SWE-Review / app.py
zhiminy's picture
add time
87c2ab6
raw
history blame
98.7 kB
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter
import json
import os
import time
import tempfile
import requests
from datetime import datetime, timezone, timedelta
from collections import defaultdict
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.errors import HfHubHTTPError
from datasets import load_dataset, Dataset
import threading
import backoff
from dotenv import load_dotenv
import pandas as pd
import random
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.triggers.cron import CronTrigger
from google.cloud import bigquery
# Load environment variables
load_dotenv()
# =============================================================================
# CONFIGURATION
# =============================================================================
AGENTS_REPO = "SWE-Arena/agent_metadata" # HuggingFace dataset for agent metadata
REVIEW_METADATA_REPO = "SWE-Arena/review_metadata" # HuggingFace dataset for review metadata
LEADERBOARD_REPO = "SWE-Arena/leaderboard_metadata" # HuggingFace dataset for leaderboard data
LEADERBOARD_TIME_FRAME_DAYS = 180 # Time frame for constructing leaderboard
UPDATE_TIME_FRAME_DAYS = 30 # Time frame for mining new reviews
LEADERBOARD_COLUMNS = [
("Agent Name", "string"),
("Website", "string"),
("Total Reviews", "number"),
("Merged PRs", "number"),
("Acceptance Rate (%)", "number"),
]
# =============================================================================
# JSONL FILE OPERATIONS
# =============================================================================
def load_jsonl(filename):
"""Load JSONL file and return list of dictionaries."""
if not os.path.exists(filename):
return []
data = []
with open(filename, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if line:
try:
entry = json.loads(line)
data.append(entry)
except json.JSONDecodeError as e:
print(f"Warning: Skipping invalid JSON line: {e}")
return data
def save_jsonl(filename, data):
"""Save list of dictionaries to JSONL file."""
with open(filename, 'w', encoding='utf-8') as f:
for item in data:
f.write(json.dumps(item) + '\n')
def cache_to_dict(cache_list):
"""Convert list of cache entries to dictionary by identifier."""
return {entry['github_identifier']: entry for entry in cache_list}
def dict_to_cache(cache_dict):
"""Convert dictionary back to list of values."""
return list(cache_dict.values())
def normalize_date_format(date_string):
"""
Convert date strings to standardized ISO 8601 format with Z suffix.
Handles both old format (2025-10-15T23:23:47.983068) and new format (2025-10-15T23:23:47Z).
"""
if not date_string or date_string == 'N/A':
return 'N/A'
try:
# Replace space with 'T' for ISO format compatibility
date_string = date_string.replace(' ', 'T')
# Fix incomplete timezone offset (+00 or -00 -> +00:00 or -00:00)
if date_string[-3:-2] in ('+', '-') and ':' not in date_string[-3:]:
date_string = date_string + ':00'
# Parse the date string (handles both with and without microseconds)
dt = datetime.fromisoformat(date_string.replace('Z', '+00:00'))
# Convert to standardized format
return dt.strftime('%Y-%m-%dT%H:%M:%SZ')
except Exception as e:
print(f"Warning: Could not parse date '{date_string}': {e}")
return date_string
# =============================================================================
# HUGGINGFACE API WRAPPERS WITH BACKOFF
# =============================================================================
def is_rate_limit_error(e):
"""Check if exception is a HuggingFace rate limit error (429)."""
if isinstance(e, HfHubHTTPError):
return e.response.status_code == 429
return False
@backoff.on_exception(
backoff.expo,
HfHubHTTPError,
max_tries=8,
base=300,
max_value=3600,
giveup=lambda e: not is_rate_limit_error(e),
on_backoff=lambda details: print(
f"⏳ Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/8..."
)
)
def upload_large_folder_with_backoff(api, **kwargs):
"""Wrapper for api.upload_large_folder() with exponential backoff for rate limits."""
return api.upload_large_folder(**kwargs)
@backoff.on_exception(
backoff.expo,
HfHubHTTPError,
max_tries=8,
base=300,
max_value=3600,
giveup=lambda e: not is_rate_limit_error(e),
on_backoff=lambda details: print(
f"⏳ Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/8..."
)
)
def list_repo_files_with_backoff(api, **kwargs):
"""Wrapper for api.list_repo_files() with exponential backoff for rate limits."""
return api.list_repo_files(**kwargs)
@backoff.on_exception(
backoff.expo,
HfHubHTTPError,
max_tries=8,
base=300,
max_value=3600,
giveup=lambda e: not is_rate_limit_error(e),
on_backoff=lambda details: print(
f"⏳ Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/8..."
