Spaces:
Running
Running
| """ | |
| Minimalist Review Metadata Mining Script | |
| Mines PR review metadata from GitHub Archive via BigQuery and saves to HuggingFace dataset. | |
| """ | |
| import json | |
| import os | |
| import tempfile | |
| from datetime import datetime, timezone, timedelta | |
| from collections import defaultdict | |
| from huggingface_hub import HfApi, hf_hub_download | |
| from huggingface_hub.errors import HfHubHTTPError | |
| from dotenv import load_dotenv | |
| from google.cloud import bigquery | |
| import backoff | |
| # Load environment variables | |
| load_dotenv() | |
| # ============================================================================= | |
| # CONFIGURATION | |
| # ============================================================================= | |
| AGENTS_REPO = "SWE-Arena/agent_metadata" | |
| REVIEW_METADATA_REPO = "SWE-Arena/review_metadata" | |
| LEADERBOARD_REPO = "SWE-Arena/leaderboard_metadata" # HuggingFace dataset for leaderboard data | |
| LEADERBOARD_TIME_FRAME_DAYS = 180 # Time frame for leaderboard | |
| # ============================================================================= | |
| # UTILITY FUNCTIONS | |
| # ============================================================================= | |
| def load_jsonl(filename): | |
| """Load JSONL file and return list of dictionaries.""" | |
| if not os.path.exists(filename): | |
| return [] | |
| data = [] | |
| with open(filename, 'r', encoding='utf-8') as f: | |
| for line in f: | |
| line = line.strip() | |
| if line: | |
| try: | |
| data.append(json.loads(line)) | |
| except json.JSONDecodeError as e: | |
| print(f"Warning: Skipping invalid JSON line: {e}") | |
| return data | |
| def save_jsonl(filename, data): | |
| """Save list of dictionaries to JSONL file.""" | |
| with open(filename, 'w', encoding='utf-8') as f: | |
| for item in data: | |
| f.write(json.dumps(item) + '\n') | |
| def normalize_date_format(date_string): | |
| """ | |
| Convert date strings to standardized ISO 8601 format with Z suffix. | |
| Handles both 'T' and space-separated datetime formats (including newlines). | |
| Examples: | |
| - 2025-10-15T23:23:47.983068 -> 2025-10-15T23:23:47Z | |
| - 2025-06-17 21:21:07+00 -> 2025-06-17T21:21:07Z | |
| """ | |
| if not date_string or date_string == 'N/A': | |
| return 'N/A' | |
| try: | |
| import re | |
| # Remove all whitespace (spaces, newlines, tabs) and replace with single space | |
| date_string = re.sub(r'\s+', ' ', date_string.strip()) | |
| # Replace space with 'T' for ISO format compatibility | |
| date_string = date_string.replace(' ', 'T') | |
| # Fix incomplete timezone offset (+00 or -00 -> +00:00 or -00:00) | |
| # Check if timezone offset exists and is incomplete | |
| if len(date_string) >= 3: | |
| if date_string[-3:-2] in ('+', '-') and ':' not in date_string[-3:]: | |
| date_string = date_string + ':00' | |
| # Parse the date string (handles both with and without microseconds) | |
| dt = datetime.fromisoformat(date_string.replace('Z', '+00:00')) | |
| # Convert to standardized format | |
| return dt.strftime('%Y-%m-%dT%H:%M:%SZ') | |
| except Exception as e: | |
| print(f"Warning: Could not parse date '{date_string}': {e}") | |
| return date_string | |
| def get_hf_token(): | |
| """Get HuggingFace token from environment variables.""" | |
| token = os.getenv('HF_TOKEN') | |
| if not token: | |
| print("Warning: HF_TOKEN not found in environment variables") | |
| return token | |
| # ============================================================================= | |
| # HUGGINGFACE API WRAPPERS WITH BACKOFF | |
| # ============================================================================= | |
| def is_rate_limit_error(e): | |
| """Check if exception is a HuggingFace rate limit error (429).""" | |
| if isinstance(e, HfHubHTTPError): | |
| return e.response.status_code == 429 | |
| return False | |
| def upload_large_folder_with_backoff(api, **kwargs): | |
| """Wrapper for api.upload_large_folder() with exponential backoff for rate limits.""" | |
| return api.upload_large_folder(**kwargs) | |
| def list_repo_files_with_backoff(api, **kwargs): | |
| """Wrapper for api.list_repo_files() with exponential backoff for rate limits.""" | |
| return api.list_repo_files(**kwargs) | |
| def hf_hub_download_with_backoff(**kwargs): | |
| """Wrapper for hf_hub_download() with exponential backoff for rate limits.""" | |
