Spaces:
Running
Running
Commit
·
503aad2
1
Parent(s):
c3b9b9a
feat: Override PGVector with custom source
Browse files- custom_pgvector.py +789 -0
custom_pgvector.py
ADDED
|
@@ -0,0 +1,789 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import asyncio
|
| 4 |
+
import contextlib
|
| 5 |
+
import enum
|
| 6 |
+
import logging
|
| 7 |
+
from functools import partial
|
| 8 |
+
from typing import (
|
| 9 |
+
TYPE_CHECKING,
|
| 10 |
+
Any,
|
| 11 |
+
Callable,
|
| 12 |
+
Dict,
|
| 13 |
+
Generator,
|
| 14 |
+
Iterable,
|
| 15 |
+
List,
|
| 16 |
+
Optional,
|
| 17 |
+
Tuple,
|
| 18 |
+
Type,
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
import numpy as np
|
| 22 |
+
import sqlalchemy
|
| 23 |
+
from langchain.docstore.document import Document
|
| 24 |
+
from langchain.schema.embeddings import Embeddings
|
| 25 |
+
from langchain.utils import get_from_dict_or_env
|
| 26 |
+
from langchain.vectorstores.base import VectorStore
|
| 27 |
+
from langchain.vectorstores.pgvector import BaseModel
|
| 28 |
+
from langchain.vectorstores.utils import maximal_marginal_relevance
|
| 29 |
+
from pgvector.sqlalchemy import Vector
|
| 30 |
+
from sqlalchemy import delete
|
| 31 |
+
from sqlalchemy.orm import Session, declarative_base, relationship
|
| 32 |
+
|
| 33 |
+
if TYPE_CHECKING:
|
| 34 |
+
from langchain.vectorstores._pgvector_data_models import CollectionStore
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class DistanceStrategy(str, enum.Enum):
|
| 38 |
+
"""Enumerator of the Distance strategies."""
|
| 39 |
+
|
| 40 |
+
EUCLIDEAN = "l2"
|
| 41 |
+
COSINE = "cosine"
|
| 42 |
+
MAX_INNER_PRODUCT = "inner"
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
DEFAULT_DISTANCE_STRATEGY = DistanceStrategy.COSINE
|
| 46 |
+
|
| 47 |
+
Base = declarative_base() # type: Any
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
_LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain"
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def _results_to_docs(docs_and_scores: Any) -> List[Document]:
|
| 54 |
+
"""Return docs from docs and scores."""
|
| 55 |
+
return [doc for doc, _ in docs_and_scores]
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class Article(Base):
|
| 59 |
+
"""Embedding store."""
|
| 60 |
+
|
| 61 |
+
__tablename__ = "article"
|
| 62 |
+
|
| 63 |
+
id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True, nullable=False)
|
| 64 |
+
title = sqlalchemy.Column(sqlalchemy.String, nullable=True)
|
| 65 |
+
abstract = sqlalchemy.Column(sqlalchemy.String, nullable=True)
|
| 66 |
+
embedding: Vector = sqlalchemy.Column("abstract_embedding", Vector(None))
|
| 67 |
+
doi = sqlalchemy.Column(sqlalchemy.String, nullable=True)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
class CustomPGVector(VectorStore):
|
| 71 |
+
"""`Postgres`/`PGVector` vector store.
|
| 72 |
+
|
| 73 |
+
To use, you should have the ``pgvector`` python package installed.
|
| 74 |
+
|
| 75 |
+
Args:
|
| 76 |
+
connection_string: Postgres connection string.
|
| 77 |
+
embedding_function: Any embedding function implementing
|
| 78 |
+
`langchain.embeddings.base.Embeddings` interface.
|
| 79 |
+
table_name: The name of the collection to use. (default: langchain)
|
| 80 |
+
NOTE: This is not the name of the table, but the name of the collection.
|
| 81 |
+
The tables will be created when initializing the store (if not exists)
|
| 82 |
+
So, make sure the user has the right permissions to create tables.
|
| 83 |
+
distance_strategy: The distance strategy to use. (default: COSINE)
|
| 84 |
+
pre_delete_collection: If True, will delete the collection if it exists.
|
| 85 |
+
(default: False). Useful for testing.
