Spaces:
Running
Running
File size: 39,202 Bytes
3dcd27a 3d31827 3dcd27a 3d31827 3dcd27a f1f4f5c 3dcd27a 3d31827 f1f4f5c 3dcd27a d2e40c0 3dcd27a b110dcd 94818e2 3dcd27a dcdb282 3d31827 3bf98ae f1f4f5c 87c2ab6 f1f4f5c 87c2ab6 f1f4f5c 87c2ab6 f1f4f5c 87c2ab6 f1f4f5c 87c2ab6 f1f4f5c 87c2ab6 f1f4f5c 87c2ab6 f1f4f5c 87c2ab6 f1f4f5c 3d31827 3bf98ae 3d31827 74e2c25 3d31827 3bf98ae 3d31827 74e2c25 3d31827 3bf98ae 3d31827 3dcd27a 3d31827 74e2c25 3d31827 74e2c25 3d31827 3dcd27a c0eda81 3dcd27a c0eda81 74e2c25 c0eda81 3d31827 c0eda81 3dcd27a c0eda81 3d31827 c0eda81 3d31827 c0eda81 3d31827 c0eda81 3d31827 3dcd27a c0eda81 3dcd27a 0fd77fe 313696f 0fd77fe 313696f 0fd77fe 313696f 0fd77fe 313696f c0eda81 3dcd27a 313696f c0eda81 3d31827 c0eda81 3d31827 c0eda81 3d31827 c0eda81 3dcd27a 3d31827 c0eda81 5750bb3 c0eda81 94818e2 c0eda81 b9a2130 94818e2 b9a2130 94818e2 b9a2130 c0eda81 b9a2130 c0eda81 3d31827 b9a2130 c0eda81 3d31827 c0eda81 3d31827 c0eda81 dcdb282 c0eda81 dcdb282 c0eda81 dcdb282 c0eda81 3d31827 dcdb282 c0eda81 3d31827 c0eda81 3d31827 3dcd27a c0eda81 3dcd27a c0eda81 8f68ab4 3dcd27a 8f68ab4 3dcd27a 94818e2 3dcd27a c0eda81 3dcd27a c0eda81 8f68ab4 c0eda81 8f68ab4 c0eda81 8f68ab4 4a42d8c f1f4f5c 8f68ab4 4a42d8c 8f68ab4 3dcd27a c0eda81 8f68ab4 3dcd27a 3d31827 d454e42 3d31827 3dcd27a d454e42 3dcd27a f1f4f5c d454e42 3dcd27a d454e42 3dcd27a d454e42 3dcd27a f1f4f5c 3dcd27a d454e42 3dcd27a aa66e07 3d31827 aa66e07 3dcd27a d454e42 3dcd27a d454e42 3dcd27a d454e42 3dcd27a d454e42 f1f4f5c d454e42 f1f4f5c d454e42 f1f4f5c d454e42 f1f4f5c d454e42 3dcd27a c0eda81 3dcd27a c0eda81 3dcd27a c0eda81 3dcd27a 313696f 3d31827 c0eda81 3d31827 c0eda81 3d31827 c0eda81 313696f 0fd77fe 313696f 0fd77fe c0eda81 0fd77fe c0eda81 3d31827 3dcd27a d454e42 3dcd27a c0eda81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 |
"""
Minimalist Review Metadata Mining Script
Mines PR review metadata from GitHub Archive via BigQuery and saves to HuggingFace dataset.
"""
import json
import os
import tempfile
from datetime import datetime, timezone, timedelta
from collections import defaultdict
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.errors import HfHubHTTPError
from dotenv import load_dotenv
from google.cloud import bigquery
import backoff
# Load environment variables
load_dotenv()
# =============================================================================
# CONFIGURATION
# =============================================================================
AGENTS_REPO = "SWE-Arena/agent_metadata"
REVIEW_METADATA_REPO = "SWE-Arena/review_metadata"
LEADERBOARD_REPO = "SWE-Arena/leaderboard_metadata" # HuggingFace dataset for leaderboard data
LEADERBOARD_TIME_FRAME_DAYS = 180 # Time frame for leaderboard
# =============================================================================
# UTILITY FUNCTIONS
# =============================================================================
def load_jsonl(filename):
"""Load JSONL file and return list of dictionaries."""
if not os.path.exists(filename):
return []
data = []
with open(filename, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if line:
try:
data.append(json.loads(line))
except json.JSONDecodeError as e:
print(f"Warning: Skipping invalid JSON line: {e}")
return data
def save_jsonl(filename, data):
"""Save list of dictionaries to JSONL file."""
with open(filename, 'w', encoding='utf-8') as f:
for item in data:
f.write(json.dumps(item) + '\n')
def normalize_date_format(date_string):
"""
Convert date strings to standardized ISO 8601 format with Z suffix.