| return hf_hub_download(**kwargs) | |
| def upload_file_with_backoff(api, **kwargs): | |
| """Wrapper for api.upload_file() with exponential backoff for rate limits.""" | |
| return api.upload_file(**kwargs) | |
| def get_bigquery_client(): | |
| """ | |
| Initialize BigQuery client using credentials from environment variable. | |
| Expects GOOGLE_APPLICATION_CREDENTIALS_JSON environment variable containing | |
| the service account JSON credentials as a string. | |
| """ | |
| # Get the JSON content from environment variable | |
| creds_json = os.environ.get('GOOGLE_APPLICATION_CREDENTIALS_JSON') | |
| if creds_json: | |
| # Create a temporary file to store credentials | |
| with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.json') as temp_file: | |
| temp_file.write(creds_json) | |
| temp_path = temp_file.name | |
| # Set environment variable to point to temp file | |
| os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = temp_path | |
| # Initialize BigQuery client | |
| client = bigquery.Client() | |
| # Clean up temp file | |
| os.unlink(temp_path) | |
| return client | |
| else: | |
| raise ValueError("GOOGLE_APPLICATION_CREDENTIALS_JSON not found in environment") | |
| def generate_table_union_statements(start_date, end_date): | |
| """ | |
| Generate UNION ALL statements for githubarchive.day tables in date range. | |
| Args: | |
| start_date: Start datetime | |
| end_date: End datetime | |
| Returns: | |
| String with UNION ALL SELECT statements for all tables in range | |
| """ | |
| table_names = [] | |
| current_date = start_date | |
| while current_date < end_date: | |
| table_name = f"`githubarchive.day.{current_date.strftime('%Y%m%d')}`" | |
| table_names.append(table_name) | |
| current_date += timedelta(days=1) | |
| # Create UNION ALL chain | |
| union_parts = [f"SELECT * FROM {table}" for table in table_names] | |
| return " UNION ALL ".join(union_parts) | |
| # ============================================================================= | |
| # BIGQUERY FUNCTIONS | |
| # ============================================================================= | |
| def fetch_all_pr_metadata_batched(client, identifiers, start_date, end_date, batch_size=50, upload_immediately=True): | |
| """ | |
| Fetch PR review metadata for ALL agents using BATCHED BigQuery queries. | |
| Splits agents into smaller batches to avoid performance issues with large queries. | |
| Args: | |
| client: BigQuery client instance | |
| identifiers: List of GitHub usernames/bot identifiers | |
| start_date: Start datetime (timezone-aware) | |
| end_date: End datetime (timezone-aware) | |
| batch_size: Number of agents to process per batch (default: 50) | |
| upload_immediately: If True, upload each batch to HuggingFace immediately after processing (default: True) | |
| Returns: | |
| Dictionary mapping agent identifier to list of PR metadata (same format as single query) | |
| """ | |
| print(f"\nπ Using BATCHED approach: {len(identifiers)} agents in batches of {batch_size}") | |
| # Log upload mode | |
| if upload_immediately: | |
| print(f" π€ Upload mode: IMMEDIATE (upload after each batch)") | |
| else: | |
| print(f" π€ Upload mode: DEFERRED (upload after all batches complete)") | |
| # Split identifiers into batches | |
| batches = [identifiers[i:i + batch_size] for i in range(0, len(identifiers), batch_size)] | |
| total_batches = len(batches) | |
| print(f" Total batches: {total_batches}") | |
| # Collect results from all batches | |
| all_metadata = {} | |
| successful_batches = 0 | |
| failed_batches = 0 | |
| for batch_num, batch_identifiers in enumerate(batches, 1): | |
| print(f"\nπ¦ Processing batch {batch_num}/{total_batches} ({len(batch_identifiers)} agents)...") | |
| try: | |
| # Query this batch | |
| batch_results = fetch_all_pr_metadata_single_query( | |
| client, batch_identifiers, start_date, end_date | |
| ) | |
| # Merge results | |
| for identifier, metadata_list in batch_results.items(): | |
| if identifier in all_metadata: | |
| all_metadata[identifier].extend(metadata_list) | |
| else: | |
| all_metadata[identifier] = metadata_list | |
| successful_batches += 1 | |
| print(f" β Batch {batch_num}/{total_batches} complete: {len(batch_results)} agents processed") | |
| # Upload immediately after this batch if enabled | |
| if upload_immediately and batch_results: | |
| print(f"\n π€ Uploading batch {batch_num}/{total_batches} results to HuggingFace...") | |
