Update app.py
Browse files
app.py
CHANGED
|
@@ -12,7 +12,7 @@ from speechbrain.pretrained import EncoderClassifier
|
|
| 12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 13 |
print(f"Using device: {device}")
|
| 14 |
|
| 15 |
-
VOICE_SAMPLE_FILES = ["1.wav"]
|
| 16 |
EMBEDDING_DIR = "speaker_embeddings"
|
| 17 |
os.makedirs(EMBEDDING_DIR, exist_ok=True)
|
| 18 |
|
|
@@ -95,31 +95,33 @@ def normalize_text(text):
|
|
| 95 |
text = re.sub(r'[^\w\s\']', '', text)
|
| 96 |
return text
|
| 97 |
|
| 98 |
-
# ---
|
| 99 |
-
def
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
-
# --- Main TTS function
|
| 105 |
-
# --- Main TTS function with pause after each new line only ---
|
| 106 |
def text_to_speech(text, voice_choice):
|
| 107 |
if not text or not voice_choice:
|
| 108 |
gr.Warning("Fadlan geli qoraal oo dooro cod.")
|
| 109 |
return None
|
| 110 |
|
| 111 |
speaker_embedding = get_speaker_embedding(voice_choice)
|
|
|
|
| 112 |
|
| 113 |
-
paragraphs = text.strip().split("\n")
|
| 114 |
audio_chunks = []
|
| 115 |
|
| 116 |
-
for idx,
|
| 117 |
-
|
| 118 |
-
if not
|
| 119 |
continue
|
| 120 |
|
| 121 |
-
|
| 122 |
-
inputs = processor(text=
|
| 123 |
|
| 124 |
with torch.no_grad():
|
| 125 |
speech = model.generate(
|
|
@@ -135,8 +137,8 @@ def text_to_speech(text, voice_choice):
|
|
| 135 |
|
| 136 |
audio_chunks.append(audio)
|
| 137 |
|
| 138 |
-
# Pause after each
|
| 139 |
-
if idx < len(
|
| 140 |
pause = np.zeros(int(16000 * 0.8)) # 0.8s pause
|
| 141 |
audio_chunks.append(pause)
|
| 142 |
|
|
|
|
| 12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 13 |
print(f"Using device: {device}")
|
| 14 |
|
| 15 |
+
VOICE_SAMPLE_FILES = ["1.wav"]
|
| 16 |
EMBEDDING_DIR = "speaker_embeddings"
|
| 17 |
os.makedirs(EMBEDDING_DIR, exist_ok=True)
|
| 18 |
|
|
|
|
| 95 |
text = re.sub(r'[^\w\s\']', '', text)
|
| 96 |
return text
|
| 97 |
|
| 98 |
+
# --- Split long text into chunks by word count ---
|
| 99 |
+
def split_long_text_into_chunks(text, max_words=18):
|
| 100 |
+
words = text.split()
|
| 101 |
+
chunks = []
|
| 102 |
+
for i in range(0, len(words), max_words):
|
| 103 |
+
chunk = ' '.join(words[i:i + max_words])
|
| 104 |
+
chunks.append(chunk)
|
| 105 |
+
return chunks
|
| 106 |
|
| 107 |
+
# --- Main TTS function ---
|
|
|
|
| 108 |
def text_to_speech(text, voice_choice):
|
| 109 |
if not text or not voice_choice:
|
| 110 |
gr.Warning("Fadlan geli qoraal oo dooro cod.")
|
| 111 |
return None
|
| 112 |
|
| 113 |
speaker_embedding = get_speaker_embedding(voice_choice)
|
| 114 |
+
text_chunks = split_long_text_into_chunks(text)
|
| 115 |
|
|
|
|
| 116 |
audio_chunks = []
|
| 117 |
|
| 118 |
+
for idx, chunk in enumerate(text_chunks):
|
| 119 |
+
chunk = chunk.strip()
|
| 120 |
+
if not chunk:
|
| 121 |
continue
|
| 122 |
|
| 123 |
+
norm_chunk = normalize_text(chunk)
|
| 124 |
+
inputs = processor(text=norm_chunk, return_tensors="pt").to(device)
|
| 125 |
|
| 126 |
with torch.no_grad():
|
| 127 |
speech = model.generate(
|
|
|
|
| 137 |
|
| 138 |
audio_chunks.append(audio)
|
| 139 |
|
| 140 |
+
# Pause after each chunk
|
| 141 |
+
if idx < len(text_chunks) - 1:
|
| 142 |
pause = np.zeros(int(16000 * 0.8)) # 0.8s pause
|
| 143 |
audio_chunks.append(pause)
|
| 144 |
|