Handles both 'T' and space-separated datetime formats (including newlines).
Examples:
- 2025-10-15T23:23:47.983068 -> 2025-10-15T23:23:47Z
- 2025-06-17 21:21:07+00 -> 2025-06-17T21:21:07Z
"""
if not date_string or date_string == 'N/A':
return 'N/A'
try:
import re
# Remove all whitespace (spaces, newlines, tabs) and replace with single space
date_string = re.sub(r'\s+', ' ', date_string.strip())
# Replace space with 'T' for ISO format compatibility
date_string = date_string.replace(' ', 'T')
# Fix incomplete timezone offset (+00 or -00 -> +00:00 or -00:00)
# Check if timezone offset exists and is incomplete
if len(date_string) >= 3:
if date_string[-3:-2] in ('+', '-') and ':' not in date_string[-3:]:
date_string = date_string + ':00'
# Parse the date string (handles both with and without microseconds)
dt = datetime.fromisoformat(date_string.replace('Z', '+00:00'))
# Convert to standardized format
return dt.strftime('%Y-%m-%dT%H:%M:%SZ')
except Exception as e:
print(f"Warning: Could not parse date '{date_string}': {e}")
return date_string
def get_hf_token():
"""Get HuggingFace token from environment variables."""
token = os.getenv('HF_TOKEN')
if not token:
print("Warning: HF_TOKEN not found in environment variables")
return token
# =============================================================================
# HUGGINGFACE API WRAPPERS WITH BACKOFF
# =============================================================================
def is_rate_limit_error(e):
"""Check if exception is a HuggingFace rate limit error (429)."""
if isinstance(e, HfHubHTTPError):
return e.response.status_code == 429
return False
@backoff.on_exception(
backoff.expo,
HfHubHTTPError,
max_tries=8,
base=300,
max_value=3600,
giveup=lambda e: not is_rate_limit_error(e),
on_backoff=lambda details: print(
f"β³ Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/8..."
)
)
def upload_large_folder_with_backoff(api, **kwargs):
"""Wrapper for api.upload_large_folder() with exponential backoff for rate limits."""
return api.upload_large_folder(**kwargs)
@backoff.on_exception(
backoff.expo,
HfHubHTTPError,
max_tries=8,
base=300,
max_value=3600,
giveup=lambda e: not is_rate_limit_error(e),
on_backoff=lambda details: print(
f"β³ Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/8..."
)
)
def list_repo_files_with_backoff(api, **kwargs):
"""Wrapper for api.list_repo_files() with exponential backoff for rate limits."""
return api.list_repo_files(**kwargs)
@backoff.on_exception(
backoff.expo,
HfHubHTTPError,
max_tries=8,
base=300,
max_value=3600,
giveup=lambda e: not is_rate_limit_error(e),
on_backoff=lambda details: print(
f"β³ Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/8..."
)
)
def hf_hub_download_with_backoff(**kwargs):
"""Wrapper for hf_hub_download() with exponential backoff for rate limits."""
return hf_hub_download(**kwargs)
@backoff.on_exception(
backoff.expo,
HfHubHTTPError,
max_tries=8,
base=300,
max_value=3600,
giveup=lambda e: not is_rate_limit_error(e),
on_backoff=lambda details: print(
f"β³ Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/8..."
)
)
def upload_file_with_backoff(api, **kwargs):
"""Wrapper for api.upload_file() with exponential backoff for rate limits."""
return api.upload_file(**kwargs)
def get_bigquery_client():
"""
Initialize BigQuery client using credentials from environment variable.
Expects GOOGLE_APPLICATION_CREDENTIALS_JSON environment variable containing
the service account JSON credentials as a string.
"""
# Get the JSON content from environment variable
creds_json = os.environ.get('GOOGLE_APPLICATION_CREDENTIALS_JSON')
if creds_json:
# Create a temporary file to store credentials
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.json') as temp_file:
temp_file.write(creds_json)
temp_path = temp_file.name
# Set environment variable to point to temp file
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = temp_path
# Initialize BigQuery client
client = bigquery.Client()
# Clean up temp file
os.unlink(temp_path)
return client
else:
raise ValueError("GOOGLE_APPLICATION_CREDENTIALS_JSON not found in environment")
def generate_table_union_statements(start_date, end_date):
"""
Generate UNION ALL statements for githubarchive.day tables in date range.
