Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| from PIL import Image | |
| import torch | |
| from transformers import ( | |
| DonutProcessor, | |
| VisionEncoderDecoderModel, | |
| LayoutLMv3Processor, | |
| LayoutLMv3ForSequenceClassification, | |
| BrosProcessor, | |
| BrosForTokenClassification, | |
| LlavaProcessor, | |
| LlavaForConditionalGeneration | |
| ) | |
| def load_model(model_name): | |
| """Load the selected model and processor""" | |
| if model_name == "Donut": | |
| processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base") | |
| model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base") | |
| elif model_name == "LayoutLMv3": | |
| processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base") | |
| model = LayoutLMv3ForSequenceClassification.from_pretrained("microsoft/layoutlmv3-base") | |
| elif model_name == "BROS": | |
| processor = BrosProcessor.from_pretrained("microsoft/bros-base") | |
| model = BrosForTokenClassification.from_pretrained("microsoft/bros-base") | |
| elif model_name == "LLaVA-1.5": | |
| processor = LlavaProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf") | |
| model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf") | |
| return model, processor | |
| def analyze_document(image, model_name, model, processor): | |
| """Analyze document using selected model""" | |
| try: | |
| # Process image according to model requirements | |
| if model_name == "Donut": | |
| inputs = processor(image, return_tensors="pt") | |
| outputs = model.generate(**inputs) | |
| result = processor.decode(outputs[0], skip_special_tokens=True) | |
| elif model_name == "LayoutLMv3": | |
| inputs = processor(image, return_tensors="pt") | |
| outputs = model(**inputs) | |
| result = outputs.logits | |
| # Add similar processing for other models | |
| return result | |
| except Exception as e: | |
| st.error(f"Error analyzing document: {str(e)}") | |
| return None | |
| # Set page config | |
| st.set_page_config(page_title="Document Analysis Comparison", layout="wide") | |
| # Title and description | |
| st.title("Document Understanding Model Comparison") | |
| st.markdown(""" | |
| Compare different models for document analysis and understanding. | |
| Upload an image and select a model to analyze it. | |
| """) | |
| # Create two columns for layout | |
| col1, col2 = st.columns([1, 1]) | |
| with col1: | |
| # File uploader | |
| uploaded_file = st.file_uploader("Choose a document image", type=['png', 'jpg', 'jpeg', 'pdf']) | |
| if uploaded_file is not None: | |
| # Display uploaded image | |
| image = Image.open(uploaded_file) | |
| st.image(image, caption='Uploaded Document', use_column_width=True) | |
| with col2: | |
| # Model selection | |
| model_info = { | |
| "Donut": { | |
| "description": "Best for structured OCR and document format understanding", | |
| "memory": "6-8GB", | |
| "strengths": ["Structured OCR", "Memory efficient", "Good with fixed formats"] | |
| }, | |
| "LayoutLMv3": { | |
| "description": "Strong layout understanding with reasoning capabilities", | |
| "memory": "12-15GB", | |
| "strengths": ["Layout understanding", "Reasoning", "Pre-trained knowledge"] | |
| }, | |
| "BROS": { | |
| "description": "Memory efficient with fast inference", | |
| "memory": "4-6GB", | |
| "strengths": ["Fast inference", "Memory efficient", "Easy fine-tuning"] | |
| }, | |
| "LLaVA-1.5": { | |
| "description": "Comprehensive OCR with strong reasoning", | |
| "memory": "25-40GB", | |
| "strengths": ["Strong reasoning", "Zero-shot capable", "Visual understanding"] | |
| } | |
| } | |
| selected_model = st.selectbox( | |
| "Select Model", | |
| list(model_info.keys()) | |
| ) | |
| # Display model information | |
| st.write("### Model Details") | |
| st.write(f"**Description:** {model_info[selected_model]['description']}") | |
| st.write(f"**Memory Required:** {model_info[selected_model]['memory']}") | |
| st.write("**Strengths:**") | |
| for strength in model_info[selected_model]['strengths']: | |
| st.write(f"- {strength}") | |
| # Analysis section | |
| if uploaded_file is not None and selected_model: | |
| if st.button("Analyze Document"): | |
| with st.spinner('Loading model and analyzing document...'): | |
| try: | |
| # Load model and processor | |
| model, processor = load_model(selected_model) | |
| # Analyze document | |
| results = analyze_document(image, selected_model, model, processor) | |
| # Display results | |
| st.write("### Analysis Results") | |
| st.json(results) | |
| except Exception as e: | |
| st.error(f"Error during analysis: {str(e)}") | |
| # Add information about usage and limitations | |
| st.markdown(""" | |
| --- | |
| ### Notes: | |
| - Different models may perform better for different types of documents | |
| - Processing time and memory requirements vary by model | |
| - Results may vary based on document quality and format | |
| """) | |
| # Add a footer with version information | |
| st.markdown("---") | |
| st.markdown("v1.0 - Created with Streamlit") |