)
)
def hf_hub_download_with_backoff(**kwargs):
"""Wrapper for hf_hub_download() with exponential backoff for rate limits."""
return hf_hub_download(**kwargs)
@backoff.on_exception(
backoff.expo,
HfHubHTTPError,
max_tries=8,
base=300,
max_value=3600,
giveup=lambda e: not is_rate_limit_error(e),
on_backoff=lambda details: print(
f"⏳ Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/8..."
)
)
def upload_file_with_backoff(api, **kwargs):
"""Wrapper for api.upload_file() with exponential backoff for rate limits."""
return api.upload_file(**kwargs)
# =============================================================================
# BIGQUERY FUNCTIONS
# =============================================================================
def get_bigquery_client():
"""
Initialize BigQuery client using credentials from environment variable.
Expects GOOGLE_APPLICATION_CREDENTIALS_JSON environment variable containing
the service account JSON credentials as a string.
"""
# Get the JSON content from environment variable
creds_json = os.environ.get('GOOGLE_APPLICATION_CREDENTIALS_JSON')
if creds_json:
# Create a temporary file to store credentials
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.json') as temp_file:
temp_file.write(creds_json)
temp_path = temp_file.name
# Set environment variable to point to temp file
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = temp_path
# Initialize BigQuery client
client = bigquery.Client()
# Clean up temp file
os.unlink(temp_path)
return client
else:
raise ValueError("GOOGLE_APPLICATION_CREDENTIALS_JSON not found in environment")
def fetch_all_pr_metadata_batched(client, identifiers, start_date, end_date, batch_size=50, upload_immediately=True):
"""
Fetch PR review metadata for ALL agents using BATCHED BigQuery queries.
Splits agents into smaller batches to avoid performance issues with large queries.
Args:
client: BigQuery client instance
identifiers: List of GitHub usernames/bot identifiers
start_date: Start datetime (timezone-aware)
end_date: End datetime (timezone-aware)
batch_size: Number of agents to process per batch (default: 50)
upload_immediately: If True, upload each batch to HuggingFace immediately after processing (default: True)
Returns:
Dictionary mapping agent identifier to list of PR metadata
"""
print(f"\nπŸ” Using BATCHED approach: {len(identifiers)} agents in batches of {batch_size}")
# Log upload mode
if upload_immediately:
print(f" πŸ“€ Upload mode: IMMEDIATE (upload after each batch)")
else:
print(f" πŸ“€ Upload mode: DEFERRED (upload after all batches complete)")
# Split identifiers into batches
batches = [identifiers[i:i + batch_size] for i in range(0, len(identifiers), batch_size)]
total_batches = len(batches)
print(f" Total batches: {total_batches}")
# Collect results from all batches
all_metadata = {}
successful_batches = 0
failed_batches = 0
for batch_num, batch_identifiers in enumerate(batches, 1):
print(f"\nπŸ“¦ Processing batch {batch_num}/{total_batches} ({len(batch_identifiers)} agents)...")
try:
# Query this batch - process each agent in the batch
batch_results = {}
for identifier in batch_identifiers:
review_rows = fetch_reviews_from_bigquery(client, identifier, start_date, end_date)
# Extract metadata
metadata_list = []
seen_prs = set()
for row in review_rows:
url = row.url
if url in seen_prs:
continue
seen_prs.add(url)
metadata = extract_review_metadata_from_bigquery(row)
metadata_list.append(metadata)
if metadata_list:
all_metadata[identifier] = metadata_list
batch_results[identifier] = metadata_list
successful_batches += 1
print(f" βœ“ Batch {batch_num}/{total_batches} complete: {len(batch_identifiers)} agents processed")
# Upload immediately after this batch if enabled
if upload_immediately and batch_results:
print(f"\n πŸ“€ Uploading batch {batch_num}/{total_batches} results to HuggingFace...")
upload_success = 0
upload_errors = 0
for identifier, metadata_list in batch_results.items():
if metadata_list:
if save_review_metadata_to_hf(metadata_list, identifier):
upload_success += 1
else:
upload_errors += 1
print(f" βœ“ Batch {batch_num}/{total_batches} upload complete ({upload_success} agents uploaded, {upload_errors} errors)")
except Exception as e:
failed_batches += 1
print(f" βœ— Batch {batch_num}/{total_batches} failed: {str(e)}")
print(f" Continuing with remaining batches...")
continue
print(f"\nπŸ“Š Batching Summary:")
print(f" Total batches: {total_batches}")
print(f" Successful: {successful_batches}")
print(f" Failed: {failed_batches}")
print(f" Total agents with data: {len(all_metadata)}")
return all_metadata
def fetch_reviews_from_bigquery(client, identifier, start_date, end_date):
"""
Fetch PR review events from GitHub Archive for a SINGLE agent.