Args:
start_date: Start datetime
end_date: End datetime
Returns:
String with UNION ALL SELECT statements for all tables in range
"""
table_names = []
current_date = start_date
while current_date < end_date:
table_name = f"`githubarchive.day.{current_date.strftime('%Y%m%d')}`"
table_names.append(table_name)
current_date += timedelta(days=1)
# Create UNION ALL chain
union_parts = [f"SELECT * FROM {table}" for table in table_names]
return " UNION ALL ".join(union_parts)
# =============================================================================
# BIGQUERY FUNCTIONS
# =============================================================================
def fetch_all_pr_metadata_batched(client, identifiers, start_date, end_date, batch_size=50, upload_immediately=True):
"""
Fetch PR review metadata for ALL agents using BATCHED BigQuery queries.
Splits agents into smaller batches to avoid performance issues with large queries.
Args:
client: BigQuery client instance
identifiers: List of GitHub usernames/bot identifiers
start_date: Start datetime (timezone-aware)
end_date: End datetime (timezone-aware)
batch_size: Number of agents to process per batch (default: 50)
upload_immediately: If True, upload each batch to HuggingFace immediately after processing (default: True)
Returns:
Dictionary mapping agent identifier to list of PR metadata (same format as single query)
"""
print(f"\nπ Using BATCHED approach: {len(identifiers)} agents in batches of {batch_size}")
# Log upload mode
if upload_immediately:
print(f" π€ Upload mode: IMMEDIATE (upload after each batch)")
else:
print(f" π€ Upload mode: DEFERRED (upload after all batches complete)")
# Split identifiers into batches
batches = [identifiers[i:i + batch_size] for i in range(0, len(identifiers), batch_size)]
total_batches = len(batches)
print(f" Total batches: {total_batches}")
# Collect results from all batches
all_metadata = {}
successful_batches = 0
failed_batches = 0
for batch_num, batch_identifiers in enumerate(batches, 1):
print(f"\nπ¦ Processing batch {batch_num}/{total_batches} ({len(batch_identifiers)} agents)...")
try:
# Query this batch
batch_results = fetch_all_pr_metadata_single_query(
client, batch_identifiers, start_date, end_date
)
# Merge results
for identifier, metadata_list in batch_results.items():
if identifier in all_metadata:
all_metadata[identifier].extend(metadata_list)
else:
all_metadata[identifier] = metadata_list
successful_batches += 1
print(f" β Batch {batch_num}/{total_batches} complete: {len(batch_results)} agents processed")
# Upload immediately after this batch if enabled
if upload_immediately and batch_results:
print(f"\n π€ Uploading batch {batch_num}/{total_batches} results to HuggingFace...")
upload_success = 0
upload_errors = 0
for identifier, metadata_list in batch_results.items():
if metadata_list:
if save_review_metadata_to_hf(metadata_list, identifier):
upload_success += 1
else:
upload_errors += 1
print(f" β Batch {batch_num}/{total_batches} upload complete ({upload_success} agents uploaded, {upload_errors} errors)")
except Exception as e:
failed_batches += 1
print(f" β Batch {batch_num}/{total_batches} failed: {str(e)}")
print(f" Continuing with remaining batches...")
continue
print(f"\nπ Batching Summary:")
print(f" Total batches: {total_batches}")
print(f" Successful: {successful_batches}")
print(f" Failed: {failed_batches}")
print(f" Total agents with data: {len(all_metadata)}")
return all_metadata
def fetch_all_pr_metadata_single_query(client, identifiers, start_date, end_date):
"""
Fetch PR review metadata for a BATCH of agents using ONE comprehensive BigQuery query.
NOTE: This function is designed for smaller batches (~100 agents).
For large numbers of agents, use fetch_all_pr_metadata_batched() instead.
This query combines:
1. Review events (PullRequestReviewEvent) for all agents
2. PR status (PullRequestEvent with action='closed')
Args:
client: BigQuery client instance
identifiers: List of GitHub usernames/bot identifiers
start_date: Start datetime (timezone-aware)
end_date: End datetime (timezone-aware)
Returns:
Dictionary mapping agent identifier to list of PR metadata:
{
'agent-identifier': [
{
'url': PR URL,
'reviewed_at': Review timestamp,
'merged_at': Merge timestamp (if merged, else None),
'closed_at': Close timestamp (if closed, else None)
},
...