|
| 86 |
+
|
| 87 |
+
Example:
|
| 88 |
+
.. code-block:: python
|
| 89 |
+
|
| 90 |
+
from langchain.vectorstores import PGVector
|
| 91 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
| 92 |
+
|
| 93 |
+
CONNECTION_STRING = "postgresql+psycopg2://hwc@localhost:5432/test3"
|
| 94 |
+
COLLECTION_NAME = "state_of_the_union_test"
|
| 95 |
+
embeddings = OpenAIEmbeddings()
|
| 96 |
+
vectorestore = PGVector.from_documents(
|
| 97 |
+
embedding=embeddings,
|
| 98 |
+
documents=docs,
|
| 99 |
+
table_name=COLLECTION_NAME,
|
| 100 |
+
connection_string=CONNECTION_STRING,
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
"""
|
| 105 |
+
|
| 106 |
+
def __init__(
|
| 107 |
+
self,
|
| 108 |
+
connection_string: str,
|
| 109 |
+
embedding_function: Embeddings,
|
| 110 |
+
table_name: str,
|
| 111 |
+
column_name: str,
|
| 112 |
+
collection_metadata: Optional[dict] = None,
|
| 113 |
+
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
| 114 |
+
pre_delete_collection: bool = False,
|
| 115 |
+
logger: Optional[logging.Logger] = None,
|
| 116 |
+
relevance_score_fn: Optional[Callable[[float], float]] = None,
|
| 117 |
+
) -> None:
|
| 118 |
+
self.connection_string = connection_string
|
| 119 |
+
self.embedding_function = embedding_function
|
| 120 |
+
self.table_name = table_name
|
| 121 |
+
self.column_name = column_name
|
| 122 |
+
self.collection_metadata = collection_metadata
|
| 123 |
+
self._distance_strategy = distance_strategy
|
| 124 |
+
self.pre_delete_collection = pre_delete_collection
|
| 125 |
+
self.logger = logger or logging.getLogger(__name__)
|
| 126 |
+
self.override_relevance_score_fn = relevance_score_fn
|
| 127 |
+
self.__post_init__()
|
| 128 |
+
|
| 129 |
+
def __post_init__(
|
| 130 |
+
self,
|
| 131 |
+
) -> None:
|
| 132 |
+
"""
|
| 133 |
+
Initialize the store.
|
| 134 |
+
"""
|
| 135 |
+
self._conn = self.connect()
|
| 136 |
+
self.create_vector_extension()
|
| 137 |
+
|
| 138 |
+
self.EmbeddingStore = Article
|
| 139 |
+
|
| 140 |
+
@property
|
| 141 |
+
def embeddings(self) -> Embeddings:
|
| 142 |
+
return self.embedding_function
|
| 143 |
+
|
| 144 |
+
def connect(self) -> sqlalchemy.engine.Connection:
|
| 145 |
+
engine = sqlalchemy.create_engine(self.connection_string)
|
| 146 |
+
conn = engine.connect()
|
| 147 |
+
return conn
|
| 148 |
+
|
| 149 |
+
def create_vector_extension(self) -> None:
|
| 150 |
+
try:
|
| 151 |
+
with Session(self._conn) as session:
|
| 152 |
+
statement = sqlalchemy.text("CREATE EXTENSION IF NOT EXISTS vector")
|
| 153 |
+
session.execute(statement)
|
| 154 |
+
session.commit()
|
| 155 |
+
except Exception as e:
|
| 156 |
+
self.logger.exception(e)
|
| 157 |
+
|
| 158 |
+
def drop_tables(self) -> None:
|
| 159 |
+
with self._conn.begin():
|
| 160 |
+
Base.metadata.drop_all(self._conn)
|
| 161 |
+
|
| 162 |
+
@contextlib.contextmanager
|
| 163 |
+
def _make_session(self) -> Generator[Session, None, None]:
|
| 164 |
+
"""Create a context manager for the session, bind to _conn string."""
|
| 165 |
+
yield Session(self._conn)
|
| 166 |
+
|
| 167 |
+
def delete(
|
| 168 |
+
self,
|
| 169 |
+
ids: Optional[List[str]] = None,
|
| 170 |
+
**kwargs: Any,
|
| 171 |
+
) -> None:
|
| 172 |
+
"""Delete vectors by ids.
|
| 173 |
+
|
| 174 |
+
Args:
|
| 175 |
+
ids: List of ids to delete.
|
| 176 |
+
"""
|
| 177 |
+
with Session(self._conn) as session:
|
| 178 |
+
if ids is not None:
|
| 179 |
+
self.logger.debug(
|
| 180 |
+
"Trying to delete vectors by ids (represented by the model "
|
| 181 |
+
"using the custom ids field)"
|
| 182 |
+
)
|
| 183 |
+
stmt = delete(self.EmbeddingStore).where(
|
| 184 |
+
self.EmbeddingStore.custom_id.in_(ids)
|
| 185 |
+
)
|
| 186 |
+
session.execute(stmt)
|
| 187 |
+
session.commit()
|
| 188 |
+
|
| 189 |
+
@classmethod
|
| 190 |
+
def __from(
|
| 191 |
+
cls,
|
| 192 |
+
texts: List[str],
|
| 193 |
+
embeddings: List[List[float]],
|
| 194 |
+
embedding: Embeddings,
|
| 195 |
+
metadatas: Optional[List[dict]] = None,
|
| 196 |
+
ids: Optional[List[str]] = None,
|
| 197 |
+
table_name: str = "article",
|
| 198 |
+
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
| 199 |
+
connection_string: Optional[str] = None,
|
| 200 |
+
pre_delete_collection: bool = False,
|
| 201 |
+
**kwargs: Any,
|
| 202 |
+
) -> CustomPGVector:
|
| 203 |
+
if not metadatas:
|
| 204 |
+
metadatas = [{} for _ in texts]
|
| 205 |
+
if connection_string is None:
|
| 206 |
+
connection_string = cls.get_connection_string(kwargs)
|
| 207 |
+
|
| 208 |
+
store = cls(
|
| 209 |
+
connection_string=connection_string,
|
| 210 |
+
table_name=table_name,
|
| 211 |
+
embedding_function=embedding,
|
| 212 |
+
distance_strategy=distance_strategy,
|
| 213 |
+
pre_delete_collection=pre_delete_collection,
|
| 214 |
+
**kwargs,
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
store.add_embeddings(
|
| 218 |
+
texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
return store
|
| 222 |
+
|
| 223 |
+
def add_embeddings(
|
| 224 |
+
self,
|
| 225 |
+
texts: Iterable[str],
|
| 226 |
+
embeddings: List[List[float]],
|
| 227 |
+
metadatas: Optional[List[dict]] = None,
|
| 228 |
+
ids: Optional[List[str]] = None,
|
| 229 |
+
**kwargs: Any,
|
| 230 |
+
) -> List[str]:
|
| 231 |
+
"""Add embeddings to the vectorstore.
