parameter(torch.zeros(out_channel)) | |
| else: | |
| self.bias = None | |
| def forward(self, input): | |
| return F.conv2d(input, self.weight * self.scale, bias=self.bias, stride=self.stride, padding=self.padding) | |
| def __repr__(self): | |
| return ( | |
| f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},' | |
| f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})' | |
| ) | |
| class EqualLinear(nn.Module): | |
| def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None): | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) | |
| if bias: | |
| self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) | |
| else: | |
| self.bias = None | |
| self.activation = activation | |
| self.scale = (1 / math.sqrt(in_dim)) * lr_mul | |
| self.lr_mul = lr_mul | |
| def forward(self, input): | |
| if self.activation: | |
| out = F.linear(input, self.weight * self.scale) | |
| out = fused_leaky_relu(out, self.bias * self.lr_mul) | |
| else: | |
| out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul) | |
| return out | |
| def __repr__(self): | |
| return (f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})') | |
| class ConvLayer(nn.Sequential): | |
| def __init__( | |
| self, | |
| in_channel, | |
| out_channel, | |
| kernel_size, | |
| downsample=False, | |
| blur_kernel=[1, 3, 3, 1], | |
| bias=True, | |
| activate=True, | |
| ): | |
| layers = [] | |
| if downsample: | |
| factor = 2 | |
| p = (len(blur_kernel) - factor) + (kernel_size - 1) | |
| pad0 = (p + 1) // 2 | |
| pad1 = p // 2 | |
| layers.append(Blur(blur_kernel, pad=(pad0, pad1))) | |
| stride = 2 | |
| self.padding = 0 | |
| else: | |
| stride = 1 | |
| self.padding = kernel_size // 2 | |
| layers.append(EqualConv2d(in_channel, out_channel, kernel_size, padding=self.padding, stride=stride, | |
| bias=bias and not activate)) | |
| if activate: | |
| if bias: | |
| layers.append(FusedLeakyReLU(out_channel)) | |
| else: | |
| layers.append(ScaledLeakyReLU(0.2)) | |
| super().__init__(*layers) | |
| class ResBlock(nn.Module): | |
| def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]): | |
| super().__init__() | |
| self.conv1 = ConvLayer(in_channel, in_channel, 3) | |
| self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True) | |
| self.skip = ConvLayer(in_channel, out_channel, 1, downsample=True, activate=False, bias=False) | |
| def forward(self, input): | |
| out = self.conv1(input) | |
| out = self.conv2(out) | |
| skip = self.skip(input) | |
| out = (out + skip) / math.sqrt(2) | |
| return out | |
| class EncoderApp(nn.Module): | |
| def __init__(self, size, w_dim=512): | |
| super(EncoderApp, self).__init__() | |
| channels = { | |
| 4: 512, | |
| 8: 512, | |
| 16: 512, | |
| 32: 512, | |
| 64: 256, | |
| 128: 128, | |
| 256: 64, | |
| 512: 32, | |
| 1024: 16 | |
| } | |
| self.w_dim = w_dim | |
| log_size = int(math.log(size, 2)) | |
| self.convs = nn.ModuleList() | |
| self.convs.append(ConvLayer(3, channels[size], 1)) | |
| in_channel = channels[size] | |
| for i in range(log_size, 2, -1): | |
| out_channel = channels[2 ** (i - 1)] | |
| self.convs.append(ResBlock(in_channel, out_channel)) | |
| in_channel = out_channel | |
| self.convs.append(EqualConv2d(in_channel, self.w_dim, 4, padding=0, bias=False)) | |
| def forward(self, x): | |
| res = [] | |
| h = x | |
| for conv in self.convs: | |
| h = conv(h) | |
| res.append(h) | |
| return res[-1].squeeze(-1).squeeze(-1), res[::-1][2:] | |
| class Encoder(nn.Module): | |
| def __init__(self, size, dim=512, dim_motion=20): | |
| super(Encoder, self).__init__() | |
| # appearance netmork | |
| self.net_app = EncoderApp(size, dim) | |
| # motion network | |
| fc = [EqualLinear(dim, dim)] | |
| for i in range(3): | |
| fc.append(EqualLinear(dim, dim)) | |
| fc.append(EqualLinear(dim, dim_motion)) | |
| self.fc = nn.Sequential(*fc) | |
| def enc_app(self, x): | |
| h_source = self.net_app(x) | |
| return h_source | |
| def enc_motion(self, x): | |
| h, _ = self.net_app(x) | |
| h_motion = self.fc(h) | |
| return h_motion | |
| class Direction(nn.Module): | |
| def __init__(self, motion_dim): | |
| super(Direction, self).__init__() | |
| self.weight = nn.Parameter(torch.randn(512, motion_dim)) | |
| def forward(self, input): | |
| weight = self.weight + 1e-8 | |
| Q, R = custom_qr(weight) | |
| if input is None: | |
| return Q | |
| else: | |
| input_diag = torch.diag_embed(input) # alpha, diagonal matrix | |
| out = torch.matmul(input_diag, Q.T) | |
| out = torch.sum(out, dim=1) | |
| return out | |
| class Synthesis(nn.Module): | |
| def __init__(self, motion_dim): | |
| super(Synthesis, self).__init__() | |
| self.direction = Direction(motion_dim) | |
| class Generator(nn.Module): | |
| def __init__(self, size, style_dim=512, motion_dim=20): | |
| super().__init__() | |
| self.enc = Encoder(size, style_dim, motion_dim) | |
| self.dec = Synthesis(motion_dim) | |
| def get_motion(self, img): | |
| #motion_feat = self.enc.enc_motion(img) | |
| # motion_feat = torch.utils.checkpoint.checkpoint((self.enc.enc_motion), img, use_reentrant=True) | |
| with torch.cuda.amp.autocast(dtype=torch.float32): | |
| motion_feat = self.enc.enc_motion(img) | |
| motion = self.dec.direction(motion_feat) | |
| return motion |