Update app.py
Browse files
app.py
CHANGED
|
@@ -11,8 +11,9 @@ import numpy as np
|
|
| 11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
print(f"Using device: {device}")
|
| 13 |
|
| 14 |
-
# --- KU DAR
|
| 15 |
-
|
|
|
|
| 16 |
EMBEDDING_DIR = "speaker_embeddings"
|
| 17 |
os.makedirs(EMBEDDING_DIR, exist_ok=True)
|
| 18 |
|
|
@@ -34,6 +35,7 @@ except Exception as e:
|
|
| 34 |
speaker_embeddings_cache = {}
|
| 35 |
|
| 36 |
def get_speaker_embedding(wav_file_path):
|
|
|
|
| 37 |
if wav_file_path in speaker_embeddings_cache:
|
| 38 |
return speaker_embeddings_cache[wav_file_path]
|
| 39 |
embedding_path = os.path.join(EMBEDDING_DIR, f"{os.path.basename(wav_file_path)}.pt")
|
|
@@ -44,7 +46,6 @@ def get_speaker_embedding(wav_file_path):
|
|
| 44 |
if not os.path.exists(wav_file_path):
|
| 45 |
raise gr.Error(f"Audio file not found: {wav_file_path}")
|
| 46 |
try:
|
| 47 |
-
print(f"Creating new speaker embedding for {wav_file_path}...")
|
| 48 |
audio, sr = torchaudio.load(wav_file_path)
|
| 49 |
if sr != 16000: audio = torchaudio.functional.resample(audio, sr, 16000)
|
| 50 |
if audio.shape[0] > 1: audio = torch.mean(audio, dim=0, keepdim=True)
|
|
@@ -53,12 +54,11 @@ def get_speaker_embedding(wav_file_path):
|
|
| 53 |
embedding = torch.nn.functional.normalize(embedding, dim=2).squeeze()
|
| 54 |
torch.save(embedding.cpu(), embedding_path)
|
| 55 |
speaker_embeddings_cache[wav_file_path] = embedding.to(device)
|
| 56 |
-
print(f"Embedding created and saved for {wav_file_path}.")
|
| 57 |
return embedding.to(device)
|
| 58 |
except Exception as e:
|
| 59 |
raise gr.Error(f"Could not process audio file {wav_file_path}. Error: {e}")
|
| 60 |
|
| 61 |
-
# --- Text Processing Functions ---
|
| 62 |
number_words = {
|
| 63 |
0: "eber", 1: "kow", 2: "labo", 3: "saddex", 4: "afar", 5: "shan",
|
| 64 |
6: "lix", 7: "toddobo", 8: "siddeed", 9: "sagaal", 10: "toban",
|
|
@@ -83,35 +83,33 @@ def normalize_text(text):
|
|
| 83 |
text = re.sub(r'[^\w\s\']', '', text)
|
| 84 |
return text
|
| 85 |
|
| 86 |
-
# --- Main Text-to-Speech Function ---
|
| 87 |
def text_to_speech(text, voice_choice):
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
return None
|
| 92 |
-
if not voice_choice:
|
| 93 |
-
gr.Warning("Please select a voice.")
|
| 94 |
-
return None
|
| 95 |
-
|
| 96 |
-
speaker_embedding = get_speaker_embedding(voice_choice)
|
| 97 |
-
normalized_text = normalize_text(text)
|
| 98 |
-
inputs = processor(text=normalized_text, return_tensors="pt").to(device)
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
speaker_embeddings=speaker_embedding.unsqueeze(0),
|
| 104 |
-
do_sample=True,
|
| 105 |
-
top_k=50,
|
| 106 |
-
)
|
| 107 |
-
speech = vocoder(speech)
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
-
# --- Gradio Interface ---
|
| 115 |
iface = gr.Interface(
|
| 116 |
fn=text_to_speech,
|
| 117 |
inputs=[
|
|
@@ -119,25 +117,22 @@ iface = gr.Interface(
|
|
| 119 |
gr.Dropdown(
|
| 120 |
VOICE_SAMPLE_FILES,
|
| 121 |
label="Select Voice",
|
| 122 |
-
info="
|
| 123 |
value=VOICE_SAMPLE_FILES[0] if VOICE_SAMPLE_FILES else None
|
| 124 |
)
|
| 125 |
],
|
| 126 |
outputs=gr.Audio(label="Codka La Abuuray (Generated Voice)", type="numpy"),
|
| 127 |
title="Multi-Voice Somali Text-to-Speech",
|
| 128 |
-
description="
|
| 129 |
)
|
| 130 |
|
| 131 |
-
# --- Launch the web interface ---
|
| 132 |
if __name__ == "__main__":
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
if not os.path.exists(f):
|
| 136 |
-
raise FileNotFoundError(f"Voice file not found: '{f}'. Please upload it to your Space.")