NOTE: This function is designed for querying a single agent at a time.
For querying multiple agents efficiently, use fetch_all_pr_metadata_batched() instead.
Queries githubarchive.day.YYYYMMDD tables for PullRequestReviewEvent where
actor.login matches the agent identifier, and joins with PR status.
Args:
client: BigQuery client instance
identifier: GitHub username or bot identifier (e.g., 'amazon-inspector-beta[bot]')
start_date: Start datetime (timezone-aware)
end_date: End datetime (timezone-aware)
Returns:
List of review event rows with PR information including merged_at and closed_at
"""
print(f"\nπŸ” Querying BigQuery for reviews by {identifier}")
print(f" Time range: {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}")
# Generate list of table names for each day in the range
review_tables = []
current_date = start_date
while current_date < end_date:
table_name = f"`githubarchive.day.{current_date.strftime('%Y%m%d')}`"
review_tables.append(f"SELECT * FROM {table_name}")
current_date += timedelta(days=1)
review_union = " UNION ALL ".join(review_tables)
# Generate status tables (lookback for PR status)
status_start = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
status_tables = []
current_date = status_start
while current_date < end_date:
table_name = f"`githubarchive.day.{current_date.strftime('%Y%m%d')}`"
status_tables.append(f"SELECT * FROM {table_name}")
current_date += timedelta(days=1)
status_union = " UNION ALL ".join(status_tables)
# Build comprehensive query with CTEs for PR status
query = f"""
WITH review_events AS (
SELECT
JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') as url,
COALESCE(
JSON_EXTRACT_SCALAR(payload, '$.review.submitted_at'),
CAST(created_at AS STRING)
) as reviewed_at,
actor.login as reviewer,
created_at
FROM (
{review_union}
)
WHERE type = 'PullRequestReviewEvent'
AND actor.login = @identifier
AND JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') IS NOT NULL
),
pr_status AS (
SELECT
JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') as url,
JSON_EXTRACT_SCALAR(payload, '$.pull_request.merged_at') as merged_at,
JSON_EXTRACT_SCALAR(payload, '$.pull_request.closed_at') as closed_at,
created_at
FROM (
{status_union}
)
WHERE type = 'PullRequestEvent'
AND JSON_EXTRACT_SCALAR(payload, '$.action') = 'closed'
AND JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') IN (
SELECT DISTINCT url FROM review_events
)
QUALIFY ROW_NUMBER() OVER (PARTITION BY url ORDER BY created_at DESC) = 1
)
SELECT DISTINCT
re.url,
re.reviewed_at,
re.created_at,
ps.merged_at,
ps.closed_at
FROM review_events re
LEFT JOIN pr_status ps ON re.url = ps.url
ORDER BY re.reviewed_at DESC
"""
job_config = bigquery.QueryJobConfig(
query_parameters=[
bigquery.ScalarQueryParameter("identifier", "STRING", identifier)
]
)
print(f" Querying {len(review_tables)} review tables and {len(status_tables)} status tables...")
try:
query_job = client.query(query, job_config=job_config)
results = list(query_job.result())
print(f" βœ“ Found {len(results)} review events")
return results
except Exception as e:
print(f" βœ— BigQuery error: {str(e)}")
return []
def extract_review_metadata_from_bigquery(review_row):
"""
Extract minimal PR review metadata from BigQuery row.
Args:
review_row: BigQuery row from PullRequestReviewEvent query
Returns:
Dictionary with review metadata containing:
- url: PR URL
- reviewed_at: Review timestamp
- merged_at: Merge timestamp (if merged, else None)
- closed_at: Close timestamp (if closed, else None)
"""
url = review_row.url
reviewed_at = review_row.reviewed_at or review_row.created_at
merged_at = getattr(review_row, 'merged_at', None)
closed_at = getattr(review_row, 'closed_at', None)
# Convert to ISO format if datetime and normalize
if hasattr(reviewed_at, 'isoformat'):
reviewed_at = reviewed_at.isoformat()
reviewed_at = normalize_date_format(reviewed_at) if reviewed_at else None
if merged_at and hasattr(merged_at, 'isoformat'):
merged_at = merged_at.isoformat()
merged_at = normalize_date_format(merged_at) if merged_at else None
if closed_at and hasattr(closed_at, 'isoformat'):
closed_at = closed_at.isoformat()
closed_at = normalize_date_format(closed_at) if closed_at else None
return {
'url': url,
'reviewed_at': reviewed_at,
'merged_at': merged_at,
'closed_at': closed_at
}
# =============================================================================
# GITHUB API OPERATIONS
# =============================================================================
def request_with_backoff(method, url, *, headers=None, params=None, json_body=None, data=None, max_retries=10, timeout=30, token_pool=None, token=None):
"""
Perform an HTTP request with exponential backoff and jitter for GitHub API.