| upload_success = 0 | |
| upload_errors = 0 | |
| for identifier, metadata_list in batch_results.items(): | |
| if metadata_list: | |
| if save_review_metadata_to_hf(metadata_list, identifier): | |
| upload_success += 1 | |
| else: | |
| upload_errors += 1 | |
| print(f" β Batch {batch_num}/{total_batches} upload complete ({upload_success} agents uploaded, {upload_errors} errors)") | |
| except Exception as e: | |
| failed_batches += 1 | |
| print(f" β Batch {batch_num}/{total_batches} failed: {str(e)}") | |
| print(f" Continuing with remaining batches...") | |
| continue | |
| print(f"\nπ Batching Summary:") | |
| print(f" Total batches: {total_batches}") | |
| print(f" Successful: {successful_batches}") | |
| print(f" Failed: {failed_batches}") | |
| print(f" Total agents with data: {len(all_metadata)}") | |
| return all_metadata | |
| def fetch_all_pr_metadata_single_query(client, identifiers, start_date, end_date): | |
| """ | |
| Fetch PR review metadata for a BATCH of agents using ONE comprehensive BigQuery query. | |
| NOTE: This function is designed for smaller batches (~100 agents). | |
| For large numbers of agents, use fetch_all_pr_metadata_batched() instead. | |
| This query combines: | |
| 1. Review events (PullRequestReviewEvent) for all agents | |
| 2. PR status (PullRequestEvent with action='closed') | |
| Args: | |
| client: BigQuery client instance | |
| identifiers: List of GitHub usernames/bot identifiers | |
| start_date: Start datetime (timezone-aware) | |
| end_date: End datetime (timezone-aware) | |
| Returns: | |
| Dictionary mapping agent identifier to list of PR metadata: | |
| { | |
| 'agent-identifier': [ | |
| { | |
| 'url': PR URL, | |
| 'reviewed_at': Review timestamp, | |
| 'merged_at': Merge timestamp (if merged, else None), | |
| 'closed_at': Close timestamp (if closed, else None) | |
| }, | |
| ... | |
| ], | |
| ... | |
| } | |
| """ | |
| print(f"\nπ Querying BigQuery for ALL {len(identifiers)} agents in ONE QUERY") | |
| print(f" Time range: {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}") | |
| # Generate table UNION statements for review period | |
| review_tables = generate_table_union_statements(start_date, end_date) | |
| # Generate table UNION statements for PR status (use same lookback as reviews) | |
| status_start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS) | |
| status_tables = generate_table_union_statements(status_start_date, end_date) | |
| # Build identifier list for IN clause | |
| identifier_list = ', '.join([f"'{id}'" for id in identifiers]) | |
| # Build comprehensive query with CTEs | |
| query = f""" | |
| WITH review_events AS ( | |
| -- Get all review events for ALL agents | |
| SELECT | |
| JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') as url, | |
| COALESCE( | |
| JSON_EXTRACT_SCALAR(payload, '$.review.submitted_at'), | |
| CAST(created_at AS STRING) | |
| ) as reviewed_at, | |
| actor.login as reviewer, | |
| repo.name as repo_name, | |
| CAST(JSON_EXTRACT_SCALAR(payload, '$.pull_request.number') AS INT64) as pr_number | |
| FROM ( | |
| {review_tables} | |
| ) | |
| WHERE | |
| type = 'PullRequestReviewEvent' | |
| AND actor.login IN ({identifier_list}) | |
| AND JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') IS NOT NULL | |
| UNION ALL | |
| -- Get PR comments (IssueCommentEvent on PRs) | |
| SELECT | |
| JSON_EXTRACT_SCALAR(payload, '$.issue.html_url') as url, | |
| CAST(created_at AS STRING) as reviewed_at, | |
| actor.login as reviewer, | |
| repo.name as repo_name, | |
| CAST(JSON_EXTRACT_SCALAR(payload, '$.issue.number') AS INT64) as pr_number | |
| FROM ( | |
| {review_tables} | |
| ) | |
| WHERE | |
| type = 'IssueCommentEvent' | |
| AND actor.login IN ({identifier_list}) | |
| AND JSON_EXTRACT_SCALAR(payload, '$.issue.pull_request.url') IS NOT NULL | |
| AND JSON_EXTRACT_SCALAR(payload, '$.issue.html_url') IS NOT NULL | |
| UNION ALL | |
| -- Get review comments (PullRequestReviewCommentEvent) | |
| SELECT | |
| JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') as url, | |
| CAST(created_at AS STRING) as reviewed_at, | |
| actor.login as reviewer, | |
| repo.name as repo_name, | |
| CAST(JSON_EXTRACT_SCALAR(payload, '$.pull_request.number') AS INT64) as pr_number | |
| FROM ( | |
| {review_tables} | |
| ) | |
| WHERE | |
| type = 'PullRequestReviewCommentEvent' | |
| AND actor.login IN ({identifier_list}) | |