|
| 137 |
|
| 138 |
-
print("
|
| 139 |
for voice_file in VOICE_SAMPLE_FILES:
|
| 140 |
get_speaker_embedding(voice_file)
|
| 141 |
-
print("
|
| 142 |
|
| 143 |
iface.launch(share=True)
|
|
|
|
| 11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
print(f"Using device: {device}")
|
| 13 |
|
| 14 |
+
# --- KU DAR FAYLKA CODADKAAGA ---
|
| 15 |
+
# TAYADA CODADKAN AYAA UGU MUHIMSAN NATIIJADA
|
| 16 |
+
VOICE_SAMPLE_FILES = ["1.wav"] # Hubi in faylkan tayadiisu fiican tahay
|
| 17 |
EMBEDDING_DIR = "speaker_embeddings"
|
| 18 |
os.makedirs(EMBEDDING_DIR, exist_ok=True)
|
| 19 |
|
|
|
|
| 35 |
speaker_embeddings_cache = {}
|
| 36 |
|
| 37 |
def get_speaker_embedding(wav_file_path):
|
| 38 |
+
# Shaqadan sidii hore ayay u egtahay
|
| 39 |
if wav_file_path in speaker_embeddings_cache:
|
| 40 |
return speaker_embeddings_cache[wav_file_path]
|
| 41 |
embedding_path = os.path.join(EMBEDDING_DIR, f"{os.path.basename(wav_file_path)}.pt")
|
|
|
|
| 46 |
if not os.path.exists(wav_file_path):
|
| 47 |
raise gr.Error(f"Audio file not found: {wav_file_path}")
|
| 48 |
try:
|
|
|
|
| 49 |
audio, sr = torchaudio.load(wav_file_path)
|
| 50 |
if sr != 16000: audio = torchaudio.functional.resample(audio, sr, 16000)
|
| 51 |
if audio.shape[0] > 1: audio = torch.mean(audio, dim=0, keepdim=True)
|
|
|
|
| 54 |
embedding = torch.nn.functional.normalize(embedding, dim=2).squeeze()
|
| 55 |
torch.save(embedding.cpu(), embedding_path)
|
| 56 |
speaker_embeddings_cache[wav_file_path] = embedding.to(device)
|
|
|
|
| 57 |
return embedding.to(device)
|
| 58 |
except Exception as e:
|
| 59 |
raise gr.Error(f"Could not process audio file {wav_file_path}. Error: {e}")
|
| 60 |
|
| 61 |
+
# --- Text Processing Functions (sidoodii) ---
|
| 62 |
number_words = {
|
| 63 |
0: "eber", 1: "kow", 2: "labo", 3: "saddex", 4: "afar", 5: "shan",
|
| 64 |
6: "lix", 7: "toddobo", 8: "siddeed", 9: "sagaal", 10: "toban",
|
|
|
|
| 83 |
text = re.sub(r'[^\w\s\']', '', text)
|
| 84 |
return text
|
| 85 |
|
| 86 |
+
# --- Main Text-to-Speech Function (oo la Hagaajiyay) ---
|
| 87 |
def text_to_speech(text, voice_choice):
|
| 88 |
+
if not text or not voice_choice:
|
| 89 |
+
gr.Warning("Fadlan geli qoraal oo dooro cod.")
|
| 90 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
+
speaker_embedding = get_speaker_embedding(voice_choice)
|
| 93 |
+
normalized_text = normalize_text(text)
|
| 94 |
+
inputs = processor(text=normalized_text, return_tensors="pt").to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
+
with torch.no_grad():
|
| 97 |
+
speech = model.generate(
|
| 98 |
+
input_ids=inputs["input_ids"],
|
| 99 |
+
speaker_embeddings=speaker_embedding.unsqueeze(0),
|
| 100 |
+
|
| 101 |
+
# --- Halbeegyada Tayada Codka ---
|
| 102 |
+
do_sample=True, # MUHIIM: Waxay ka dhigaysaa codka mid dabiici ah
|
| 103 |
+
top_k=50, # Waxay xaddidaysaa hal-abuurka si uusan u qaldamin
|
| 104 |
+
temperature=0.75, # Kani wuxuu xakameeyaa hal-abuurka. (0.7 - 0.8 waa fiican yahay)
|
| 105 |
+
repetition_penalty=1.2, # Waxay ka hortagtaa inuu ku celceliyo isku dhawaaq
|
| 106 |
+
max_new_tokens=512 # Waxay siinaysaa model-ka meel ku filan oo uu ku dhameystiro hadalka
|
| 107 |
+
)
|
| 108 |
+
speech = vocoder(speech)
|
| 109 |
+
|
| 110 |
+
return (16000, speech.cpu().numpy())
|
| 111 |
|
| 112 |
+
# --- Gradio Interface (sidii hore) ---
|
| 113 |
iface = gr.Interface(
|
| 114 |
fn=text_to_speech,
|
| 115 |
inputs=[
|
|
|
|
| 117 |
gr.Dropdown(
|
| 118 |
VOICE_SAMPLE_FILES,
|
| 119 |
label="Select Voice",
|
| 120 |
+
info="Dooro codka aad rabto inaad isticmaasho.",
|
| 121 |
value=VOICE_SAMPLE_FILES[0] if VOICE_SAMPLE_FILES else None
|
| 122 |
)
|
| 123 |
],
|
| 124 |
outputs=gr.Audio(label="Codka La Abuuray (Generated Voice)", type="numpy"),
|
| 125 |
title="Multi-Voice Somali Text-to-Speech",
|
| 126 |
+
description="Geli qoraal Soomaali ah, dooro cod, kadibna riix 'Submit' si aad u abuurto hadal."
|
| 127 |
)
|
| 128 |
|
|
|
|
| 129 |
if __name__ == "__main__":
|
| 130 |
+
if not all(os.path.exists(f) for f in VOICE_SAMPLE_FILES):
|
| 131 |
+
raise FileNotFoundError("Fadlan hubi inaad faylasha codka soo gelisay Space-ka.")
|
|
|
|
|
|
|
| 132 |
|
| 133 |
+
print("Diyaarinta codadka...")
|
| 134 |
for voice_file in VOICE_SAMPLE_FILES:
|
| 135 |
get_speaker_embedding(voice_file)
|
| 136 |
+
print("Dhammaan waa diyaar. Barnaamijku wuu furmayaa.")
|
| 137 |
|
| 138 |
iface.launch(share=True)
|