Retries on 403/429 (rate limits), 5xx server errors, and transient network exceptions.
Args:
token_pool: Optional TokenPool instance for rate limit tracking
token: Optional token string to mark as rate-limited if 403/429 occurs
Returns the final requests.Response on success or non-retryable status, or None after exhausting retries.
"""
delay = 1.0
for attempt in range(max_retries):
try:
resp = requests.request(
method,
url,
headers=headers or {},
params=params,
json=json_body,
data=data,
timeout=timeout
)
status = resp.status_code
# Success
if 200 <= status < 300:
return resp
# Rate limits or server errors -> retry with backoff
if status in (403, 429) or 500 <= status < 600:
wait = None
reset_timestamp = None
# Prefer Retry-After when present
retry_after = resp.headers.get('Retry-After') or resp.headers.get('retry-after')
if retry_after:
try:
wait = float(retry_after)
except Exception:
wait = None
# Fallback to X-RateLimit-Reset when 403/429
if wait is None and status in (403, 429):
reset_hdr = resp.headers.get('X-RateLimit-Reset') or resp.headers.get('x-ratelimit-reset')
if reset_hdr:
try:
reset_timestamp = int(float(reset_hdr))
wait = max(reset_timestamp - time.time() + 2, 1)
except Exception:
wait = None
# Mark token as rate-limited if we have token pool and token
if status in (403, 429) and token_pool and token:
token_pool.mark_rate_limited(token, reset_timestamp)
# Final fallback: exponential backoff with jitter
if wait is None:
wait = delay + random.uniform(0, 0.5)
# Cap individual wait to avoid extreme sleeps
wait = max(1.0, min(wait, 120.0))
print(f"GitHub API {status}. Backing off {wait:.1f}s (attempt {attempt + 1}/{max_retries})...")
time.sleep(wait)
delay = min(delay * 2, 60.0)
continue
# Non-retryable error; return response for caller to handle
return resp
except requests.RequestException as e:
# Network error -> retry with backoff
wait = delay + random.uniform(0, 0.5)
wait = max(1.0, min(wait, 60.0))
print(f"Request error: {e}. Retrying in {wait:.1f}s (attempt {attempt + 1}/{max_retries})...")
time.sleep(wait)
delay = min(delay * 2, 60.0)
print(f"Exceeded max retries for {url}")
return None
def get_github_tokens():
"""Get all GitHub tokens from environment variables (all vars starting with GITHUB_TOKEN)."""
tokens = []
for key, value in os.environ.items():
if key.startswith('GITHUB_TOKEN') and value:
tokens.append(value)
if not tokens:
print("Warning: No GITHUB_TOKEN found. API rate limits: 60/hour (authenticated: 5000/hour)")
else:
print(f"βœ“ Loaded {len(tokens)} GitHub token(s) for rotation")
return tokens
def get_github_token():
"""Get first GitHub token from environment variables (backward compatibility)."""
tokens = get_github_tokens()
return tokens[0] if tokens else None
class TokenPool:
"""
Hybrid token pool with parallel execution and round-robin fallback.
Splits tokens into two pools:
- Parallel pool (50%): For concurrent API calls to maximize throughput
- Round-robin pool (50%): Backup pool for rate limit fallback
Features:
- Automatic fallback when parallel tokens hit rate limits
- Rate limit tracking with timestamp-based recovery
- Thread-safe token management
- Real-time statistics monitoring
"""
def __init__(self, tokens):
import threading
self.all_tokens = tokens if tokens else [None]
self.lock = threading.Lock()
# Split tokens into parallel and round-robin pools (50/50)
total_tokens = len(self.all_tokens)
split_point = max(1, total_tokens // 2)
self.parallel_tokens = self.all_tokens[:split_point]
self.roundrobin_tokens = self.all_tokens[split_point:] if total_tokens > 1 else self.all_tokens
# Round-robin index for fallback pool
self.roundrobin_index = 0
# Rate limit tracking: {token: reset_timestamp}
self.parallel_rate_limited = set()
self.roundrobin_rate_limited = set()
self.rate_limit_resets = {}
# Statistics
self.stats = {
'parallel_calls': 0,
'roundrobin_calls': 0,
'fallback_triggers': 0
}
print(f"πŸ“Š Token Pool Initialized:")
print(f" Total tokens: {total_tokens}")
print(f" Parallel pool: {len(self.parallel_tokens)} tokens")
print(f" Round-robin pool: {len(self.roundrobin_tokens)} tokens")
def _cleanup_expired_rate_limits(self):
"""Remove tokens from rate-limited sets if their reset time has passed."""