|
| 232 |
+
|
| 233 |
+
Args:
|
| 234 |
+
texts: Iterable of strings to add to the vectorstore.
|
| 235 |
+
embeddings: List of list of embedding vectors.
|
| 236 |
+
metadatas: List of metadatas associated with the texts.
|
| 237 |
+
kwargs: vectorstore specific parameters
|
| 238 |
+
"""
|
| 239 |
+
if not metadatas:
|
| 240 |
+
metadatas = [{} for _ in texts]
|
| 241 |
+
|
| 242 |
+
with Session(self._conn) as session:
|
| 243 |
+
# collection = self.get_collection(session)
|
| 244 |
+
# if not collection:
|
| 245 |
+
# raise ValueError("Collection not found")
|
| 246 |
+
for text, metadata, embedding, id in zip(texts, metadatas, embeddings, ids):
|
| 247 |
+
embedding_store = self.EmbeddingStore(
|
| 248 |
+
embedding=embedding,
|
| 249 |
+
document=text,
|
| 250 |
+
cmetadata=metadata,
|
| 251 |
+
custom_id=id,
|
| 252 |
+
)
|
| 253 |
+
session.add(embedding_store)
|
| 254 |
+
session.commit()
|
| 255 |
+
|
| 256 |
+
return ids
|
| 257 |
+
|
| 258 |
+
def add_texts(
|
| 259 |
+
self,
|
| 260 |
+
texts: Iterable[str],
|
| 261 |
+
metadatas: Optional[List[dict]] = None,
|
| 262 |
+
ids: Optional[List[str]] = None,
|
| 263 |
+
**kwargs: Any,
|
| 264 |
+
) -> List[str]:
|
| 265 |
+
"""Run more texts through the embeddings and add to the vectorstore.
|
| 266 |
+
|
| 267 |
+
Args:
|
| 268 |
+
texts: Iterable of strings to add to the vectorstore.
|
| 269 |
+
metadatas: Optional list of metadatas associated with the texts.
|
| 270 |
+
kwargs: vectorstore specific parameters
|
| 271 |
+
|
| 272 |
+
Returns:
|
| 273 |
+
List of ids from adding the texts into the vectorstore.
|
| 274 |
+
"""
|
| 275 |
+
embeddings = self.embedding_function.embed_documents(list(texts))
|
| 276 |
+
return self.add_embeddings(
|
| 277 |
+
texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
def similarity_search(
|
| 281 |
+
self,
|
| 282 |
+
query: str,
|
| 283 |
+
k: int = 4,
|
| 284 |
+
filter: Optional[dict] = None,
|
| 285 |
+
**kwargs: Any,
|
| 286 |
+
) -> List[Document]:
|
| 287 |
+
"""Run similarity search with PGVector with distance.
|
| 288 |
+
|
| 289 |
+
Args:
|
| 290 |
+
query (str): Query text to search for.
|
| 291 |
+
k (int): Number of results to return. Defaults to 4.
|
| 292 |
+
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
| 293 |
+
|
| 294 |
+
Returns:
|
| 295 |
+
List of Documents most similar to the query.
|
| 296 |
+
"""
|
| 297 |
+
embedding = self.embedding_function.embed_query(text=query)
|
| 298 |
+
return self.similarity_search_by_vector(
|
| 299 |
+
embedding=embedding,
|
| 300 |
+
k=k,
|
| 301 |
+
filter=filter,
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
def similarity_search_with_score(
|
| 305 |
+
self,
|
| 306 |
+
query: str,
|
| 307 |
+
k: int = 4,
|
| 308 |
+
filter: Optional[dict] = None,
|
| 309 |
+
) -> List[Tuple[Document, float]]:
|
| 310 |
+
"""Return docs most similar to query.
|
| 311 |
+
|
| 312 |
+
Args:
|
| 313 |
+
query: Text to look up documents similar to.