| AND JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') IS NOT NULL | |
| ), | |
| pr_status AS ( | |
| -- Get merge/close status for those PRs | |
| SELECT | |
| JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') as url, | |
| CAST(JSON_EXTRACT_SCALAR(payload, '$.pull_request.merged') AS BOOL) as is_merged, | |
| JSON_EXTRACT_SCALAR(payload, '$.pull_request.merged_at') as merged_at, | |
| JSON_EXTRACT_SCALAR(payload, '$.pull_request.closed_at') as closed_at, | |
| created_at | |
| FROM ( | |
| {status_tables} | |
| ) | |
| WHERE | |
| type = 'PullRequestEvent' | |
| AND JSON_EXTRACT_SCALAR(payload, '$.action') = 'closed' | |
| AND JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') IS NOT NULL | |
| AND JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') IN ( | |
| SELECT DISTINCT url FROM review_events | |
| ) | |
| QUALIFY ROW_NUMBER() OVER (PARTITION BY url ORDER BY created_at DESC) = 1 | |
| ) | |
| -- Join review events with PR status | |
| SELECT DISTINCT | |
| re.reviewer, | |
| re.url, | |
| re.reviewed_at, | |
| ps.merged_at, | |
| ps.closed_at | |
| FROM review_events re | |
| LEFT JOIN pr_status ps ON re.url = ps.url | |
| ORDER BY re.reviewer, re.reviewed_at DESC | |
| """ | |
| # Calculate number of days for reporting | |
| review_days = (end_date - start_date).days | |
| status_days = (end_date - status_start_date).days | |
| print(f" Querying {review_days} days for reviews, {status_days} days for PR status...") | |
| print(f" Agents: {', '.join(identifiers[:5])}{'...' if len(identifiers) > 5 else ''}") | |
| try: | |
| query_job = client.query(query) | |
| results = list(query_job.result()) | |
| print(f" β Found {len(results)} total PR review records across all agents") | |
| # Group results by agent | |
| metadata_by_agent = defaultdict(list) | |
| for row in results: | |
| reviewer = row.reviewer | |
| # Convert datetime objects to ISO strings and normalize | |
| reviewed_at = row.reviewed_at | |
| if hasattr(reviewed_at, 'isoformat'): | |
| reviewed_at = reviewed_at.isoformat() | |
| reviewed_at = normalize_date_format(reviewed_at) if reviewed_at else None | |
| merged_at = row.merged_at | |
| if hasattr(merged_at, 'isoformat'): | |
| merged_at = merged_at.isoformat() | |
| merged_at = normalize_date_format(merged_at) if merged_at else None | |
| closed_at = row.closed_at | |
| if hasattr(closed_at, 'isoformat'): | |
| closed_at = closed_at.isoformat() | |
| closed_at = normalize_date_format(closed_at) if closed_at else None | |
| metadata_by_agent[reviewer].append({ | |
| 'url': row.url, | |
| 'reviewed_at': reviewed_at, | |
| 'merged_at': merged_at, | |
| 'closed_at': closed_at, | |
| }) | |
| # Print breakdown by agent | |
| print(f"\n π Results breakdown by agent:") | |
| for identifier in identifiers: | |
| count = len(metadata_by_agent.get(identifier, [])) | |
| if count > 0: | |
| metadata = metadata_by_agent[identifier] | |
| merged_count = sum(1 for m in metadata if m['merged_at'] is not None) | |
| closed_count = sum(1 for m in metadata if m['closed_at'] is not None and m['merged_at'] is None) | |
| open_count = count - merged_count - closed_count | |
| print(f" {identifier}: {count} PRs ({merged_count} merged, {closed_count} closed, {open_count} open)") | |
| # Convert defaultdict to regular dict | |
| return dict(metadata_by_agent) | |
| except Exception as e: | |
| print(f" β BigQuery error: {str(e)}") | |
| import traceback | |
| traceback.print_exc() | |
| return {} | |
| # ============================================================================= | |
| # HUGGINGFACE STORAGE FUNCTIONS | |
| # ============================================================================= | |
| def group_metadata_by_date(metadata_list): | |
| """ | |
| Group review metadata by date (year.month.day) for daily storage. | |
| Returns dict: {(year, month, day): [metadata_list]} | |
| """ | |
| grouped = defaultdict(list) | |
| for review_meta in metadata_list: | |
| reviewed_at = review_meta.get('reviewed_at') | |
| if not reviewed_at: | |
| continue | |
| try: | |
| dt = datetime.fromisoformat(reviewed_at.replace('Z', '+00:00')) | |
| key = (dt.year, dt.month, dt.day) | |
| grouped[key].append(review_meta) | |
| except Exception as e: | |
| print(f"Warning: Could not parse date '{reviewed_at}': {e}") | |
| return dict(grouped) | |
| def save_review_metadata_to_hf(metadata_list, agent_identifier): | |
| """ | |