current_time = time.time()
expired_tokens = [
token for token, reset_time in self.rate_limit_resets.items()
if current_time >= reset_time
]
for token in expired_tokens:
self.parallel_rate_limited.discard(token)
self.roundrobin_rate_limited.discard(token)
del self.rate_limit_resets[token]
if expired_tokens:
print(f" βœ“ Recovered {len(expired_tokens)} token(s) from rate limit")
def get_parallel_token(self):
"""Get an available token from the parallel pool."""
with self.lock:
self._cleanup_expired_rate_limits()
# Find first non-rate-limited parallel token
for token in self.parallel_tokens:
if token not in self.parallel_rate_limited:
self.stats['parallel_calls'] += 1
return token
return None
def get_roundrobin_token(self):
"""Get the next available token from round-robin pool."""
with self.lock:
self._cleanup_expired_rate_limits()
# Try all tokens in round-robin order
attempts = 0
while attempts < len(self.roundrobin_tokens):
token = self.roundrobin_tokens[self.roundrobin_index]
self.roundrobin_index = (self.roundrobin_index + 1) % len(self.roundrobin_tokens)
if token not in self.roundrobin_rate_limited:
self.stats['roundrobin_calls'] += 1
return token
attempts += 1
return None
def get_next_token(self):
"""
Get next available token, trying parallel pool first, then falling back to round-robin.
Returns:
Token string or None if all tokens are rate-limited
"""
# Try parallel pool first
token = self.get_parallel_token()
if token:
return token
# Fallback to round-robin pool
with self.lock:
self.stats['fallback_triggers'] += 1
token = self.get_roundrobin_token()
if not token:
print(" ⚠️ All tokens are rate-limited, waiting...")
return token
def get_headers(self):
"""Get headers with the next available token."""
token = self.get_next_token()
return {'Authorization': f'token {token}'} if token else {}
def mark_rate_limited(self, token, reset_timestamp=None):
"""
Mark a token as rate-limited with optional reset timestamp.
Args:
token: The token to mark as rate-limited
reset_timestamp: Unix timestamp when rate limit resets (optional)
"""
if not token:
return
with self.lock:
# Determine which pool the token belongs to
if token in self.parallel_tokens:
self.parallel_rate_limited.add(token)
if token in self.roundrobin_tokens:
self.roundrobin_rate_limited.add(token)
# Store reset timestamp if provided
if reset_timestamp:
self.rate_limit_resets[token] = reset_timestamp
reset_time = datetime.fromtimestamp(reset_timestamp, tz=timezone.utc)
print(f" ⏰ Token rate-limited until {reset_time.strftime('%H:%M:%S')} UTC")
def get_available_parallel_tokens(self):
"""Get list of all available (non-rate-limited) parallel tokens."""
with self.lock:
self._cleanup_expired_rate_limits()
return [t for t in self.parallel_tokens if t not in self.parallel_rate_limited]
def get_stats(self):
"""Get token pool usage statistics."""
with self.lock:
return {
'parallel_calls': self.stats['parallel_calls'],
'roundrobin_calls': self.stats['roundrobin_calls'],
'fallback_triggers': self.stats['fallback_triggers'],
'parallel_rate_limited': len(self.parallel_rate_limited),
'roundrobin_rate_limited': len(self.roundrobin_rate_limited)
}
def print_stats(self):
"""Print token pool usage statistics."""
stats = self.get_stats()
total_calls = stats['parallel_calls'] + stats['roundrobin_calls']
print(f"\nπŸ“Š Token Pool Statistics:")
print(f" Total API calls: {total_calls}")
if total_calls > 0:
print(f" Parallel calls: {stats['parallel_calls']} ({stats['parallel_calls']/total_calls*100:.1f}%)")
print(f" Round-robin calls: {stats['roundrobin_calls']} ({stats['roundrobin_calls']/total_calls*100:.1f}%)")
print(f" Fallback triggers: {stats['fallback_triggers']}")
print(f" Currently rate-limited: {stats['parallel_rate_limited']} parallel, {stats['roundrobin_rate_limited']} round-robin")
def validate_github_username(identifier):
"""Verify that a GitHub identifier exists with backoff-aware requests."""
try:
token = get_github_token()
headers = {'Authorization': f'token {token}'} if token else {}
url = f'https://api.github.com/users/{identifier}'
response = request_with_backoff('GET', url, headers=headers, max_retries=1)
if response is None:
return False, "Validation error: network/rate limit exhausted"
if response.status_code == 200:
return True, "Username is valid"
elif response.status_code == 404:
return False, "GitHub identifier not found"
else:
return False, f"Validation error: HTTP {response.status_code}"
except Exception as e:
return False, f"Validation error: {str(e)}"
def fetch_reviews_with_time_partition(base_query, start_date, end_date, token_pool, prs_by_url, depth=0):
"""
Fetch reviews within a specific time range using time-based partitioning.
