|
|
import gradio as gr |
|
|
import torch |
|
|
import torchaudio |
|
|
import re |
|
|
import os |
|
|
import numpy as np |
|
|
import scipy.io.wavfile |
|
|
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan |
|
|
from speechbrain.pretrained import EncoderClassifier |
|
|
|
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
print(f"Using device: {device}") |
|
|
|
|
|
VOICE_SAMPLE_FILES = ["1.wav"] |
|
|
EMBEDDING_DIR = "speaker_embeddings" |
|
|
os.makedirs(EMBEDDING_DIR, exist_ok=True) |
|
|
|
|
|
|
|
|
try: |
|
|
print("Loading models...") |
|
|
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") |
|
|
model = SpeechT5ForTextToSpeech.from_pretrained("Somalitts/8aad").to(device) |
|
|
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) |
|
|
speaker_model = EncoderClassifier.from_hparams( |
|
|
source="speechbrain/spkrec-xvect-voxceleb", |
|
|
run_opts={"device": device}, |
|
|
savedir=os.path.join("pretrained_models", "spkrec-xvect-voxceleb") |
|
|
) |
|
|
print("Models loaded successfully.") |
|
|
except Exception as e: |
|
|
raise gr.Error(f"Error loading models: {e}.") |
|
|
|
|
|
speaker_embeddings_cache = {} |
|
|
|
|
|
def get_speaker_embedding(wav_file_path): |
|
|
if wav_file_path in speaker_embeddings_cache: |
|
|
return speaker_embeddings_cache[wav_file_path] |
|
|
embedding_path = os.path.join(EMBEDDING_DIR, f"{os.path.basename(wav_file_path)}.pt") |
|
|
if os.path.exists(embedding_path): |
|
|
embedding = torch.load(embedding_path, map_location=device) |
|
|
speaker_embeddings_cache[wav_file_path] = embedding |
|
|
return embedding |
|
|
if not os.path.exists(wav_file_path): |
|
|
raise gr.Error(f"Audio file not found: {wav_file_path}") |
|
|
try: |
|
|
audio, sr = torchaudio.load(wav_file_path) |
|
|
if sr != 16000: |
|
|
audio = torchaudio.functional.resample(audio, sr, 16000) |
|
|
if audio.shape[0] > 1: |
|
|
audio = torch.mean(audio, dim=0, keepdim=True) |
|
|
with torch.no_grad(): |
|
|
embedding = speaker_model.encode_batch(audio.to(device)) |
|
|
embedding = torch.nn.functional.normalize(embedding, dim=2).squeeze() |
|
|
torch.save(embedding.cpu(), embedding_path) |
|
|
speaker_embeddings_cache[wav_file_path] = embedding.to(device) |
|
|
return embedding.to(device) |
|
|
except Exception as e: |
|
|
raise gr.Error(f"Could not process audio file {wav_file_path}. Error: {e}") |
|
|
|
|
|
|
|
|
number_words = { |
|
|
0: "eber", 1: "kow", 2: "labo", 3: "saddex", 4: "afar", 5: "shan", |
|
|
6: "lix", 7: "toddobo", 8: "siddeed", 9: "sagaal", 10: "toban", |
|
|
11: "kow iyo toban", 12: "labo iyo toban", 13: "saddex iyo toban", |
|
|
14: "afar iyo toban", 15: "shan iyo toban", 16: "lix iyo toban", |
|
|
17: "toddobo iyo toban", 18: "siddeed iyo toban", 19: "sagaal iyo toban", |
|
|
20: "labaatan", 30: "soddon", 40: "afartan", 50: "konton", |
|
|
60: "lixdan", 70: "toddobaatan", 80: "siddeetan", 90: "sagaashan", |
|
|
100: "boqol", 1000: "kun", |
|
|
} |
|
|
|
|
|
def number_to_words(n): |
|
|
if n in number_words: |
|
|
return number_words[n] |
|
|
if n < 100: |
|
|
return number_words[n // 10 * 10] + (" iyo " + number_words[n % 10] if n % 10 else "") |
|
|
if n < 1000: |
|
|
return (number_words[n // 100] + " boqol" if n // 100 > 1 else "boqol") + ( |
