File size: 8,100 Bytes
2b67076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# Modified from ``https://github.com/wyhsirius/LIA``
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import torch
import torch.nn as nn
from torch.nn import functional as F
import math

def custom_qr(input_tensor):
    original_dtype = input_tensor.dtype
    if original_dtype in [torch.bfloat16, torch.float16]:
        q, r = torch.linalg.qr(input_tensor.to(torch.float32))
        return q.to(original_dtype), r.to(original_dtype)
    return torch.linalg.qr(input_tensor)

def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
	return F.leaky_relu(input + bias, negative_slope) * scale


def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1):
	_, minor, in_h, in_w = input.shape
	kernel_h, kernel_w = kernel.shape

	out = input.view(-1, minor, in_h, 1, in_w, 1)
	out = F.pad(out, [0, up_x - 1, 0, 0, 0, up_y - 1, 0, 0])
	out = out.view(-1, minor, in_h * up_y, in_w * up_x)

	out = F.pad(out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
	out = out[:, :, max(-pad_y0, 0): out.shape[2] - max(-pad_y1, 0),
		  max(-pad_x0, 0): out.shape[3] - max(-pad_x1, 0), ]

	out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
	w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
	out = F.conv2d(out, w)
	out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
					  in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, )
	return out[:, :, ::down_y, ::down_x]


def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
	return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])


def make_kernel(k):
	k = torch.tensor(k, dtype=torch.float32)
	if k.ndim == 1:
		k = k[None, :] * k[:, None]
	k /= k.sum()
	return k


class FusedLeakyReLU(nn.Module):
	def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
		super().__init__()
		self.bias = nn.Parameter(torch.zeros(1, channel, 1, 1))
		self.negative_slope = negative_slope
		self.scale = scale

	def forward(self, input):
		out = fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
		return out


class Blur(nn.Module):
	def __init__(self, kernel, pad, upsample_factor=1):
		super().__init__()

		kernel = make_kernel(kernel)

		if upsample_factor > 1:
			kernel = kernel * (upsample_factor ** 2)

		self.register_buffer('kernel', kernel)

		self.pad = pad

	def forward(self, input):
		return upfirdn2d(input, self.kernel, pad=self.pad)


class ScaledLeakyReLU(nn.Module):
	def __init__(self, negative_slope=0.2):
		super().__init__()

		self.negative_slope = negative_slope

	def forward(self, input):
		return F.leaky_relu(input, negative_slope=self.negative_slope)


class EqualConv2d(nn.Module):
	def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True):
		super().__init__()

		self.weight = nn.Parameter(torch.randn(out_channel, in_channel, kernel_size, kernel_size))
		self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)

		self.stride = stride
		self.padding = padding

		if bias:
			self.bias = nn.Parameter(torch.zeros(out_channel))
		else:
			self.bias = None

	def forward(self, input):

		return F.conv2d(input, self.weight * self.scale, bias=self.bias, stride=self.stride, padding=self.padding)

	def __repr__(self):
		return (
			f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},'
			f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})'
		)


class EqualLinear(nn.Module):
	def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None):
		super().__init__()

		self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))

		if bias:
			self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
		else:
			self.bias = None

		self.activation = activation

		self.scale = (1 / math.sqrt(in_dim)) * lr_mul
		self.lr_mul = lr_mul

	def forward(self, input):

		if self.activation:
			out = F.linear(input, self.weight * self.scale)
			out = fused_leaky_relu(out, self.bias * self.lr_mul)
		else:
			out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul)

		return out

	def __repr__(self):
		return (f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})')


class ConvLayer(nn.Sequential):
	def __init__(
			self,
			in_channel,
			out_channel,
			kernel_size,
			downsample=False,
			blur_kernel=[1, 3, 3, 1],
			bias=True,
			activate=True,
	):
		layers = []

		if downsample:
			factor = 2
			p = (len(blur_kernel) - factor) + (kernel_size - 1)
			pad0 = (p + 1) // 2
			pad1 = p // 2