Recursively splits the time range if hitting the 1000-result limit.
Supports splitting by day, hour, minute, and second as needed.
Args:
depth: Current recursion depth (for tracking)
Returns the number of reviews found in this time partition.
"""
# Calculate time difference
time_diff = end_date - start_date
total_seconds = time_diff.total_seconds()
# Determine granularity and format dates accordingly
if total_seconds >= 86400: # >= 1 day
# Use day granularity (YYYY-MM-DD)
start_str = start_date.strftime('%Y-%m-%d')
end_str = end_date.strftime('%Y-%m-%d')
elif total_seconds >= 3600: # >= 1 hour but < 1 day
# Use hour granularity (YYYY-MM-DDTHH:MM:SSZ)
start_str = start_date.strftime('%Y-%m-%dT%H:00:00Z')
end_str = end_date.strftime('%Y-%m-%dT%H:59:59Z')
elif total_seconds >= 60: # >= 1 minute but < 1 hour
# Use minute granularity (YYYY-MM-DDTHH:MM:SSZ)
start_str = start_date.strftime('%Y-%m-%dT%H:%M:00Z')
end_str = end_date.strftime('%Y-%m-%dT%H:%M:59Z')
else: # < 1 minute
# Use second granularity (YYYY-MM-DDTHH:MM:SSZ)
start_str = start_date.strftime('%Y-%m-%dT%H:%M:%SZ')
end_str = end_date.strftime('%Y-%m-%dT%H:%M:%SZ')
# Add date range to query (use created for PR search)
query = f'{base_query} created:{start_str}..{end_str}'
indent = " " + " " * depth
print(f"{indent}Searching range {start_str} to {end_str}...")
page = 1
per_page = 100
total_in_partition = 0
while True:
url = 'https://api.github.com/search/issues' # Use issues endpoint for PR search
params = {
'q': query,
'per_page': per_page,
'page': page,
'sort': 'created',
'order': 'asc'
}
token = token_pool.get_next_token()
headers = {'Authorization': f'token {token}'} if token else {}
try:
response = request_with_backoff('GET', url, headers=headers, params=params, token_pool=token_pool, token=token)
if response is None:
print(f"{indent} Error: retries exhausted for range {start_str} to {end_str}")
return total_in_partition
if response.status_code != 200:
print(f"{indent} Error: HTTP {response.status_code} for range {start_str} to {end_str}")
return total_in_partition
data = response.json()
total_count = data.get('total_count', 0)
items = data.get('items', [])
if not items:
break
# Add PR reviews to global dict (keyed by PR URL)
for pr in items:
url = pr.get('url')
pr_number = pr.get('number')
# Use PR URL as unique key (more reliable than number alone)
if url and url not in prs_by_url:
prs_by_url[url] = pr
total_in_partition += 1
# Check if we hit the 1000-result limit
if total_count > 1000 and page == 10:
print(f"{indent} ⚠️ Hit 1000-result limit ({total_count} total). Splitting time range...")
# Determine how to split based on time range duration
if total_seconds < 2: # Less than 2 seconds - can't split further
print(f"{indent} ⚠️ Cannot split further (range < 2 seconds). Some results may be missing.")
