Update app.py
Browse files
app.py
CHANGED
|
@@ -27,15 +27,6 @@ try:
|
|
| 27 |
run_opts={"device": device},
|
| 28 |
savedir=os.path.join("pretrained_models", "spkrec-xvect-voxceleb")
|
| 29 |
)
|
| 30 |
-
|
| 31 |
-
# --- ISKU DAYGA HAGAAJINTA XAWAARAHA ---
|
| 32 |
-
# Waxaan isku dayeynaa inaan model-yada u diyaarinno xawaare dheereeya
|
| 33 |
-
if device == "cpu":
|
| 34 |
-
print("Optimizing models for CPU inference with JIT...")
|
| 35 |
-
model = torch.jit.script(model)
|
| 36 |
-
vocoder = torch.jit.script(vocoder.to(device)) # Hubi inuu ku jiro device saxda ah
|
| 37 |
-
print("JIT optimization applied.")
|
| 38 |
-
|
| 39 |
print("Models loaded successfully.")
|
| 40 |
except Exception as e:
|
| 41 |
raise gr.Error(f"Error loading models: {e}.")
|
|
@@ -67,7 +58,7 @@ def get_speaker_embedding(wav_file_path):
|
|
| 67 |
except Exception as e:
|
| 68 |
raise gr.Error(f"Could not process audio file {wav_file_path}. Error: {e}")
|
| 69 |
|
| 70 |
-
# --- Text Processing Functions
|
| 71 |
number_words = {
|
| 72 |
0: "eber", 1: "kow", 2: "labo", 3: "saddex", 4: "afar", 5: "shan",
|
| 73 |
6: "lix", 7: "toddobo", 8: "siddeed", 9: "sagaal", 10: "toban",
|
|
@@ -95,7 +86,6 @@ def normalize_text(text):
|
|
| 95 |
# --- Main Text-to-Speech Function ---
|
| 96 |
def text_to_speech(text, voice_choice):
|
| 97 |
try:
|
| 98 |
-
print(f"Received request: Text='{text}', Voice='{voice_choice}'")
|
| 99 |
if not text:
|
| 100 |
gr.Warning("Please enter some text.")
|
| 101 |
return None
|
|
@@ -103,27 +93,19 @@ def text_to_speech(text, voice_choice):
|
|
| 103 |
gr.Warning("Please select a voice.")
|
| 104 |
return None
|
| 105 |
|
| 106 |
-
print("Step 1: Getting speaker embedding...")
|
| 107 |
speaker_embedding = get_speaker_embedding(voice_choice)
|
| 108 |
-
|
| 109 |
-
print("Step 2: Normalizing text...")
|
| 110 |
normalized_text = normalize_text(text)
|
| 111 |
-
|
| 112 |
-
print("Step 3: Processing text with SpeechT5Processor...")
|
| 113 |
inputs = processor(text=normalized_text, return_tensors="pt").to(device)
|
| 114 |
|
| 115 |
-
print("Step 4: Generating speech with model.generate()...")
|
| 116 |
with torch.no_grad():
|
| 117 |
-
# Waxaan ka saareynaa 'do_sample' si aan u yareyno shaqada processor-ka
|
| 118 |
speech = model.generate(
|
| 119 |
input_ids=inputs["input_ids"],
|
| 120 |
-
speaker_embeddings=speaker_embedding.unsqueeze(0)
|
|
|
|
|
|
|
| 121 |
)
|
| 122 |
-
|
| 123 |
-
# Isticmaalka JIT Vocoder
|
| 124 |
-
speech = vocoder(speech.to(device)) # Hubi inuu ku jiro device saxda ah
|
| 125 |
|
| 126 |
-
print("Step 6: Generation complete. Returning audio.")
|
| 127 |
return (16000, speech.cpu().numpy())
|
| 128 |
except Exception as e:
|
| 129 |
print(f"AN ERROR OCCURRED: {e}")
|
|
@@ -153,7 +135,7 @@ if __name__ == "__main__":
|
|
| 153 |
if not os.path.exists(f):
|
| 154 |
raise FileNotFoundError(f"Voice file not found: '{f}'. Please upload it to your Space.")
|
| 155 |
|
| 156 |
-
print("Pre-loading all voice embeddings
|
| 157 |
for voice_file in VOICE_SAMPLE_FILES:
|
| 158 |
get_speaker_embedding(voice_file)
|
| 159 |
print("All voices are ready. Launching interface.")
|
|
|
|
| 27 |
run_opts={"device": device},
|
| 28 |
savedir=os.path.join("pretrained_models", "spkrec-xvect-voxceleb")
|
| 29 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
print("Models loaded successfully.")
|
| 31 |
except Exception as e:
|
| 32 |
raise gr.Error(f"Error loading models: {e}.")
|
|
|
|
| 58 |
except Exception as e:
|
| 59 |
raise gr.Error(f"Could not process audio file {wav_file_path}. Error: {e}")
|
| 60 |
|
| 61 |
+
# --- Text Processing Functions ---
|
| 62 |
number_words = {
|
| 63 |
0: "eber", 1: "kow", 2: "labo", 3: "saddex", 4: "afar", 5: "shan",
|
| 64 |
6: "lix", 7: "toddobo", 8: "siddeed", 9: "sagaal", 10: "toban",
|
|
|
|
| 86 |
# --- Main Text-to-Speech Function ---
|
| 87 |
def text_to_speech(text, voice_choice):
|
| 88 |
try:
|
|
|
|
| 89 |
if not text:
|
| 90 |
gr.Warning("Please enter some text.")
|
| 91 |
return None
|
|
|
|
| 93 |
gr.Warning("Please select a voice.")
|
| 94 |
return None
|
| 95 |
|
|
|
|
| 96 |
speaker_embedding = get_speaker_embedding(voice_choice)
|
|
|
|
|
|
|
| 97 |
normalized_text = normalize_text(text)
|
|
|
|
|
|
|
| 98 |
inputs = processor(text=normalized_text, return_tensors="pt").to(device)
|
| 99 |
|
|
|
|
| 100 |
with torch.no_grad():
|
|
|
|
| 101 |
speech = model.generate(
|
| 102 |
input_ids=inputs["input_ids"],
|
| 103 |
+
speaker_embeddings=speaker_embedding.unsqueeze(0),
|
| 104 |
+
do_sample=True,
|
| 105 |
+
top_k=50,
|
| 106 |
)
|
| 107 |
+
speech = vocoder(speech)
|
|
|
|
|
|
|
| 108 |
|
|
|
|
| 109 |
return (16000, speech.cpu().numpy())
|
| 110 |
except Exception as e:
|
| 111 |
print(f"AN ERROR OCCURRED: {e}")
|
|
|
|
| 135 |
if not os.path.exists(f):
|
| 136 |
raise FileNotFoundError(f"Voice file not found: '{f}'. Please upload it to your Space.")
|
| 137 |
|
| 138 |
+
print("Pre-loading all voice embeddings...")
|
| 139 |
for voice_file in VOICE_SAMPLE_FILES:
|
| 140 |
get_speaker_embedding(voice_file)
|
| 141 |
print("All voices are ready. Launching interface.")
|