],
...
}
"""
print(f"\nπ Querying BigQuery for ALL {len(identifiers)} agents in ONE QUERY")
print(f" Time range: {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}")
# Generate table UNION statements for review period
review_tables = generate_table_union_statements(start_date, end_date)
# Generate table UNION statements for PR status (use same lookback as reviews)
status_start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
status_tables = generate_table_union_statements(status_start_date, end_date)
# Build identifier list for IN clause
identifier_list = ', '.join([f"'{id}'" for id in identifiers])
# Build comprehensive query with CTEs
query = f"""
WITH review_events AS (
-- Get all review events for ALL agents
SELECT
JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') as url,
COALESCE(
JSON_EXTRACT_SCALAR(payload, '$.review.submitted_at'),
CAST(created_at AS STRING)
) as reviewed_at,
actor.login as reviewer,
repo.name as repo_name,
CAST(JSON_EXTRACT_SCALAR(payload, '$.pull_request.number') AS INT64) as pr_number
FROM (
{review_tables}
)
WHERE
type = 'PullRequestReviewEvent'
AND actor.login IN ({identifier_list})
AND JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') IS NOT NULL
UNION ALL
-- Get PR comments (IssueCommentEvent on PRs)
SELECT
JSON_EXTRACT_SCALAR(payload, '$.issue.html_url') as url,
CAST(created_at AS STRING) as reviewed_at,
actor.login as reviewer,
repo.name as repo_name,
CAST(JSON_EXTRACT_SCALAR(payload, '$.issue.number') AS INT64) as pr_number
FROM (
{review_tables}
)
WHERE
type = 'IssueCommentEvent'
AND actor.login IN ({identifier_list})
AND JSON_EXTRACT_SCALAR(payload, '$.issue.pull_request.url') IS NOT NULL
AND JSON_EXTRACT_SCALAR(payload, '$.issue.html_url') IS NOT NULL
UNION ALL
-- Get review comments (PullRequestReviewCommentEvent)
SELECT
JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') as url,
CAST(created_at AS STRING) as reviewed_at,
actor.login as reviewer,
repo.name as repo_name,
CAST(JSON_EXTRACT_SCALAR(payload, '$.pull_request.number') AS INT64) as pr_number
FROM (
{review_tables}
)
WHERE
type = 'PullRequestReviewCommentEvent'
AND actor.login IN ({identifier_list})
AND JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') IS NOT NULL
),
pr_status AS (
-- Get merge/close status for those PRs
SELECT
JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') as url,
CAST(JSON_EXTRACT_SCALAR(payload, '$.pull_request.merged') AS BOOL) as is_merged,
JSON_EXTRACT_SCALAR(payload, '$.pull_request.merged_at') as merged_at,
JSON_EXTRACT_SCALAR(payload, '$.pull_request.closed_at') as closed_at,
created_at
FROM (
{status_tables}
)
WHERE
type = 'PullRequestEvent'
AND JSON_EXTRACT_SCALAR(payload, '$.action') = 'closed'
AND JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') IS NOT NULL
AND JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') IN (
SELECT DISTINCT url FROM review_events
)
QUALIFY ROW_NUMBER() OVER (PARTITION BY url ORDER BY created_at DESC) = 1
)
-- Join review events with PR status
SELECT DISTINCT
re.reviewer,
re.url,
re.reviewed_at,
ps.merged_at,
ps.closed_at
FROM review_events re
LEFT JOIN pr_status ps ON re.url = ps.url
ORDER BY re.reviewer, re.reviewed_at DESC
"""
# Calculate number of days for reporting
review_days = (end_date - start_date).days
status_days = (end_date - status_start_date).days
print(f" Querying {review_days} days for reviews, {status_days} days for PR status...")