break
elif total_seconds < 120: # Less than 2 minutes - split by seconds
# Split into 2-4 parts depending on range
num_splits = min(4, max(2, int(total_seconds / 30)))
split_duration = time_diff / num_splits
split_dates = [start_date + split_duration * i for i in range(num_splits + 1)]
total_from_splits = 0
for i in range(num_splits):
split_start = split_dates[i]
split_end = split_dates[i + 1]
# Avoid overlapping ranges (add 1 second to start)
if i > 0:
split_start = split_start + timedelta(seconds=1)
count = fetch_reviews_with_time_partition(
base_query, split_start, split_end, token_pool, prs_by_url, depth + 1
)
total_from_splits += count
return total_from_splits
elif total_seconds < 7200: # Less than 2 hours - split by minutes
# Split into 2-4 parts
num_splits = min(4, max(2, int(total_seconds / 1800)))
split_duration = time_diff / num_splits
split_dates = [start_date + split_duration * i for i in range(num_splits + 1)]
total_from_splits = 0
for i in range(num_splits):
split_start = split_dates[i]
split_end = split_dates[i + 1]
# Avoid overlapping ranges (add 1 minute to start)
if i > 0:
split_start = split_start + timedelta(minutes=1)
count = fetch_reviews_with_time_partition(
base_query, split_start, split_end, token_pool, prs_by_url, depth + 1
)
total_from_splits += count
return total_from_splits
elif total_seconds < 172800: # Less than 2 days - split by hours
# Split into 2-4 parts
num_splits = min(4, max(2, int(total_seconds / 43200)))
split_duration = time_diff / num_splits
split_dates = [start_date + split_duration * i for i in range(num_splits + 1)]
total_from_splits = 0
for i in range(num_splits):
split_start = split_dates[i]
split_end = split_dates[i + 1]
# Avoid overlapping ranges (add 1 hour to start)
if i > 0:
split_start = split_start + timedelta(hours=1)
count = fetch_reviews_with_time_partition(
base_query, split_start, split_end, token_pool, prs_by_url, depth + 1
)
total_from_splits += count
return total_from_splits
else: # 2+ days - split by days
days_diff = time_diff.days
# Use aggressive splitting for large ranges or deep recursion
# Split into 4 parts if range is > 30 days, otherwise split in half
if days_diff > 30 or depth > 5:
# Split into 4 parts for more aggressive partitioning
quarter_diff = time_diff / 4
split_dates = [
start_date,
start_date + quarter_diff,
start_date + quarter_diff * 2,
start_date + quarter_diff * 3,
end_date
]
total_from_splits = 0
for i in range(4):
split_start = split_dates[i]
split_end = split_dates[i + 1]
# Avoid overlapping ranges
if i > 0:
split_start = split_start + timedelta(days=1)
count = fetch_reviews_with_time_partition(
base_query, split_start, split_end, token_pool, prs_by_url, depth + 1
)
total_from_splits += count
return total_from_splits
else:
# Binary split for smaller ranges
mid_date = start_date + time_diff / 2
# Recursively fetch both halves
count1 = fetch_reviews_with_time_partition(
base_query, start_date, mid_date, token_pool, prs_by_url, depth + 1
)
count2 = fetch_reviews_with_time_partition(
base_query, mid_date + timedelta(days=1), end_date, token_pool, prs_by_url, depth + 1
)
return count1 + count2
# Normal pagination: check if there are more pages
if len(items) < per_page or page >= 10:
break
page += 1
time.sleep(0.5) # Courtesy delay between pages
except Exception as e:
print(f"{indent} Error fetching range {start_str} to {end_str}: {str(e)}")
return total_in_partition
if total_in_partition > 0:
print(f"{indent} βœ“ Found {total_in_partition} reviews in range {start_str} to {end_str}")
return total_in_partition
def fetch_reviews_parallel(query_patterns, start_date, end_date, token_pool, prs_by_url):
"""
Fetch reviews for multiple query patterns in parallel using available parallel tokens.
This function uses ThreadPoolExecutor to execute multiple query patterns concurrently,
with each pattern using a dedicated token from the parallel pool. Falls back to
sequential execution if insufficient parallel tokens are available.
Args:
query_patterns: List of query pattern strings (e.g., ['is:pr author:bot1', 'is:pr reviewed-by:bot1'])
start_date: Start datetime for time range
end_date: End datetime for time range
token_pool: TokenPool instance for token management
prs_by_url: Dictionary to collect PRs by URL (shared across patterns)
Returns:
Total number of PRs found across all patterns
"""
from concurrent.futures import ThreadPoolExecutor, as_completed
import threading
# Check how many parallel tokens are available
available_tokens = token_pool.get_available_parallel_tokens()
if len(available_tokens) < 2 or len(query_patterns) < 2:
# Not enough tokens or patterns for parallelization, use sequential
print(f" ⚠️ Sequential execution: {len(available_tokens)} parallel tokens available for {len(query_patterns)} patterns")
total_found = 0
for pattern in query_patterns:
pattern_prs = {}
count = fetch_reviews_with_time_partition(
pattern, start_date, end_date, token_pool, pattern_prs, depth=0
)
# Merge pattern results into global dict
with threading.Lock():
for url, pr in pattern_prs.items():
if url not in prs_by_url:
prs_by_url[url] = pr
total_found += count
return total_found
# Use parallel execution
print(f" πŸš€ Parallel execution: {len(available_tokens)} parallel tokens for {len(query_patterns)} patterns")
# Thread-safe lock for updating prs_by_url
lock = threading.Lock()
def fetch_pattern(pattern):
"""Fetch reviews for a single pattern (runs in parallel)."""