| Save review metadata to HuggingFace dataset, organized by [agent_identifier]/YYYY.MM.DD.jsonl. | |
| Each file is stored in the agent's folder and named YYYY.MM.DD.jsonl for that day's reviews. | |
| This function OVERWRITES existing files completely with fresh data from BigQuery. | |
| Uses batch upload to avoid rate limit (uploads entire folder in single commit). | |
| Args: | |
| metadata_list: List of review metadata dictionaries | |
| agent_identifier: GitHub identifier of the agent (used as folder name) | |
| """ | |
| import shutil | |
| try: | |
| token = get_hf_token() | |
| if not token: | |
| raise Exception("No HuggingFace token found") | |
| api = HfApi(token=token) | |
| # Group by date (year, month, day) | |
| grouped = group_metadata_by_date(metadata_list) | |
| if not grouped: | |
| print(f" No valid metadata to save for {agent_identifier}") | |
| return False | |
| # Create a temporary directory for batch upload | |
| temp_dir = tempfile.mkdtemp() | |
| agent_folder = os.path.join(temp_dir, agent_identifier) | |
| os.makedirs(agent_folder, exist_ok=True) | |
| try: | |
| print(f" π¦ Preparing batch upload for {len(grouped)} daily files...") | |
| # Process each daily file | |
| for (review_year, month, day), day_metadata in grouped.items(): | |
| filename = f"{agent_identifier}/{review_year}.{month:02d}.{day:02d}.jsonl" | |
| local_filename = os.path.join(agent_folder, f"{review_year}.{month:02d}.{day:02d}.jsonl") | |
| # Sort by reviewed_at for better organization | |
| day_metadata.sort(key=lambda x: x.get('reviewed_at', ''), reverse=True) | |
| # Save to temp directory (complete overwrite, no merging) | |
| save_jsonl(local_filename, day_metadata) | |
| print(f" Prepared {len(day_metadata)} reviews for {filename}") | |
| # Upload entire folder using upload_large_folder (optimized for large files) | |
| # Note: upload_large_folder creates multiple commits automatically and doesn't support custom commit_message | |
| print(f" π€ Uploading {len(grouped)} files ({len(metadata_list)} total reviews)...") | |
| upload_large_folder_with_backoff( | |
| api=api, | |
| folder_path=temp_dir, | |
| repo_id=REVIEW_METADATA_REPO, | |
| repo_type="dataset" | |
| ) | |
| print(f" β Batch upload complete for {agent_identifier}") | |
| return True | |
| finally: | |
| # Always clean up temp directory | |
| if os.path.exists(temp_dir): | |
| shutil.rmtree(temp_dir) | |
| except Exception as e: | |
| print(f" β Error saving review metadata: {str(e)}") | |
| import traceback | |
| traceback.print_exc() | |
| return False | |
| def load_agents_from_hf(): | |
| """ | |
| Load all agent metadata JSON files from HuggingFace dataset. | |
| The github_identifier is extracted from the filename (e.g., 'agent-name[bot].json' -> 'agent-name[bot]') | |
| """ | |
| try: | |
| api = HfApi() | |
| agents = [] | |
| # List all files in the repository | |
| files = list_repo_files_with_backoff(api=api, repo_id=AGENTS_REPO, repo_type="dataset") | |
| # Filter for JSON files only | |
| json_files = [f for f in files if f.endswith('.json')] | |
| print(f"Found {len(json_files)} agent files in {AGENTS_REPO}") | |
| # Download and parse each JSON file | |
| for json_file in json_files: | |
| try: | |
| file_path = hf_hub_download_with_backoff( | |
| repo_id=AGENTS_REPO, | |
| filename=json_file, | |
| repo_type="dataset" | |
| ) | |
| with open(file_path, 'r') as f: | |
| agent_data = json.load(f) | |
| # Only process agents with status == "public" | |
| if agent_data.get('status') != 'public': | |
| print(f"Skipping {json_file}: status is not 'public'") | |
| continue | |
| # Extract github_identifier from filename (remove .json extension) | |
| github_identifier = json_file.replace('.json', '') | |
| agent_data['github_identifier'] = github_identifier | |
| agents.append(agent_data) | |
| except Exception as e: | |
| print(f"Warning: Could not load {json_file}: {str(e)}") | |
| continue | |
| print(f"β Loaded {len(agents)} agents from HuggingFace") | |
| return agents | |
| except Exception as e: | |
| print(f"Could not load agents from HuggingFace: {str(e)}") | |
| return [] | |
| def load_review_metadata(): | |
| """ | |
| Load all review metadata from HuggingFace dataset within LEADERBOARD_TIME_FRAME_DAYS. | |
| Returns: | |
| List of dictionaries with 'agent_identifier' added to each review metadata. | |
| """ | |
| # Calculate cutoff date | |
| current_time = datetime.now(timezone.utc) | |