print(f" Agents: {', '.join(identifiers[:5])}{'...' if len(identifiers) > 5 else ''}")
try:
query_job = client.query(query)
results = list(query_job.result())
print(f" β Found {len(results)} total PR review records across all agents")
# Group results by agent
metadata_by_agent = defaultdict(list)
for row in results:
reviewer = row.reviewer
# Convert datetime objects to ISO strings and normalize
reviewed_at = row.reviewed_at
if hasattr(reviewed_at, 'isoformat'):
reviewed_at = reviewed_at.isoformat()
reviewed_at = normalize_date_format(reviewed_at) if reviewed_at else None
merged_at = row.merged_at
if hasattr(merged_at, 'isoformat'):
merged_at = merged_at.isoformat()
merged_at = normalize_date_format(merged_at) if merged_at else None
closed_at = row.closed_at
if hasattr(closed_at, 'isoformat'):
closed_at = closed_at.isoformat()
closed_at = normalize_date_format(closed_at) if closed_at else None
metadata_by_agent[reviewer].append({
'url': row.url,
'reviewed_at': reviewed_at,
'merged_at': merged_at,
'closed_at': closed_at,
})
# Print breakdown by agent
print(f"\n π Results breakdown by agent:")
for identifier in identifiers:
count = len(metadata_by_agent.get(identifier, []))
if count > 0:
metadata = metadata_by_agent[identifier]
merged_count = sum(1 for m in metadata if m['merged_at'] is not None)
closed_count = sum(1 for m in metadata if m['closed_at'] is not None and m['merged_at'] is None)
open_count = count - merged_count - closed_count
print(f" {identifier}: {count} PRs ({merged_count} merged, {closed_count} closed, {open_count} open)")
# Convert defaultdict to regular dict
return dict(metadata_by_agent)
except Exception as e:
print(f" β BigQuery error: {str(e)}")
import traceback
traceback.print_exc()
return {}
# =============================================================================
# HUGGINGFACE STORAGE FUNCTIONS
# =============================================================================
def group_metadata_by_date(metadata_list):
"""
Group review metadata by date (year.month.day) for daily storage.
Returns dict: {(year, month, day): [metadata_list]}
"""
grouped = defaultdict(list)
for review_meta in metadata_list:
reviewed_at = review_meta.get('reviewed_at')
if not reviewed_at:
continue
try:
dt = datetime.fromisoformat(reviewed_at.replace('Z', '+00:00'))
key = (dt.year, dt.month, dt.day)
grouped[key].append(review_meta)
except Exception as e:
print(f"Warning: Could not parse date '{reviewed_at}': {e}")
return dict(grouped)
def save_review_metadata_to_hf(metadata_list, agent_identifier):
"""
Save review metadata to HuggingFace dataset, organized by [agent_identifier]/YYYY.MM.DD.jsonl.
Each file is stored in the agent's folder and named YYYY.MM.DD.jsonl for that day's reviews.
This function OVERWRITES existing files completely with fresh data from BigQuery.
Uses batch upload to avoid rate limit (uploads entire folder in single commit).
Args:
metadata_list: List of review metadata dictionaries
agent_identifier: GitHub identifier of the agent (used as folder name)
"""
import shutil
try:
token = get_hf_token()
if not token:
raise Exception("No HuggingFace token found")
api = HfApi(token=token)
# Group by date (year, month, day)
grouped = group_metadata_by_date(metadata_list)
if not grouped:
print(f" No valid metadata to save for {agent_identifier}")
return False
# Create a temporary directory for batch upload
temp_dir = tempfile.mkdtemp()
agent_folder = os.path.join(temp_dir, agent_identifier)
os.makedirs(agent_folder, exist_ok=True)
try:
print(f" π¦ Preparing batch upload for {len(grouped)} daily files...")
# Process each daily file
for (review_year, month, day), day_metadata in grouped.items():
filename = f"{agent_identifier}/{review_year}.{month:02d}.{day:02d}.jsonl"
local_filename = os.path.join(agent_folder, f"{review_year}.{month:02d}.{day:02d}.jsonl")
# Sort by reviewed_at for better organization
day_metadata.sort(key=lambda x: x.get('reviewed_at', ''), reverse=True)
# Save to temp directory (complete overwrite, no merging)
save_jsonl(local_filename, day_metadata)
print(f" Prepared {len(day_metadata)} reviews for {filename}")
# Upload entire folder using upload_large_folder (optimized for large files)
# Note: upload_large_folder creates multiple commits automatically and doesn't support custom commit_message
print(f" π€ Uploading {len(grouped)} files ({len(metadata_list)} total reviews)...")
upload_large_folder_with_backoff(
api=api,
folder_path=temp_dir,
repo_id=REVIEW_METADATA_REPO,
repo_type="dataset"
)
print(f" β Batch upload complete for {agent_identifier}")
return True
finally:
# Always clean up temp directory
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
except Exception as e:
print(f" β Error saving review metadata: {str(e)}")
import traceback
traceback.print_exc()
return False
def load_agents_from_hf():
"""
Load all agent metadata JSON files from HuggingFace dataset.