|
| 314 |
+
k: Number of Documents to return. Defaults to 4.
|
| 315 |
+
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
| 316 |
+
|
| 317 |
+
Returns:
|
| 318 |
+
List of Documents most similar to the query and score for each.
|
| 319 |
+
"""
|
| 320 |
+
embedding = self.embedding_function.embed_query(query)
|
| 321 |
+
docs = self.similarity_search_with_score_by_vector(
|
| 322 |
+
embedding=embedding, k=k, filter=filter
|
| 323 |
+
)
|
| 324 |
+
return docs
|
| 325 |
+
|
| 326 |
+
@property
|
| 327 |
+
def distance_strategy(self) -> Any:
|
| 328 |
+
if self._distance_strategy == DistanceStrategy.EUCLIDEAN:
|
| 329 |
+
return self.EmbeddingStore.embedding.l2_distance
|
| 330 |
+
elif self._distance_strategy == DistanceStrategy.COSINE:
|
| 331 |
+
return self.EmbeddingStore.embedding.cosine_distance
|
| 332 |
+
elif self._distance_strategy == DistanceStrategy.MAX_INNER_PRODUCT:
|
| 333 |
+
return self.EmbeddingStore.embedding.max_inner_product
|
| 334 |
+
else:
|
| 335 |
+
raise ValueError(
|
| 336 |
+
f"Got unexpected value for distance: {self._distance_strategy}. "
|
| 337 |
+
f"Should be one of {', '.join([ds.value for ds in DistanceStrategy])}."
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
def similarity_search_with_score_by_vector(
|
| 341 |
+
self,
|
| 342 |
+
embedding: List[float],
|
| 343 |
+
k: int = 4,
|
| 344 |
+
filter: Optional[dict] = None,
|
| 345 |
+
) -> List[Tuple[Document, float]]:
|
| 346 |
+
results = self.__query_collection(embedding=embedding, k=k, filter=filter)
|
| 347 |
+
|
| 348 |
+
return self._results_to_docs_and_scores(results)
|
| 349 |
+
|
| 350 |
+
def _results_to_docs_and_scores(self, results: Any) -> List[Tuple[Document, float]]:
|
| 351 |
+
"""Return docs and scores from results."""
|
| 352 |
+
docs = [
|
| 353 |
+
(
|
| 354 |
+
Document(
|
| 355 |
+
page_content=result.Article.abstract,
|
| 356 |
+
# metadata={"title": result.Article.title},
|
| 357 |
+
),
|
| 358 |
+
result.distance if self.embedding_function is not None else None,
|
| 359 |
+
)
|
| 360 |
+
for result in results
|
| 361 |
+
]
|
| 362 |
+
return docs
|
| 363 |
+
|
| 364 |
+
def __query_collection(
|
| 365 |
+
self,
|
| 366 |
+
embedding: List[float],
|
| 367 |
+
k: int = 4,
|
| 368 |
+
filter: Optional[Dict[str, str]] = None,
|
| 369 |
+
) -> List[Any]:
|
| 370 |
+
"""Query the collection."""
|
| 371 |
+
with Session(self._conn) as session:
|
| 372 |
+
results: List[Any] = (
|
| 373 |
+
session.query(
|
| 374 |
+
self.EmbeddingStore,
|
| 375 |
+
self.distance_strategy(embedding).label("distance"), # type: ignore
|
| 376 |
+
)
|
| 377 |
+
.order_by(sqlalchemy.asc("distance"))
|
| 378 |
+
.limit(k)
|
| 379 |
+
.all()
|
| 380 |
+
)
|
| 381 |
+
print(results)
|
| 382 |
+
return results
|
| 383 |
+
|
| 384 |
+
def similarity_search_by_vector(
|
| 385 |
+
self,
|
| 386 |
+
embedding: List[float],
|
| 387 |
+
k: int = 4,
|
| 388 |
+
filter: Optional[dict] = None,
|
| 389 |
+
**kwargs: Any,
|
| 390 |
+
) -> List[Document]:
|
| 391 |
+
"""Return docs most similar to embedding vector.
|
| 392 |
+
|
| 393 |
+
Args:
|
| 394 |
+
embedding: Embedding to look up documents similar to.
|
| 395 |
+
k: Number of Documents to return. Defaults to 4.
|
| 396 |
+
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
| 397 |
+
|
| 398 |
+
Returns:
|
| 399 |
+
List of Documents most similar to the query vector.
|
| 400 |
+
"""
|
| 401 |
+
docs_and_scores = self.similarity_search_with_score_by_vector(
|
| 402 |
+
embedding=embedding, k=k, filter=filter
|
| 403 |
+
)
|
| 404 |
+
return _results_to_docs(docs_and_scores)
|
| 405 |
+
|
| 406 |
+
@classmethod
|
| 407 |
+
def from_texts(
|
| 408 |
+
cls: Type[PGVector],
|
| 409 |
+
texts: List[str],
|
| 410 |
+
embedding: Embeddings,
|
| 411 |
+
metadatas: Optional[List[dict]] = None,
|
| 412 |
+
table_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
| 413 |
+
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
| 414 |
+
ids: Optional[List[str]] = None,
|
| 415 |
+
pre_delete_collection: bool = False,
|
| 416 |
+
**kwargs: Any,
|
| 417 |
+
) -> PGVector:
|
| 418 |
+
"""
|
| 419 |
+
Return VectorStore initialized from texts and embeddings.