|
|
" iyo " + number_to_words(n % 100) if n % 100 else "") |
|
|
if n < 1_000_000: |
|
|
return (number_to_words(n // 1000) + " kun" if n // 1000 > 1 else "kun") + ( |
|
|
" iyo " + number_to_words(n % 1000) if n % 1000 else "") |
|
|
if n < 1_000_000_000: |
|
|
return (number_to_words(n // 1_000_000) + " milyan" if n // 1_000_000 > 1 else "milyan") + ( |
|
|
" iyo " + number_to_words(n % 1_000_000) if n % 1_000_000 else "") |
|
|
return str(n) |
|
|
|
|
|
def replace_numbers_with_words(text): |
|
|
return re.sub(r'\b\d+\b', lambda m: number_to_words(int(m.group())), text) |
|
|
|
|
|
def normalize_text(text): |
|
|
text = text.lower() |
|
|
text = replace_numbers_with_words(text) |
|
|
text = re.sub(r'[^\w\s\']', '', text) |
|
|
return text |
|
|
|
|
|
|
|
|
def split_long_text_into_chunks(text, max_words=18): |
|
|
words = text.split() |
|
|
chunks = [] |
|
|
for i in range(0, len(words), max_words): |
|
|
chunk = ' '.join(words[i:i + max_words]) |
|
|
chunks.append(chunk) |
|
|
return chunks |
|
|
|
|
|
|
|
|
def text_to_speech(text, voice_choice): |
|
|
if not text or not voice_choice: |
|
|
gr.Warning("Fadlan geli qoraal oo dooro cod.") |
|
|
return None |
|
|
|
|
|
speaker_embedding = get_speaker_embedding(voice_choice) |
|
|
text_chunks = split_long_text_into_chunks(text) |
|
|
|
|
|
audio_chunks = [] |
|
|
|
|
|
for idx, chunk in enumerate(text_chunks): |
|
|
chunk = chunk.strip() |
|
|
if not chunk: |
|
|
continue |
|
|
|
|
|
norm_chunk = normalize_text(chunk) |
|
|
inputs = processor(text=norm_chunk, return_tensors="pt").to(device) |
|
|
|
|
|
with torch.no_grad(): |
|
|
speech = model.generate( |
|
|
input_ids=inputs["input_ids"], |
|
|
speaker_embeddings=speaker_embedding.unsqueeze(0), |
|
|
do_sample=True, |
|
|
top_k=50, |
|
|
temperature=0.75, |
|
|
repetition_penalty=1.2, |
|
|
max_new_tokens=512 |
|
|
) |
|
|
audio = vocoder(speech).cpu().squeeze().numpy() |
|
|
|
|
|
audio_chunks.append(audio) |
|
|
|
|
|
|
|
|
if idx < len(text_chunks) - 1: |
|
|
pause = np.zeros(int(16000 * 0.8)) |
|
|
audio_chunks.append(pause) |
|
|
|
|
|
final_audio = np.concatenate(audio_chunks) |
|
|
return (16000, final_audio) |
|
|
|
|
|
|
|
|
iface = gr.Interface( |
|
|
fn=text_to_speech, |
|
|
inputs=[ |
|
|
gr.Textbox(label="Geli qoraalka af-Soomaaliga (Enter Somali Text)", lines=7, placeholder="Qoraalka geli halkan..."), |
|
|
gr.Dropdown( |
|
|
VOICE_SAMPLE_FILES, |
|
|
label="Dooro Codka (Select Voice)", |
|
|
value=VOICE_SAMPLE_FILES[0] if VOICE_SAMPLE_FILES else None |
|
|
) |
|
|
], |
|
|
outputs=gr.Audio(label="Codka La Abuuray (Generated Audio)", type="numpy"), |
|
|
title="Multi-Voice Somali Text-to-Speech", |
|
|
description="Geli qoraal Soomaali ah, dooro cod, kadib riix 'Submit' si aad u abuurto hadal." |
|
|
) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
if not all(os.path.exists(f) for f in VOICE_SAMPLE_FILES): |
|
|
raise FileNotFoundError("Fadlan hubi inaad faylasha codka ku dartay.") |
|
|
|
|
|
print("Diyaarinta codadka...") |
|
|
for voice_file in VOICE_SAMPLE_FILES: |
|
|
get_speaker_embedding(voice_file) |
|
|
print("Dhammaan waa diyaar. Barnaamijku wuu furmayaa.") |
|
|
|
|
|
iface.launch(share=True) |
|
|
|