The github_identifier is extracted from the filename (e.g., 'agent-name[bot].json' -> 'agent-name[bot]')
"""
try:
api = HfApi()
agents = []
# List all files in the repository
files = list_repo_files_with_backoff(api=api, repo_id=AGENTS_REPO, repo_type="dataset")
# Filter for JSON files only
json_files = [f for f in files if f.endswith('.json')]
print(f"Found {len(json_files)} agent files in {AGENTS_REPO}")
# Download and parse each JSON file
for json_file in json_files:
try:
file_path = hf_hub_download_with_backoff(
repo_id=AGENTS_REPO,
filename=json_file,
repo_type="dataset"
)
with open(file_path, 'r') as f:
agent_data = json.load(f)
# Only process agents with status == "public"
if agent_data.get('status') != 'public':
print(f"Skipping {json_file}: status is not 'public'")
continue
# Extract github_identifier from filename (remove .json extension)
github_identifier = json_file.replace('.json', '')
agent_data['github_identifier'] = github_identifier
agents.append(agent_data)
except Exception as e:
print(f"Warning: Could not load {json_file}: {str(e)}")
continue
print(f"β Loaded {len(agents)} agents from HuggingFace")
return agents
except Exception as e:
print(f"Could not load agents from HuggingFace: {str(e)}")
return []
def load_review_metadata():
"""
Load all review metadata from HuggingFace dataset within LEADERBOARD_TIME_FRAME_DAYS.
Returns:
List of dictionaries with 'agent_identifier' added to each review metadata.
"""
# Calculate cutoff date
current_time = datetime.now(timezone.utc)
cutoff_date = current_time - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
try:
api = HfApi()
token = get_hf_token()
# List all files in the repository
files = list_repo_files_with_backoff(api=api, repo_id=REVIEW_METADATA_REPO, repo_type="dataset")
# Filter for JSONL files matching pattern: [agent_identifier]/YYYY.MM.DD.jsonl
time_frame_files = []
for f in files:
if f.endswith('.jsonl'):
parts = f.split('/')
if len(parts) == 2:
filename = parts[1]
# Parse date from filename: YYYY.MM.DD.jsonl
try:
date_part = filename.replace('.jsonl', '')
date_components = date_part.split('.')
if len(date_components) == 3:
file_year, file_month, file_day = map(int, date_components)
file_date = datetime(file_year, file_month, file_day, tzinfo=timezone.utc)
# Only include files within time frame
if file_date >= cutoff_date:
time_frame_files.append(f)
except Exception:
continue
print(f"π₯ Loading review metadata from last {LEADERBOARD_TIME_FRAME_DAYS} days ({len(time_frame_files)} daily files)...")
all_metadata = []
for filename in time_frame_files:
try:
# Extract agent_identifier from path
parts = filename.split('/')
if len(parts) != 2:
continue
agent_identifier = parts[0]
file_path = hf_hub_download_with_backoff(
repo_id=REVIEW_METADATA_REPO,
filename=filename,
repo_type="dataset",
token=token
)
day_metadata = load_jsonl(file_path)
# Add agent_identifier to each review
for review_meta in day_metadata:
review_meta['agent_identifier'] = agent_identifier
all_metadata.append(review_meta)
except Exception as e:
print(f" Warning: Could not load {filename}: {str(e)}")
print(f"β Loaded {len(all_metadata)} total reviews from last {LEADERBOARD_TIME_FRAME_DAYS} days")
return all_metadata
except Exception as e:
print(f"β Error loading review metadata: {str(e)}")
return []
def get_pr_status_from_metadata(review_meta):
"""
Derive PR status from merged_at and closed_at fields.
Returns:
str: 'merged', 'closed', or 'open'
"""
merged_at = review_meta.get('merged_at')
closed_at = review_meta.get('closed_at')
if merged_at:
return 'merged'
elif closed_at:
return 'closed'
else:
return 'open'
def calculate_review_stats_from_metadata(metadata_list):
"""
Calculate statistics from a list of review metadata.
Returns:
Dictionary with review metrics (total_reviews, merged_prs, acceptance_rate, etc.)
"""
total_reviews = len(metadata_list)
# Count merged PRs
merged_prs = sum(1 for review_meta in metadata_list
if get_pr_status_from_metadata(review_meta) == 'merged')
# Count rejected PRs
rejected_prs = sum(1 for review_meta in metadata_list
if get_pr_status_from_metadata(review_meta) == 'closed')
# Count pending PRs
pending_prs = sum(1 for review_meta in metadata_list
if get_pr_status_from_metadata(review_meta) == 'open')
# Calculate acceptance rate (exclude pending PRs)
completed_prs = merged_prs + rejected_prs
acceptance_rate = (merged_prs / completed_prs * 100) if completed_prs > 0 else 0
return {
'total_reviews': total_reviews,
'merged_prs': merged_prs,
'pending_prs': pending_prs,
'acceptance_rate': round(acceptance_rate, 2),
}
def calculate_monthly_metrics_by_agent():
"""
Calculate monthly metrics for all agents for visualization.
