Spaces:
Running
Running
Commit
·
c3b9b9a
1
Parent(s):
389b0ad
feat: first draft of conversational retrieval
Browse files
app.py
CHANGED
|
@@ -5,10 +5,15 @@ import streamlit.components.v1 as components
|
|
| 5 |
from css import load_css
|
| 6 |
from langchain import OpenAI
|
| 7 |
from langchain.callbacks import get_openai_callback
|
| 8 |
-
from langchain.chains import
|
| 9 |
-
from langchain.chains.conversation.memory import
|
|
|
|
|
|
|
| 10 |
from message import Message
|
| 11 |
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
def initialize_session_state():
|
| 14 |
if "history" not in st.session_state:
|
|
@@ -16,21 +21,37 @@ def initialize_session_state():
|
|
| 16 |
if "token_count" not in st.session_state:
|
| 17 |
st.session_state.token_count = 0
|
| 18 |
if "conversation" not in st.session_state:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
llm = OpenAI(
|
| 20 |
temperature=0,
|
| 21 |
openai_api_key=os.environ["OPENAI_API_KEY"],
|
| 22 |
-
|
| 23 |
)
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
|
|
|
| 27 |
)
|
| 28 |
|
| 29 |
|
| 30 |
def on_click_callback():
|
| 31 |
with get_openai_callback() as cb:
|
| 32 |
human_prompt = st.session_state.human_prompt
|
| 33 |
-
llm_response = st.session_state.conversation.run(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
st.session_state.history.append(Message("human", human_prompt))
|
| 35 |
st.session_state.history.append(Message("ai", llm_response))
|
| 36 |
st.session_state.token_count += cb.total_tokens
|
|
@@ -84,7 +105,7 @@ information_placeholder.caption(
|
|
| 84 |
f"""
|
| 85 |
Used {st.session_state.token_count} tokens \n
|
| 86 |
Debug Langchain conversation:
|
| 87 |
-
{st.session_state.
|
| 88 |
"""
|
| 89 |
)
|
| 90 |
|
|
|
|
| 5 |
from css import load_css
|
| 6 |
from langchain import OpenAI
|
| 7 |
from langchain.callbacks import get_openai_callback
|
| 8 |
+
from langchain.chains import ConversationalRetrievalChain
|
| 9 |
+
from langchain.chains.conversation.memory import ConversationBufferMemory
|
| 10 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
| 11 |
+
from langchain.vectorstores.pgvector import PGVector
|
| 12 |
from message import Message
|
| 13 |
|
| 14 |
+
CONNECTION_STRING = "postgresql+psycopg2://localhost/sorbobot"
|
| 15 |
+
COLLECTION_NAME = ""
|
| 16 |
+
|
| 17 |
|
| 18 |
def initialize_session_state():
|
| 19 |
if "history" not in st.session_state:
|
|
|
|
| 21 |
if "token_count" not in st.session_state:
|
| 22 |
st.session_state.token_count = 0
|
| 23 |
if "conversation" not in st.session_state:
|
| 24 |
+
embeddings = OpenAIEmbeddings()
|
| 25 |
+
|
| 26 |
+
store = PGVector(
|
| 27 |
+
collection_name=COLLECTION_NAME,
|
| 28 |
+
connection_string=CONNECTION_STRING,
|
| 29 |
+
embedding_function=embeddings,
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
retriever = store.as_retriever()
|
| 33 |
+
|
| 34 |
llm = OpenAI(
|
| 35 |
temperature=0,
|
| 36 |
openai_api_key=os.environ["OPENAI_API_KEY"],
|
| 37 |
+
model="text-davinci-003",
|
| 38 |
)
|
| 39 |
+
|
| 40 |
+
st.session_state.memory = ConversationBufferMemory()
|
| 41 |
+
st.session_state.conversation = ConversationalRetrievalChain.from_llm(
|
| 42 |
+
llm=llm, retriever=retriever
|
| 43 |
)
|
| 44 |
|
| 45 |
|
| 46 |
def on_click_callback():
|
| 47 |
with get_openai_callback() as cb:
|
| 48 |
human_prompt = st.session_state.human_prompt
|
| 49 |
+
llm_response = st.session_state.conversation.run(
|
| 50 |
+
{
|
| 51 |
+
"question": human_prompt,
|
| 52 |
+
"chat_history": st.session_state.memory.buffer,
|
| 53 |
+
}
|
| 54 |
+
)
|
| 55 |
st.session_state.history.append(Message("human", human_prompt))
|
| 56 |
st.session_state.history.append(Message("ai", llm_response))
|
| 57 |
st.session_state.token_count += cb.total_tokens
|
|
|
|
| 105 |
f"""
|
| 106 |
Used {st.session_state.token_count} tokens \n
|
| 107 |
Debug Langchain conversation:
|
| 108 |
+
{st.session_state.memory.buffer}
|
| 109 |
"""
|
| 110 |
)
|
| 111 |
|