8aad / app.py
Somalitts's picture
Update app.py
6ce5da6 verified
import gradio as gr
import torch
import torchaudio
import re
import os
import numpy as np
import scipy.io.wavfile
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
from speechbrain.pretrained import EncoderClassifier
# --- Configuration ---
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
VOICE_SAMPLE_FILES = ["1.wav"]
EMBEDDING_DIR = "speaker_embeddings"
os.makedirs(EMBEDDING_DIR, exist_ok=True)
# --- Load models ---
try:
print("Loading models...")
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
model = SpeechT5ForTextToSpeech.from_pretrained("Somalitts/8aad").to(device)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
speaker_model = EncoderClassifier.from_hparams(
source="speechbrain/spkrec-xvect-voxceleb",
run_opts={"device": device},
savedir=os.path.join("pretrained_models", "spkrec-xvect-voxceleb")
)
print("Models loaded successfully.")
except Exception as e:
raise gr.Error(f"Error loading models: {e}.")
speaker_embeddings_cache = {}
def get_speaker_embedding(wav_file_path):
if wav_file_path in speaker_embeddings_cache:
return speaker_embeddings_cache[wav_file_path]
embedding_path = os.path.join(EMBEDDING_DIR, f"{os.path.basename(wav_file_path)}.pt")
if os.path.exists(embedding_path):
embedding = torch.load(embedding_path, map_location=device)
speaker_embeddings_cache[wav_file_path] = embedding
return embedding
if not os.path.exists(wav_file_path):
raise gr.Error(f"Audio file not found: {wav_file_path}")
try:
audio, sr = torchaudio.load(wav_file_path)
if sr != 16000:
audio = torchaudio.functional.resample(audio, sr, 16000)
if audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True)
with torch.no_grad():
embedding = speaker_model.encode_batch(audio.to(device))
embedding = torch.nn.functional.normalize(embedding, dim=2).squeeze()
torch.save(embedding.cpu(), embedding_path)
speaker_embeddings_cache[wav_file_path] = embedding.to(device)
return embedding.to(device)
except Exception as e:
raise gr.Error(f"Could not process audio file {wav_file_path}. Error: {e}")
# --- Number words dictionary and functions ---
number_words = {
0: "eber", 1: "kow", 2: "labo", 3: "saddex", 4: "afar", 5: "shan",
6: "lix", 7: "toddobo", 8: "siddeed", 9: "sagaal", 10: "toban",
11: "kow iyo toban", 12: "labo iyo toban", 13: "saddex iyo toban",
14: "afar iyo toban", 15: "shan iyo toban", 16: "lix iyo toban",
17: "toddobo iyo toban", 18: "siddeed iyo toban", 19: "sagaal iyo toban",
20: "labaatan", 30: "soddon", 40: "afartan", 50: "konton",
60: "lixdan", 70: "toddobaatan", 80: "siddeetan", 90: "sagaashan",
100: "boqol", 1000: "kun",
}
def number_to_words(n):
if n in number_words:
return number_words[n]
if n < 100:
return number_words[n // 10 * 10] + (" iyo " + number_words[n % 10] if n % 10 else "")
if n < 1000:
return (number_words[n // 100] + " boqol" if n // 100 > 1 else "boqol") + (
" iyo " + number_to_words(n % 100) if n % 100 else "")
if n < 1_000_000:
return (number_to_words(n // 1000) + " kun" if n // 1000 > 1 else "kun") + (
" iyo " + number_to_words(n % 1000) if n % 1000 else "")
if n < 1_000_000_000:
return (number_to_words(n // 1_000_000) + " milyan" if n // 1_000_000 > 1 else "milyan") + (
" iyo " + number_to_words(n % 1_000_000) if n % 1_000_000 else "")
return str(n)
def replace_numbers_with_words(text):
return re.sub(r'\b\d+\b', lambda m: number_to_words(int(m.group())), text)
def normalize_text(text):
text = text.lower()
text = replace_numbers_with_words(text)
text = re.sub(r'[^\w\s\']', '', text)
return text
# --- Split long text into chunks by word count ---
def split_long_text_into_chunks(text, max_words=18):
words = text.split()
chunks = []
for i in range(0, len(words), max_words):
chunk = ' '.join(words[i:i + max_words])
chunks.append(chunk)
return chunks
# --- Main TTS function ---
def text_to_speech(text, voice_choice):
if not text or not voice_choice:
gr.Warning("Fadlan geli qoraal oo dooro cod.")
return None
speaker_embedding = get_speaker_embedding(voice_choice)
text_chunks = split_long_text_into_chunks(text)
audio_chunks = []
for idx, chunk in enumerate(text_chunks):
chunk = chunk.strip()
if not chunk:
continue
norm_chunk = normalize_text(chunk)
inputs = processor(text=norm_chunk, return_tensors="pt").to(device)
with torch.no_grad():
speech = model.generate(
input_ids=inputs["input_ids"],
speaker_embeddings=speaker_embedding.unsqueeze(0),
do_sample=True,
top_k=50,
temperature=0.75,
repetition_penalty=1.2,
max_new_tokens=512
)
audio = vocoder(speech).cpu().squeeze().numpy()
audio_chunks.append(audio)
# Pause after each chunk
if idx < len(text_chunks) - 1:
pause = np.zeros(int(16000 * 0.8)) # 0.8s pause
audio_chunks.append(pause)
final_audio = np.concatenate(audio_chunks)
return (16000, final_audio)
# --- Gradio Interface ---
iface = gr.Interface(
fn=text_to_speech,
inputs=[
gr.Textbox(label="Geli qoraalka af-Soomaaliga (Enter Somali Text)", lines=7, placeholder="Qoraalka geli halkan..."),
gr.Dropdown(
VOICE_SAMPLE_FILES,
label="Dooro Codka (Select Voice)",
value=VOICE_SAMPLE_FILES[0] if VOICE_SAMPLE_FILES else None
)
],
outputs=gr.Audio(label="Codka La Abuuray (Generated Audio)", type="numpy"),
title="Multi-Voice Somali Text-to-Speech",
description="Geli qoraal Soomaali ah, dooro cod, kadib riix 'Submit' si aad u abuurto hadal."
)
# --- Launch App ---
if __name__ == "__main__":
if not all(os.path.exists(f) for f in VOICE_SAMPLE_FILES):
raise FileNotFoundError("Fadlan hubi inaad faylasha codka ku dartay.")
print("Diyaarinta codadka...")
for voice_file in VOICE_SAMPLE_FILES:
get_speaker_embedding(voice_file)
print("Dhammaan waa diyaar. Barnaamijku wuu furmayaa.")
iface.launch(share=True)