Returns:
dict: {
'agents': list of agent names,
'months': list of month labels (e.g., '2025-01'),
'data': {
agent_name: {
'acceptance_rates': list of acceptance rates by month,
'total_reviews': list of review counts by month,
'merged_prs': list of merged PR counts by month,
}
}
}
"""
# Load agents
agents = load_agents_from_hf()
# Create mapping from agent_identifier to agent_name
identifier_to_name = {agent.get('github_identifier'): agent.get('name') for agent in agents if agent.get('github_identifier')}
# Load all review metadata
all_metadata = load_review_metadata()
if not all_metadata:
return {'agents': [], 'months': [], 'data': {}}
# Group by agent and month
agent_month_data = defaultdict(lambda: defaultdict(list))
for review_meta in all_metadata:
agent_identifier = review_meta.get('agent_identifier')
reviewed_at = review_meta.get('reviewed_at')
if not agent_identifier or not reviewed_at:
continue
# Get agent_name from identifier
agent_name = identifier_to_name.get(agent_identifier, agent_identifier)
try:
dt = datetime.fromisoformat(reviewed_at.replace('Z', '+00:00'))
month_key = f"{dt.year}-{dt.month:02d}"
agent_month_data[agent_name][month_key].append(review_meta)
except Exception as e:
print(f"Warning: Could not parse date '{reviewed_at}': {e}")
continue
# Get all unique months and sort them
all_months = set()
for agent_data in agent_month_data.values():
all_months.update(agent_data.keys())
months = sorted(list(all_months))
# Calculate metrics for each agent and month
result_data = {}
for agent_name, month_dict in agent_month_data.items():
acceptance_rates = []
total_reviews_list = []
merged_prs_list = []
for month in months:
reviews_in_month = month_dict.get(month, [])
# Count merged PRs
merged_count = sum(1 for review in reviews_in_month
if get_pr_status_from_metadata(review) == 'merged')
# Count rejected PRs
rejected_count = sum(1 for review in reviews_in_month
if get_pr_status_from_metadata(review) == 'closed')
# Total reviews
total_count = len(reviews_in_month)
# Calculate acceptance rate (exclude pending PRs)
completed_count = merged_count + rejected_count
acceptance_rate = (merged_count / completed_count * 100) if completed_count > 0 else None
acceptance_rates.append(acceptance_rate)
total_reviews_list.append(total_count)
merged_prs_list.append(merged_count)
result_data[agent_name] = {
'acceptance_rates': acceptance_rates,
'total_reviews': total_reviews_list,
'merged_prs': merged_prs_list,
}
agents_list = sorted(list(agent_month_data.keys()))
return {
'agents': agents_list,
'months': months,
'data': result_data
}
def construct_leaderboard_from_metadata():
"""
Construct leaderboard from stored review metadata.
Returns:
Dictionary of agent stats.
"""
print("\nπ Constructing leaderboard from review metadata...")
# Load agents
agents = load_agents_from_hf()
if not agents:
print("β οΈ No agents found")
return {}
print(f"β Loaded {len(agents)} agents")
# Load all review metadata
all_metadata = load_review_metadata()
print(f"β Loaded {len(all_metadata)} review metadata entries")
cache_dict = {}
for agent in agents:
identifier = agent.get('github_identifier')
agent_name = agent.get('name', 'Unknown')
# Filter metadata for this agent
agent_metadata = [review for review in all_metadata if review.get("agent_identifier") == identifier]
# Calculate stats
stats = calculate_review_stats_from_metadata(agent_metadata)
cache_dict[identifier] = {
'name': agent_name,
'name': agent_name,
'website': agent.get('website', 'N/A'),
'github_identifier': identifier,
**stats
}
print(f"β Constructed cache with {len(cache_dict)} agent entries")
return cache_dict
def save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics):
"""
Save leaderboard data and monthly metrics to HuggingFace dataset as swe-review.json.