| cutoff_date = current_time - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS) | |
| try: | |
| api = HfApi() | |
| token = get_hf_token() | |
| # List all files in the repository | |
| files = list_repo_files_with_backoff(api=api, repo_id=REVIEW_METADATA_REPO, repo_type="dataset") | |
| # Filter for JSONL files matching pattern: [agent_identifier]/YYYY.MM.DD.jsonl | |
| time_frame_files = [] | |
| for f in files: | |
| if f.endswith('.jsonl'): | |
| parts = f.split('/') | |
| if len(parts) == 2: | |
| filename = parts[1] | |
| # Parse date from filename: YYYY.MM.DD.jsonl | |
| try: | |
| date_part = filename.replace('.jsonl', '') | |
| date_components = date_part.split('.') | |
| if len(date_components) == 3: | |
| file_year, file_month, file_day = map(int, date_components) | |
| file_date = datetime(file_year, file_month, file_day, tzinfo=timezone.utc) | |
| # Only include files within time frame | |
| if file_date >= cutoff_date: | |
| time_frame_files.append(f) | |
| except Exception: | |
| continue | |
| print(f"π₯ Loading review metadata from last {LEADERBOARD_TIME_FRAME_DAYS} days ({len(time_frame_files)} daily files)...") | |
| all_metadata = [] | |
| for filename in time_frame_files: | |
| try: | |
| # Extract agent_identifier from path | |
| parts = filename.split('/') | |
| if len(parts) != 2: | |
| continue | |
| agent_identifier = parts[0] | |
| file_path = hf_hub_download_with_backoff( | |
| repo_id=REVIEW_METADATA_REPO, | |
| filename=filename, | |
| repo_type="dataset", | |
| token=token | |
| ) | |
| day_metadata = load_jsonl(file_path) | |
| # Add agent_identifier to each review | |
| for review_meta in day_metadata: | |
| review_meta['agent_identifier'] = agent_identifier | |
| all_metadata.append(review_meta) | |
| except Exception as e: | |
| print(f" Warning: Could not load {filename}: {str(e)}") | |
| print(f"β Loaded {len(all_metadata)} total reviews from last {LEADERBOARD_TIME_FRAME_DAYS} days") | |
| return all_metadata | |
| except Exception as e: | |
| print(f"β Error loading review metadata: {str(e)}") | |
| return [] | |
| def get_pr_status_from_metadata(review_meta): | |
| """ | |
| Derive PR status from merged_at and closed_at fields. | |
| Returns: | |
| str: 'merged', 'closed', or 'open' | |
| """ | |
| merged_at = review_meta.get('merged_at') | |
| closed_at = review_meta.get('closed_at') | |
| if merged_at: | |
| return 'merged' | |
| elif closed_at: | |
| return 'closed' | |
| else: | |
| return 'open' | |
| def calculate_review_stats_from_metadata(metadata_list): | |
| """ | |
| Calculate statistics from a list of review metadata. | |
| Returns: | |
| Dictionary with review metrics (total_reviews, merged_prs, acceptance_rate, etc.) | |
| """ | |
| total_reviews = len(metadata_list) | |
| # Count merged PRs | |
| merged_prs = sum(1 for review_meta in metadata_list | |
| if get_pr_status_from_metadata(review_meta) == 'merged') | |
| # Count rejected PRs | |
| rejected_prs = sum(1 for review_meta in metadata_list | |
| if get_pr_status_from_metadata(review_meta) == 'closed') | |
| # Count pending PRs | |
| pending_prs = sum(1 for review_meta in metadata_list | |
| if get_pr_status_from_metadata(review_meta) == 'open') | |
| # Calculate acceptance rate (exclude pending PRs) | |
| completed_prs = merged_prs + rejected_prs | |
| acceptance_rate = (merged_prs / completed_prs * 100) if completed_prs > 0 else 0 | |
| return { | |
| 'total_reviews': total_reviews, | |
| 'merged_prs': merged_prs, | |
| 'pending_prs': pending_prs, | |
| 'acceptance_rate': round(acceptance_rate, 2), | |
| } | |
| def calculate_monthly_metrics_by_agent(): | |
| """ | |
| Calculate monthly metrics for all agents for visualization. | |
| Returns: | |
| dict: { | |
| 'agents': list of agent names, | |
| 'months': list of month labels (e.g., '2025-01'), | |
| 'data': { | |
| agent_name: { | |
| 'acceptance_rates': list of acceptance rates by month, | |
| 'total_reviews': list of review counts by month, | |
| 'merged_prs': list of merged PR counts by month, | |
| } | |
| } | |
| } | |
| """ | |
| # Load agents | |
| agents = load_agents_from_hf() | |
| # Create mapping from agent_identifier to agent_name | |
| identifier_to_name = {agent.get('github_identifier'): agent.get('name') for agent in agents if agent.get('github_identifier')} | |
| # Load all review metadata | |
| all_metadata = load_review_metadata() | |
| if not all_metadata: | |
| return {'agents': [], 'months': [], 'data': {}} | |