|
| 420 |
+
Postgres connection string is required
|
| 421 |
+
"Either pass it as a parameter
|
| 422 |
+
or set the PGVECTOR_CONNECTION_STRING environment variable.
|
| 423 |
+
"""
|
| 424 |
+
embeddings = embedding.embed_documents(list(texts))
|
| 425 |
+
|
| 426 |
+
return cls.__from(
|
| 427 |
+
texts,
|
| 428 |
+
embeddings,
|
| 429 |
+
embedding,
|
| 430 |
+
metadatas=metadatas,
|
| 431 |
+
ids=ids,
|
| 432 |
+
table_name=table_name,
|
| 433 |
+
distance_strategy=distance_strategy,
|
| 434 |
+
pre_delete_collection=pre_delete_collection,
|
| 435 |
+
**kwargs,
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
@classmethod
|
| 439 |
+
def from_embeddings(
|
| 440 |
+
cls,
|
| 441 |
+
text_embeddings: List[Tuple[str, List[float]]],
|
| 442 |
+
embedding: Embeddings,
|
| 443 |
+
metadatas: Optional[List[dict]] = None,
|
| 444 |
+
table_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
| 445 |
+
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
| 446 |
+
ids: Optional[List[str]] = None,
|
| 447 |
+
pre_delete_collection: bool = False,
|
| 448 |
+
**kwargs: Any,
|
| 449 |
+
) -> PGVector:
|
| 450 |
+
"""Construct PGVector wrapper from raw documents and pre-
|
| 451 |
+
generated embeddings.
|
| 452 |
+
|
| 453 |
+
Return VectorStore initialized from documents and embeddings.
|
| 454 |
+
Postgres connection string is required
|
| 455 |
+
"Either pass it as a parameter
|
| 456 |
+
or set the PGVECTOR_CONNECTION_STRING environment variable.
|
| 457 |
+
|
| 458 |
+
Example:
|
| 459 |
+
.. code-block:: python
|
| 460 |
+
|
| 461 |
+
from langchain.vectorstores import PGVector
|
| 462 |
+
from langchain.embeddings import OpenAIEmbeddings
|
| 463 |
+
embeddings = OpenAIEmbeddings()
|
| 464 |
+
text_embeddings = embeddings.embed_documents(texts)
|
| 465 |
+
text_embedding_pairs = list(zip(texts, text_embeddings))
|
| 466 |
+
faiss = PGVector.from_embeddings(text_embedding_pairs, embeddings)
|
| 467 |
+
"""
|
| 468 |
+
texts = [t[0] for t in text_embeddings]
|
| 469 |
+
embeddings = [t[1] for t in text_embeddings]
|
| 470 |
+
|
| 471 |
+
return cls.__from(
|
| 472 |
+
texts,
|
| 473 |
+
embeddings,
|
| 474 |
+
embedding,
|
| 475 |
+
metadatas=metadatas,
|
| 476 |
+
ids=ids,
|
| 477 |
+
table_name=table_name,
|
| 478 |
+
distance_strategy=distance_strategy,
|
| 479 |
+
pre_delete_collection=pre_delete_collection,
|
| 480 |
+
**kwargs,
|
| 481 |
+
)
|
| 482 |
+
|
| 483 |
+
@classmethod
|
| 484 |
+
def from_existing_index(
|
| 485 |
+
cls: Type[PGVector],
|
| 486 |
+
embedding: Embeddings,
|
| 487 |
+
table_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
| 488 |
+
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
| 489 |
+
pre_delete_collection: bool = False,
|
| 490 |
+
**kwargs: Any,
|
| 491 |
+
) -> PGVector:
|
| 492 |
+
"""
|
| 493 |
+
Get intsance of an existing PGVector store.This method will
|
| 494 |
+
return the instance of the store without inserting any new
|
| 495 |
+
embeddings
|
| 496 |
+
"""
|
| 497 |
+
|
| 498 |
+
connection_string = cls.get_connection_string(kwargs)
|
| 499 |
+
|
| 500 |
+
store = cls(
|
| 501 |
+
connection_string=connection_string,
|
| 502 |
+
table_name=table_name,
|
| 503 |
+
embedding_function=embedding,
|
| 504 |
+
distance_strategy=distance_strategy,
|
| 505 |
+
pre_delete_collection=pre_delete_collection,
|
| 506 |
+
)
|
| 507 |
+
|
| 508 |
+
return store
|
| 509 |
+
|
| 510 |
+
@classmethod
|
| 511 |
+
def get_connection_string(cls, kwargs: Dict[str, Any]) -> str:
|
| 512 |
+
connection_string: str = get_from_dict_or_env(
|
| 513 |
+
data=kwargs,
|
| 514 |
+
key="connection_string",
|
| 515 |
+
env_key="PGVECTOR_CONNECTION_STRING",
|
| 516 |
+
)
|
| 517 |
+
|
| 518 |
+
if not connection_string:
|
| 519 |
+
raise ValueError(
|
| 520 |
+
"Postgres connection string is required"
|
| 521 |
+
"Either pass it as a parameter"
|
| 522 |
+
"or set the PGVECTOR_CONNECTION_STRING environment variable."