			layers.append(Blur(blur_kernel, pad=(pad0, pad1)))

			stride = 2
			self.padding = 0

		else:
			stride = 1
			self.padding = kernel_size // 2

		layers.append(EqualConv2d(in_channel, out_channel, kernel_size, padding=self.padding, stride=stride,
								  bias=bias and not activate))

		if activate:
			if bias:
				layers.append(FusedLeakyReLU(out_channel))
			else:
				layers.append(ScaledLeakyReLU(0.2))

		super().__init__(*layers)


class ResBlock(nn.Module):
	def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]):
		super().__init__()

		self.conv1 = ConvLayer(in_channel, in_channel, 3)
		self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True)

		self.skip = ConvLayer(in_channel, out_channel, 1, downsample=True, activate=False, bias=False)

	def forward(self, input):
		out = self.conv1(input)
		out = self.conv2(out)

		skip = self.skip(input)
		out = (out + skip) / math.sqrt(2)

		return out


class EncoderApp(nn.Module):
	def __init__(self, size, w_dim=512):
		super(EncoderApp, self).__init__()

		channels = {
			4: 512,
			8: 512,
			16: 512,
			32: 512,
			64: 256,
			128: 128,
			256: 64,
			512: 32,
			1024: 16
		}

		self.w_dim = w_dim
		log_size = int(math.log(size, 2))

		self.convs = nn.ModuleList()
		self.convs.append(ConvLayer(3, channels[size], 1))

		in_channel = channels[size]
		for i in range(log_size, 2, -1):
			out_channel = channels[2 ** (i - 1)]
			self.convs.append(ResBlock(in_channel, out_channel))
			in_channel = out_channel

		self.convs.append(EqualConv2d(in_channel, self.w_dim, 4, padding=0, bias=False))

	def forward(self, x):

		res = []
		h = x
		for conv in self.convs:
			h = conv(h)
			res.append(h)

		return res[-1].squeeze(-1).squeeze(-1), res[::-1][2:]


class Encoder(nn.Module):
	def __init__(self, size, dim=512, dim_motion=20):
		super(Encoder, self).__init__()

		# appearance netmork
		self.net_app = EncoderApp(size, dim)

		# motion network
		fc = [EqualLinear(dim, dim)]
		for i in range(3):
			fc.append(EqualLinear(dim, dim))

		fc.append(EqualLinear(dim, dim_motion))
		self.fc = nn.Sequential(*fc)

	def enc_app(self, x):
		h_source = self.net_app(x)
		return h_source

	def enc_motion(self, x):
		h, _ = self.net_app(x)
		h_motion = self.fc(h)
		return h_motion


class Direction(nn.Module):
    def __init__(self, motion_dim):
        super(Direction, self).__init__()
        self.weight = nn.Parameter(torch.randn(512, motion_dim))

    def forward(self, input):

        weight = self.weight + 1e-8
        Q, R = custom_qr(weight)
        if input is None:
            return Q
        else:
            input_diag = torch.diag_embed(input)  # alpha, diagonal matrix
            out = torch.matmul(input_diag, Q.T)
            out = torch.sum(out, dim=1)
            return out


class Synthesis(nn.Module):
    def __init__(self, motion_dim):
        super(Synthesis, self).__init__()
        self.direction = Direction(motion_dim)


class Generator(nn.Module):
	def __init__(self, size, style_dim=512, motion_dim=20):
		super().__init__()

		self.enc = Encoder(size, style_dim, motion_dim)
		self.dec = Synthesis(motion_dim)

	def get_motion(self, img):
		#motion_feat = self.enc.enc_motion(img)
		# motion_feat = torch.utils.checkpoint.checkpoint((self.enc.enc_motion), img, use_reentrant=True)
		with torch.cuda.amp.autocast(dtype=torch.float32):
			motion_feat = self.enc.enc_motion(img)
			motion = self.dec.direction(motion_feat)
		return motion