| # Group by agent and month | |
| agent_month_data = defaultdict(lambda: defaultdict(list)) | |
| for review_meta in all_metadata: | |
| agent_identifier = review_meta.get('agent_identifier') | |
| reviewed_at = review_meta.get('reviewed_at') | |
| if not agent_identifier or not reviewed_at: | |
| continue | |
| # Get agent_name from identifier | |
| agent_name = identifier_to_name.get(agent_identifier, agent_identifier) | |
| try: | |
| dt = datetime.fromisoformat(reviewed_at.replace('Z', '+00:00')) | |
| month_key = f"{dt.year}-{dt.month:02d}" | |
| agent_month_data[agent_name][month_key].append(review_meta) | |
| except Exception as e: | |
| print(f"Warning: Could not parse date '{reviewed_at}': {e}") | |
| continue | |
| # Get all unique months and sort them | |
| all_months = set() | |
| for agent_data in agent_month_data.values(): | |
| all_months.update(agent_data.keys()) | |
| months = sorted(list(all_months)) | |
| # Calculate metrics for each agent and month | |
| result_data = {} | |
| for agent_name, month_dict in agent_month_data.items(): | |
| acceptance_rates = [] | |
| total_reviews_list = [] | |
| merged_prs_list = [] | |
| for month in months: | |
| reviews_in_month = month_dict.get(month, []) | |
| # Count merged PRs | |
| merged_count = sum(1 for review in reviews_in_month | |
| if get_pr_status_from_metadata(review) == 'merged') | |
| # Count rejected PRs | |
| rejected_count = sum(1 for review in reviews_in_month | |
| if get_pr_status_from_metadata(review) == 'closed') | |
| # Total reviews | |
| total_count = len(reviews_in_month) | |
| # Calculate acceptance rate (exclude pending PRs) | |
| completed_count = merged_count + rejected_count | |
| acceptance_rate = (merged_count / completed_count * 100) if completed_count > 0 else None | |
| acceptance_rates.append(acceptance_rate) | |
| total_reviews_list.append(total_count) | |
| merged_prs_list.append(merged_count) | |
| result_data[agent_name] = { | |
| 'acceptance_rates': acceptance_rates, | |
| 'total_reviews': total_reviews_list, | |
| 'merged_prs': merged_prs_list, | |
| } | |
| agents_list = sorted(list(agent_month_data.keys())) | |
| return { | |
| 'agents': agents_list, | |
| 'months': months, | |
| 'data': result_data | |
| } | |
| def construct_leaderboard_from_metadata(): | |
| """ | |
| Construct leaderboard from stored review metadata. | |
| Returns: | |
| Dictionary of agent stats. | |
| """ | |
| print("\nπ Constructing leaderboard from review metadata...") | |
| # Load agents | |
| agents = load_agents_from_hf() | |
| if not agents: | |
| print("β οΈ No agents found") | |
| return {} | |
| print(f"β Loaded {len(agents)} agents") | |
| # Load all review metadata | |
| all_metadata = load_review_metadata() | |
| print(f"β Loaded {len(all_metadata)} review metadata entries") | |
| cache_dict = {} | |
| for agent in agents: | |
| identifier = agent.get('github_identifier') | |
| agent_name = agent.get('name', 'Unknown') | |
| # Filter metadata for this agent | |
| agent_metadata = [review for review in all_metadata if review.get("agent_identifier") == identifier] | |
| # Calculate stats | |
| stats = calculate_review_stats_from_metadata(agent_metadata) | |
| cache_dict[identifier] = { | |
| 'name': agent_name, | |
| 'name': agent_name, | |
| 'website': agent.get('website', 'N/A'), | |
| 'github_identifier': identifier, | |
| **stats | |
| } | |
| print(f"β Constructed cache with {len(cache_dict)} agent entries") | |
| return cache_dict | |
| def save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics): | |
| """ | |
| Save leaderboard data and monthly metrics to HuggingFace dataset as swe-review.json. | |
| Args: | |
| leaderboard_dict: Dictionary of agent stats from construct_leaderboard_from_metadata() | |
| monthly_metrics: Monthly metrics data from calculate_monthly_metrics_by_agent() | |
| Returns: | |
| bool: True if successful, False otherwise | |
| """ | |
| try: | |
| token = get_hf_token() | |
| if not token: | |
| raise Exception("No HuggingFace token found") | |
| api = HfApi(token=token) | |
| filename = "swe-review.json" | |
| # Combine leaderboard and monthly metrics | |
| combined_data = { | |
| 'last_updated': datetime.now(timezone.utc).isoformat(), | |
| 'leaderboard': leaderboard_dict, | |
| 'monthly_metrics': monthly_metrics, | |
| 'metadata': { | |
| 'leaderboard_time_frame_days': LEADERBOARD_TIME_FRAME_DAYS | |
| } | |
| } | |