|
| 523 |
+
)
|
| 524 |
+
|
| 525 |
+
return connection_string
|
| 526 |
+
|
| 527 |
+
@classmethod
|
| 528 |
+
def from_documents(
|
| 529 |
+
cls: Type[CustomPGVector],
|
| 530 |
+
documents: List[Document],
|
| 531 |
+
embedding: Embeddings,
|
| 532 |
+
table_name: str = "article",
|
| 533 |
+
column_name: str = "embeding",
|
| 534 |
+
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
| 535 |
+
ids: Optional[List[str]] = None,
|
| 536 |
+
pre_delete_collection: bool = False,
|
| 537 |
+
**kwargs: Any,
|
| 538 |
+
) -> CustomPGVector:
|
| 539 |
+
"""
|
| 540 |
+
Return VectorStore initialized from documents and embeddings.
|
| 541 |
+
Postgres connection string is required
|
| 542 |
+
"Either pass it as a parameter
|
| 543 |
+
or set the PGVECTOR_CONNECTION_STRING environment variable.
|
| 544 |
+
"""
|
| 545 |
+
|
| 546 |
+
texts = [d.page_content for d in documents]
|
| 547 |
+
metadatas = [d.metadata for d in documents]
|
| 548 |
+
connection_string = cls.get_connection_string(kwargs)
|
| 549 |
+
|
| 550 |
+
kwargs["connection_string"] = connection_string
|
| 551 |
+
|
| 552 |
+
return cls.from_texts(
|
| 553 |
+
texts=texts,
|
| 554 |
+
pre_delete_collection=pre_delete_collection,
|
| 555 |
+
embedding=embedding,
|
| 556 |
+
distance_strategy=distance_strategy,
|
| 557 |
+
metadatas=metadatas,
|
| 558 |
+
ids=ids,
|
| 559 |
+
table_name=table_name,
|
| 560 |
+
column_name=column_name,
|
| 561 |
+
**kwargs,
|
| 562 |
+
)
|
| 563 |
+
|
| 564 |
+
@classmethod
|
| 565 |
+
def connection_string_from_db_params(
|
| 566 |
+
cls,
|
| 567 |
+
driver: str,
|
| 568 |
+
host: str,
|
| 569 |
+
port: int,
|
| 570 |
+
database: str,
|
| 571 |
+
user: str,
|
| 572 |
+
password: str,
|
| 573 |
+
) -> str:
|
| 574 |
+
"""Return connection string from database parameters."""
|
| 575 |
+
return f"postgresql+{driver}://{user}:{password}@{host}:{port}/{database}"
|
| 576 |
+
|
| 577 |
+
def _select_relevance_score_fn(self) -> Callable[[float], float]:
|
| 578 |
+
"""
|
| 579 |
+
The 'correct' relevance function
|
| 580 |
+
may differ depending on a few things, including:
|
| 581 |
+
- the distance / similarity metric used by the VectorStore
|
| 582 |
+
- the scale of your embeddings (OpenAI's are unit normed. Many others are not!)
|
| 583 |
+
- embedding dimensionality
|
| 584 |
+
- etc.
|
| 585 |
+
"""
|
| 586 |
+
if self.override_relevance_score_fn is not None:
|
| 587 |
+
return self.override_relevance_score_fn
|
| 588 |
+
|
| 589 |
+
# Default strategy is to rely on distance strategy provided
|
| 590 |
+
# in vectorstore constructor
|
| 591 |
+
if self._distance_strategy == DistanceStrategy.COSINE:
|
| 592 |
+
return self._cosine_relevance_score_fn
|
| 593 |
+
elif self._distance_strategy == DistanceStrategy.EUCLIDEAN:
|
| 594 |
+
return self._euclidean_relevance_score_fn
|
| 595 |
+
elif self._distance_strategy == DistanceStrategy.MAX_INNER_PRODUCT:
|
| 596 |
+
return self._max_inner_product_relevance_score_fn
|
| 597 |
+
else:
|
| 598 |
+
raise ValueError(
|
| 599 |
+
"No supported normalization function"
|
| 600 |
+
f" for distance_strategy of {self._distance_strategy}."
|
| 601 |
+
"Consider providing relevance_score_fn to PGVector constructor."