Args:
leaderboard_dict: Dictionary of agent stats from construct_leaderboard_from_metadata()
monthly_metrics: Monthly metrics data from calculate_monthly_metrics_by_agent()
Returns:
bool: True if successful, False otherwise
"""
try:
token = get_hf_token()
if not token:
raise Exception("No HuggingFace token found")
api = HfApi(token=token)
filename = "swe-review.json"
# Combine leaderboard and monthly metrics
combined_data = {
'last_updated': datetime.now(timezone.utc).isoformat(),
'leaderboard': leaderboard_dict,
'monthly_metrics': monthly_metrics,
'metadata': {
'leaderboard_time_frame_days': LEADERBOARD_TIME_FRAME_DAYS
}
}
# Save locally first
with open(filename, 'w') as f:
json.dump(combined_data, f, indent=2)
try:
# Upload to HuggingFace
upload_file_with_backoff(
api=api,
path_or_fileobj=filename,
path_in_repo=filename,
repo_id=LEADERBOARD_REPO,
repo_type="dataset"
)
print(f"β Saved leaderboard data to HuggingFace: {filename}")
return True
finally:
# Always clean up local file
if os.path.exists(filename):
os.remove(filename)
except Exception as e:
print(f"β Error saving leaderboard data: {str(e)}")
import traceback
traceback.print_exc()
return False
# =============================================================================
# MAIN MINING FUNCTION
# =============================================================================
def mine_all_agents():
"""
Mine review metadata for all agents within LEADERBOARD_TIME_FRAME_DAYS and save to HuggingFace.
Uses ONE BigQuery query for ALL agents (most efficient approach).
"""
# Load agent metadata from HuggingFace
agents = load_agents_from_hf()
if not agents:
print("No agents found in HuggingFace dataset")
return
# Extract all identifiers
identifiers = [agent['github_identifier'] for agent in agents if agent.get('github_identifier')]
if not identifiers:
print("No valid agent identifiers found")
return
print(f"\n{'='*80}")
print(f"Starting review metadata mining for {len(identifiers)} agents")
print(f"Time frame: Last {LEADERBOARD_TIME_FRAME_DAYS} days")
print(f"Data source: BigQuery + GitHub Archive (BATCHED QUERIES)")
print(f"{'='*80}\n")
# Initialize BigQuery client
try:
client = get_bigquery_client()
except Exception as e:
print(f"β Failed to initialize BigQuery client: {str(e)}")
return
# Define time range: past LEADERBOARD_TIME_FRAME_DAYS (excluding today)
current_time = datetime.now(timezone.utc)
end_date = current_time.replace(hour=0, minute=0, second=0, microsecond=0)
start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
try:
# Use batched approach for better performance
# upload_immediately=True means each batch uploads to HuggingFace right after BigQuery completes
all_metadata = fetch_all_pr_metadata_batched(
client, identifiers, start_date, end_date, batch_size=50, upload_immediately=True
)
# Calculate summary statistics
total_prs = sum(len(metadata_list) for metadata_list in all_metadata.values())
agents_with_data = sum(1 for metadata_list in all_metadata.values() if metadata_list)
print(f"\n{'='*80}")
print(f"β
BigQuery mining and upload complete!")
print(f" Total agents: {len(agents)}")
print(f" Agents with data: {agents_with_data}")
print(f" Total PRs found: {total_prs}")
print(f"{'='*80}\n")
except Exception as e:
print(f"β Error during BigQuery fetch: {str(e)}")
import traceback
traceback.print_exc()
return
# Construct and save leaderboard data
print(f"\n{'='*80}")
print(f"π Constructing and saving leaderboard data...")
print(f"{'='*80}\n")
try:
# Construct leaderboard
leaderboard_dict = construct_leaderboard_from_metadata()
# Calculate monthly metrics
print(f"\nπ Calculating monthly metrics...")
monthly_metrics = calculate_monthly_metrics_by_agent()
# Save to HuggingFace
print(f"\nπΎ Saving leaderboard data to HuggingFace...")
save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics)
print(f"\n{'='*80}")
print(f"β
Leaderboard data saved successfully!")
print(f" Leaderboard entries: {len(leaderboard_dict)}")
print(f" Monthly data points: {len(monthly_metrics.get('months', []))} months")
print(f" Saved to: {LEADERBOARD_REPO}/swe-review.json")
print(f"{'='*80}\n")
except Exception as e:
print(f"\nβ Failed to construct/save leaderboard data: {str(e)}")
import traceback
traceback.print_exc()
# =============================================================================
# ENTRY POINT
# =============================================================================
if __name__ == "__main__":
mine_all_agents() |