| # Save locally first | |
| with open(filename, 'w') as f: | |
| json.dump(combined_data, f, indent=2) | |
| try: | |
| # Upload to HuggingFace | |
| upload_file_with_backoff( | |
| api=api, | |
| path_or_fileobj=filename, | |
| path_in_repo=filename, | |
| repo_id=LEADERBOARD_REPO, | |
| repo_type="dataset" | |
| ) | |
| print(f"β Saved leaderboard data to HuggingFace: {filename}") | |
| return True | |
| finally: | |
| # Always clean up local file | |
| if os.path.exists(filename): | |
| os.remove(filename) | |
| except Exception as e: | |
| print(f"β Error saving leaderboard data: {str(e)}") | |
| import traceback | |
| traceback.print_exc() | |
| return False | |
| # ============================================================================= | |
| # MAIN MINING FUNCTION | |
| # ============================================================================= | |
| def mine_all_agents(): | |
| """ | |
| Mine review metadata for all agents within LEADERBOARD_TIME_FRAME_DAYS and save to HuggingFace. | |
| Uses ONE BigQuery query for ALL agents (most efficient approach). | |
| """ | |
| # Load agent metadata from HuggingFace | |
| agents = load_agents_from_hf() | |
| if not agents: | |
| print("No agents found in HuggingFace dataset") | |
| return | |
| # Extract all identifiers | |
| identifiers = [agent['github_identifier'] for agent in agents if agent.get('github_identifier')] | |
| if not identifiers: | |
| print("No valid agent identifiers found") | |
| return | |
| print(f"\n{'='*80}") | |
| print(f"Starting review metadata mining for {len(identifiers)} agents") | |
| print(f"Time frame: Last {LEADERBOARD_TIME_FRAME_DAYS} days") | |
| print(f"Data source: BigQuery + GitHub Archive (BATCHED QUERIES)") | |
| print(f"{'='*80}\n") | |
| # Initialize BigQuery client | |
| try: | |
| client = get_bigquery_client() | |
| except Exception as e: | |
| print(f"β Failed to initialize BigQuery client: {str(e)}") | |
| return | |
| # Define time range: past LEADERBOARD_TIME_FRAME_DAYS (excluding today) | |
| current_time = datetime.now(timezone.utc) | |
| end_date = current_time.replace(hour=0, minute=0, second=0, microsecond=0) | |
| start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS) | |
| try: | |
| # Use batched approach for better performance | |
| # upload_immediately=True means each batch uploads to HuggingFace right after BigQuery completes | |
| all_metadata = fetch_all_pr_metadata_batched( | |
| client, identifiers, start_date, end_date, batch_size=50, upload_immediately=True | |
| ) | |
| # Calculate summary statistics | |
| total_prs = sum(len(metadata_list) for metadata_list in all_metadata.values()) | |
| agents_with_data = sum(1 for metadata_list in all_metadata.values() if metadata_list) | |
| print(f"\n{'='*80}") | |
| print(f"β BigQuery mining and upload complete!") | |
| print(f" Total agents: {len(agents)}") | |
| print(f" Agents with data: {agents_with_data}") | |
| print(f" Total PRs found: {total_prs}") | |
| print(f"{'='*80}\n") | |
| except Exception as e: | |
| print(f"β Error during BigQuery fetch: {str(e)}") | |
| import traceback | |
| traceback.print_exc() | |
| return | |
| # Construct and save leaderboard data | |
| print(f"\n{'='*80}") | |
| print(f"π Constructing and saving leaderboard data...") | |
| print(f"{'='*80}\n") | |
| try: | |
| # Construct leaderboard | |
| leaderboard_dict = construct_leaderboard_from_metadata() | |
| # Calculate monthly metrics | |
| print(f"\nπ Calculating monthly metrics...") | |
| monthly_metrics = calculate_monthly_metrics_by_agent() | |
| # Save to HuggingFace | |
| print(f"\nπΎ Saving leaderboard data to HuggingFace...") | |
| save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics) | |
| print(f"\n{'='*80}") | |
| print(f"β Leaderboard data saved successfully!") | |
| print(f" Leaderboard entries: {len(leaderboard_dict)}") | |
| print(f" Monthly data points: {len(monthly_metrics.get('months', []))} months") | |
| print(f" Saved to: {LEADERBOARD_REPO}/swe-review.json") | |
| print(f"{'='*80}\n") | |
| except Exception as e: | |
| print(f"\nβ Failed to construct/save leaderboard data: {str(e)}") | |
| import traceback | |
| traceback.print_exc() | |
| # ============================================================================= | |
| # ENTRY POINT | |
| # ============================================================================= | |
| if __name__ == "__main__": | |
| mine_all_agents() |