|
| 602 |
+
)
|
| 603 |
+
|
| 604 |
+
def max_marginal_relevance_search_with_score_by_vector(
|
| 605 |
+
self,
|
| 606 |
+
embedding: List[float],
|
| 607 |
+
k: int = 4,
|
| 608 |
+
fetch_k: int = 20,
|
| 609 |
+
lambda_mult: float = 0.5,
|
| 610 |
+
filter: Optional[Dict[str, str]] = None,
|
| 611 |
+
**kwargs: Any,
|
| 612 |
+
) -> List[Tuple[Document, float]]:
|
| 613 |
+
"""Return docs selected using the maximal marginal relevance with score
|
| 614 |
+
to embedding vector.
|
| 615 |
+
|
| 616 |
+
Maximal marginal relevance optimizes for similarity to query AND diversity
|
| 617 |
+
among selected documents.
|
| 618 |
+
|
| 619 |
+
Args:
|
| 620 |
+
embedding: Embedding to look up documents similar to.
|
| 621 |
+
k (int): Number of Documents to return. Defaults to 4.
|
| 622 |
+
fetch_k (int): Number of Documents to fetch to pass to MMR algorithm.
|
| 623 |
+
Defaults to 20.
|
| 624 |
+
lambda_mult (float): Number between 0 and 1 that determines the degree
|
| 625 |
+
of diversity among the results with 0 corresponding
|
| 626 |
+
to maximum diversity and 1 to minimum diversity.
|
| 627 |
+
Defaults to 0.5.
|
| 628 |
+
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
| 629 |
+
|
| 630 |
+
Returns:
|
| 631 |
+
List[Tuple[Document, float]]: List of Documents selected by maximal marginal
|
| 632 |
+
relevance to the query and score for each.
|
| 633 |
+
"""
|
| 634 |
+
results = self.__query_collection(embedding=embedding, k=fetch_k, filter=filter)
|
| 635 |
+
|
| 636 |
+
embedding_list = [result.EmbeddingStore.embedding for result in results]
|
| 637 |
+
|
| 638 |
+
mmr_selected = maximal_marginal_relevance(
|
| 639 |
+
np.array(embedding, dtype=np.float32),
|
| 640 |
+
embedding_list,
|
| 641 |
+
k=k,
|
| 642 |
+
lambda_mult=lambda_mult,
|
| 643 |
+
)
|
| 644 |
+
|
| 645 |
+
candidates = self._results_to_docs_and_scores(results)
|
| 646 |
+
|
| 647 |
+
return [r for i, r in enumerate(candidates) if i in mmr_selected]
|
| 648 |
+
|
| 649 |
+
def max_marginal_relevance_search(
|
| 650 |
+
self,
|
| 651 |
+
query: str,
|
| 652 |
+
k: int = 4,
|
| 653 |
+
fetch_k: int = 20,
|
| 654 |
+
lambda_mult: float = 0.5,
|
| 655 |
+
filter: Optional[Dict[str, str]] = None,
|
| 656 |
+
**kwargs: Any,
|
| 657 |
+
) -> List[Document]:
|
| 658 |
+
"""Return docs selected using the maximal marginal relevance.
|
| 659 |
+
|
| 660 |
+
Maximal marginal relevance optimizes for similarity to query AND diversity
|
| 661 |
+
among selected documents.
|
| 662 |
+
|
| 663 |
+
Args:
|
| 664 |
+
query (str): Text to look up documents similar to.
|
| 665 |
+
k (int): Number of Documents to return. Defaults to 4.
|
| 666 |
+
fetch_k (int): Number of Documents to fetch to pass to MMR algorithm.
|
| 667 |
+
Defaults to 20.
|
| 668 |
+
lambda_mult (float): Number between 0 and 1 that determines the degree
|
| 669 |
+
of diversity among the results with 0 corresponding
|
| 670 |
+
to maximum diversity and 1 to minimum diversity.
|
| 671 |
+
Defaults to 0.5.
|
| 672 |
+
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
| 673 |
+
|
| 674 |
+
Returns:
|
| 675 |
+
List[Document]: List of Documents selected by maximal marginal relevance.
|
| 676 |
+
"""
|
| 677 |
+
embedding = self.embedding_function.embed_query(query)
|
| 678 |
+
return self.max_marginal_relevance_search_by_vector(
|
| 679 |
+
embedding,
|
| 680 |
+
k=k,
|
| 681 |
+
fetch_k=fetch_k,
|
| 682 |
+
lambda_mult=lambda_mult,
|
| 683 |
+
**kwargs,
|
| 684 |
+
)
|
| 685 |
+
|
| 686 |
+
def max_marginal_relevance_search_with_score(
|
| 687 |
+
self,
|
| 688 |
+
query: str,
|
| 689 |
+
k: int = 4,
|
| 690 |
+
fetch_k: int = 20,
|
| 691 |
+
lambda_mult: float = 0.5,
|
| 692 |
+
filter: Optional[dict] = None,
|
| 693 |
+
**kwargs: Any,
|
| 694 |
+
) -> List[Tuple[Document, float]]:
|
| 695 |
+
"""Return docs selected using the maximal marginal relevance with score.
|
| 696 |
+
|
| 697 |
+
Maximal marginal relevance optimizes for similarity to query AND diversity
|
| 698 |
+
among selected documents.
