๐: area of triangle 5-12-13
๐ค: To find the area of a triangle with vertices at coordinates $A(5, 1)$, $B(1, 1)$, and $C(-3, 1)$, we can use the formula for the area of a triangle given its vertices $(x_1, y_1)$, $(x_2, y_2)$, and $(x_3, y_3)$:
Area=21โโฃx1โ(y2โโy3โ)+x2โ(y3โโy1โ)+x3โ(y1โโy2โ)+x1โ(y2โโy3โ)โฃ
Substituting the coordinates of points $A(5, 1)$, $B(1, 1)$, and $C(-3, 1)$ into the formula, we get:
Area=21โโฃ5(1โ1)+1(1โ1)+(โ3)(1โ1)+5(1โ1)โฃ
Simplify inside the absolute value:
Area=21โโฃ5โ
0+1โ
(โ2)+(โ3)โ
0+5โ
0โฃ=21โโฃ0โ2+0+0โฃ=21โโฃโ6โฃ=21โโ
6=3
Thus, the area of the triangle is $\boxed{6}$.]
The area of the triangle is $\boxed{6}$.]
The area of triangle $ABC$...