Spaces:
Runtime error
Runtime error
Update app.py
Browse filesStreamlit app that compares different document understanding models
app.py
CHANGED
|
@@ -1,4 +1,140 @@
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import (
|
| 5 |
+
DonutProcessor,
|
| 6 |
+
VisionEncoderDecoderModel,
|
| 7 |
+
LayoutLMv3Processor,
|
| 8 |
+
LayoutLMv3ForSequenceClassification,
|
| 9 |
+
BrosProcessor,
|
| 10 |
+
BrosForTokenClassification,
|
| 11 |
+
LlavaProcessor,
|
| 12 |
+
LlavaForConditionalGeneration
|
| 13 |
+
)
|
| 14 |
|
| 15 |
+
def load_model(model_name):
|
| 16 |
+
"""Load the selected model and processor"""
|
| 17 |
+
if model_name == "Donut":
|
| 18 |
+
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base")
|
| 19 |
+
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base")
|
| 20 |
+
elif model_name == "LayoutLMv3":
|
| 21 |
+
processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base")
|
| 22 |
+
model = LayoutLMv3ForSequenceClassification.from_pretrained("microsoft/layoutlmv3-base")
|
| 23 |
+
elif model_name == "BROS":
|
| 24 |
+
processor = BrosProcessor.from_pretrained("microsoft/bros-base")
|
| 25 |
+
model = BrosForTokenClassification.from_pretrained("microsoft/bros-base")
|
| 26 |
+
elif model_name == "LLaVA-1.5":
|
| 27 |
+
processor = LlavaProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")
|
| 28 |
+
model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf")
|
| 29 |
+
|
| 30 |
+
return model, processor
|
| 31 |
+
|
| 32 |
+
def analyze_document(image, model_name, model, processor):
|
| 33 |
+
"""Analyze document using selected model"""
|
| 34 |
+
try:
|
| 35 |
+
# Process image according to model requirements
|
| 36 |
+
if model_name == "Donut":
|
| 37 |
+
inputs = processor(image, return_tensors="pt")
|
| 38 |
+
outputs = model.generate(**inputs)
|
| 39 |
+
result = processor.decode(outputs[0], skip_special_tokens=True)
|
| 40 |
+
elif model_name == "LayoutLMv3":
|
| 41 |
+
inputs = processor(image, return_tensors="pt")
|
| 42 |
+
outputs = model(**inputs)
|
| 43 |
+
result = outputs.logits
|
| 44 |
+
# Add similar processing for other models
|
| 45 |
+
|
| 46 |
+
return result
|
| 47 |
+
except Exception as e:
|
| 48 |
+
st.error(f"Error analyzing document: {str(e)}")
|
| 49 |
+
return None
|
| 50 |
+
|
| 51 |
+
# Set page config
|
| 52 |
+
st.set_page_config(page_title="Document Analysis Comparison", layout="wide")
|
| 53 |
+
|
| 54 |
+
# Title and description
|
| 55 |
+
st.title("Document Understanding Model Comparison")
|
| 56 |
+
st.markdown("""
|
| 57 |
+
Compare different models for document analysis and understanding.
|
| 58 |
+
Upload an image and select a model to analyze it.
|
| 59 |
+
""")
|
| 60 |
+
|
| 61 |
+
# Create two columns for layout
|
| 62 |
+
col1, col2 = st.columns([1, 1])
|
| 63 |
+
|
| 64 |
+
with col1:
|
| 65 |
+
# File uploader
|
| 66 |
+
uploaded_file = st.file_uploader("Choose a document image", type=['png', 'jpg', 'jpeg', 'pdf'])
|
| 67 |
+
|
| 68 |
+
if uploaded_file is not None:
|
| 69 |
+
# Display uploaded image
|
| 70 |
+
image = Image.open(uploaded_file)
|
| 71 |
+
st.image(image, caption='Uploaded Document', use_column_width=True)
|
| 72 |
+
|
| 73 |
+
with col2:
|
| 74 |
+
# Model selection
|
| 75 |
+
model_info = {
|
| 76 |
+
"Donut": {
|
| 77 |
+
"description": "Best for structured OCR and document format understanding",
|
| 78 |
+
"memory": "6-8GB",
|
| 79 |
+
"strengths": ["Structured OCR", "Memory efficient", "Good with fixed formats"]
|
| 80 |
+
},
|
| 81 |
+
"LayoutLMv3": {
|
| 82 |
+
"description": "Strong layout understanding with reasoning capabilities",
|
| 83 |
+
"memory": "12-15GB",
|
| 84 |
+
"strengths": ["Layout understanding", "Reasoning", "Pre-trained knowledge"]
|
| 85 |
+
},
|
| 86 |
+
"BROS": {
|
| 87 |
+
"description": "Memory efficient with fast inference",
|
| 88 |
+
"memory": "4-6GB",
|
| 89 |
+
"strengths": ["Fast inference", "Memory efficient", "Easy fine-tuning"]
|
| 90 |
+
},
|
| 91 |
+
"LLaVA-1.5": {
|
| 92 |
+
"description": "Comprehensive OCR with strong reasoning",
|
| 93 |
+
"memory": "25-40GB",
|
| 94 |
+
"strengths": ["Strong reasoning", "Zero-shot capable", "Visual understanding"]
|
| 95 |
+
}
|
| 96 |
+
}
|
| 97 |
+
|
| 98 |
+
selected_model = st.selectbox(
|
| 99 |
+
"Select Model",
|
| 100 |
+
list(model_info.keys())
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
# Display model information
|
| 104 |
+
st.write("### Model Details")
|
| 105 |
+
st.write(f"**Description:** {model_info[selected_model]['description']}")
|
| 106 |
+
st.write(f"**Memory Required:** {model_info[selected_model]['memory']}")
|
| 107 |
+
st.write("**Strengths:**")
|
| 108 |
+
for strength in model_info[selected_model]['strengths']:
|
| 109 |
+
st.write(f"- {strength}")
|
| 110 |
+
|
| 111 |
+
# Analysis section
|
| 112 |
+
if uploaded_file is not None and selected_model:
|
| 113 |
+
if st.button("Analyze Document"):
|
| 114 |
+
with st.spinner('Loading model and analyzing document...'):
|
| 115 |
+
try:
|
| 116 |
+
# Load model and processor
|
| 117 |
+
model, processor = load_model(selected_model)
|
| 118 |
+
|
| 119 |
+
# Analyze document
|
| 120 |
+
results = analyze_document(image, selected_model, model, processor)
|
| 121 |
+
|
| 122 |
+
# Display results
|
| 123 |
+
st.write("### Analysis Results")
|
| 124 |
+
st.json(results)
|
| 125 |
+
|
| 126 |
+
except Exception as e:
|
| 127 |
+
st.error(f"Error during analysis: {str(e)}")
|
| 128 |
+
|
| 129 |
+
# Add information about usage and limitations
|
| 130 |
+
st.markdown("""
|
| 131 |
+
---
|
| 132 |
+
### Notes:
|
| 133 |
+
- Different models may perform better for different types of documents
|
| 134 |
+
- Processing time and memory requirements vary by model
|
| 135 |
+
- Results may vary based on document quality and format
|
| 136 |
+
""")
|
| 137 |
+
|
| 138 |
+
# Add a footer with version information
|
| 139 |
+
st.markdown("---")
|
| 140 |
+
st.markdown("v1.0 - Created with Streamlit")
|