|
| 699 |
+
|
| 700 |
+
Args:
|
| 701 |
+
query (str): Text to look up documents similar to.
|
| 702 |
+
k (int): Number of Documents to return. Defaults to 4.
|
| 703 |
+
fetch_k (int): Number of Documents to fetch to pass to MMR algorithm.
|
| 704 |
+
Defaults to 20.
|
| 705 |
+
lambda_mult (float): Number between 0 and 1 that determines the degree
|
| 706 |
+
of diversity among the results with 0 corresponding
|
| 707 |
+
to maximum diversity and 1 to minimum diversity.
|
| 708 |
+
Defaults to 0.5.
|
| 709 |
+
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
| 710 |
+
|
| 711 |
+
Returns:
|
| 712 |
+
List[Tuple[Document, float]]: List of Documents selected by maximal marginal
|
| 713 |
+
relevance to the query and score for each.
|
| 714 |
+
"""
|
| 715 |
+
embedding = self.embedding_function.embed_query(query)
|
| 716 |
+
docs = self.max_marginal_relevance_search_with_score_by_vector(
|
| 717 |
+
embedding=embedding,
|
| 718 |
+
k=k,
|
| 719 |
+
fetch_k=fetch_k,
|
| 720 |
+
lambda_mult=lambda_mult,
|
| 721 |
+
filter=filter,
|
| 722 |
+
**kwargs,
|
| 723 |
+
)
|
| 724 |
+
return docs
|
| 725 |
+
|
| 726 |
+
def max_marginal_relevance_search_by_vector(
|
| 727 |
+
self,
|
| 728 |
+
embedding: List[float],
|
| 729 |
+
k: int = 4,
|
| 730 |
+
fetch_k: int = 20,
|
| 731 |
+
lambda_mult: float = 0.5,
|
| 732 |
+
filter: Optional[Dict[str, str]] = None,
|
| 733 |
+
**kwargs: Any,
|
| 734 |
+
) -> List[Document]:
|
| 735 |
+
"""Return docs selected using the maximal marginal relevance
|
| 736 |
+
to embedding vector.
|
| 737 |
+
|
| 738 |
+
Maximal marginal relevance optimizes for similarity to query AND diversity
|
| 739 |
+
among selected documents.
|
| 740 |
+
|
| 741 |
+
Args:
|
| 742 |
+
embedding (str): Text to look up documents similar to.
|
| 743 |
+
k (int): Number of Documents to return. Defaults to 4.
|
| 744 |
+
fetch_k (int): Number of Documents to fetch to pass to MMR algorithm.
|
| 745 |
+
Defaults to 20.
|
| 746 |
+
lambda_mult (float): Number between 0 and 1 that determines the degree
|
| 747 |
+
of diversity among the results with 0 corresponding
|
| 748 |
+
to maximum diversity and 1 to minimum diversity.
|
| 749 |
+
Defaults to 0.5.
|
| 750 |
+
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
| 751 |
+
|
| 752 |
+
Returns:
|
| 753 |
+
List[Document]: List of Documents selected by maximal marginal relevance.
|
| 754 |
+
"""
|
| 755 |
+
docs_and_scores = self.max_marginal_relevance_search_with_score_by_vector(
|
| 756 |
+
embedding,
|
| 757 |
+
k=k,
|
| 758 |
+
fetch_k=fetch_k,
|
| 759 |
+
lambda_mult=lambda_mult,
|
| 760 |
+
filter=filter,
|
| 761 |
+
**kwargs,
|
| 762 |
+
)
|
| 763 |
+
|
| 764 |
+
return _results_to_docs(docs_and_scores)
|
| 765 |
+
|
| 766 |
+
async def amax_marginal_relevance_search_by_vector(
|
| 767 |
+
self,
|
| 768 |
+
embedding: List[float],
|
| 769 |
+
k: int = 4,
|
| 770 |
+
fetch_k: int = 20,
|
| 771 |
+
lambda_mult: float = 0.5,
|
| 772 |
+
filter: Optional[Dict[str, str]] = None,
|
| 773 |
+
**kwargs: Any,
|
| 774 |
+
) -> List[Document]:
|
| 775 |
+
"""Return docs selected using the maximal marginal relevance."""
|
| 776 |
+
|
| 777 |
+
# This is a temporary workaround to make the similarity search
|
| 778 |
+
# asynchronous. The proper solution is to make the similarity search
|
| 779 |
+
# asynchronous in the vector store implementations.
|
| 780 |
+
func = partial(
|
| 781 |
+
self.max_marginal_relevance_search_by_vector,
|
| 782 |
+
embedding,
|
| 783 |
+
k=k,
|
| 784 |
+
fetch_k=fetch_k,
|
| 785 |
+
lambda_mult=lambda_mult,
|
| 786 |
+
filter=filter,
|
| 787 |
+
**kwargs,
|
| 788 |
+
)
|
| 789 |
+
return await asyncio.get_event_loop().run_in_executor(None, func)
|