pattern_prs = {}
try:
count = fetch_reviews_with_time_partition(
pattern, start_date, end_date, token_pool, pattern_prs, depth=0
)
return pattern, pattern_prs, count
except Exception as e:
print(f" Error fetching pattern '{pattern}': {str(e)}")
return pattern, {}, 0
# Execute patterns in parallel
max_workers = min(len(query_patterns), len(available_tokens))
total_found = 0
with ThreadPoolExecutor(max_workers=max_workers) as executor:
# Submit all patterns
future_to_pattern = {
executor.submit(fetch_pattern, pattern): pattern
for pattern in query_patterns
}
# Collect results as they complete
for future in as_completed(future_to_pattern):
pattern = future_to_pattern[future]
try:
_, pattern_prs, count = future.result()
# Merge results into global dict (thread-safe)
with lock:
for url, pr in pattern_prs.items():
if url not in prs_by_url:
prs_by_url[url] = pr
total_found += count
print(f" βœ“ Pattern '{pattern}' completed: {count} PRs found")
except Exception as e:
print(f" βœ— Pattern '{pattern}' failed: {str(e)}")
return total_found
def extract_review_metadata(pr):
"""
Extract minimal PR review metadata for efficient storage.
Only keeps essential fields: url, reviewed_at, merged_at, closed_at.
Note: agent_name is not stored as it's inferred from the folder structure.
Status can be derived from the timestamps:
- merged_at: Timestamp if PR was merged, None otherwise
- closed_at: Timestamp if PR was closed (either merged or just closed), None otherwise
Merged PR = PR that was merged (merged_at is not None)
Rejected PR = PR that was closed without merging (closed_at is not None but merged_at is None)
Open PR = PR still open (both merged_at and closed_at are None)
"""
# Extract PR metadata from search results
# The GitHub search API returns PR data from /search/issues endpoint
url = pr.get('url')
created_at = pr.get('created_at')
closed_at = pr.get('closed_at')
# Check if PR has pull_request field (indicates it's a PR, not an issue)
pull_request_data = pr.get('pull_request', {})
merged_at = pull_request_data.get('merged_at') if pull_request_data else None
return {
'url': url,
'reviewed_at': created_at, # When the PR was created (agent reviewed it)
'merged_at': merged_at,
'closed_at': closed_at
}
def get_pr_status_from_metadata(review_meta):
"""
Derive PR status from merged_at and closed_at fields.
Args:
review_meta: Dictionary containing merged_at and closed_at fields
Returns:
str: 'merged', 'closed', or 'open'
"""
merged_at = review_meta.get('merged_at')
closed_at = review_meta.get('closed_at')
# If merged_at is set (not None and not False), PR is merged
if merged_at:
return 'merged'
# If closed_at is set but not merged, PR is closed without merging
elif closed_at:
return 'closed'
# Otherwise, PR is still open
else:
return 'open'
def calculate_review_stats_from_metadata(metadata_list):
"""
Calculate statistics from a list of review metadata (lightweight objects).
Works with minimal metadata: url, reviewed_at, merged_at, closed_at.
Returns a dictionary with comprehensive review metrics.
Acceptance Rate is calculated as:
merged PRs / (merged PRs + rejected PRs) * 100
Merged PRs = PRs that were merged (merged_at is not None)
Rejected PRs = PRs that were closed without merging (closed_at is not None but merged_at is None)
Pending PRs = PRs still open (both merged_at and closed_at are None) - excluded from acceptance rate
"""
total_reviews = len(metadata_list)
# Count merged PRs (merged_at is set)
merged_prs = sum(1 for review_meta in metadata_list
if get_pr_status_from_metadata(review_meta) == 'merged')
# Count rejected PRs (closed without merging)
rejected_prs = sum(1 for review_meta in metadata_list
if get_pr_status_from_metadata(review_meta) == 'closed')
# Count pending PRs (still open)
pending_prs = sum(1 for review_meta in metadata_list
if get_pr_status_from_metadata(review_meta) == 'open')
# Calculate acceptance rate (exclude pending PRs)
completed_prs = merged_prs + rejected_prs
acceptance_rate = (merged_prs / completed_prs * 100) if completed_prs > 0 else 0
return {
'total_reviews': total_reviews,
'merged_prs': merged_prs,
'pending_prs': pending_prs,
'acceptance_rate': round(acceptance_rate, 2),
}
def calculate_monthly_metrics_by_agent(top_n=None):
"""
Calculate monthly metrics for all agents (or top N agents) for visualization.
Loads data directly from SWE-Arena/review_metadata dataset.
Args:
top_n: If specified, only return metrics for the top N agents by total reviews.
Agents are ranked by their total review count across all months.
Returns:
dict: {
'agents': list of agent names,
'months': list of month labels (e.g., '2025-01'),
'data': {
agent_name: {
'acceptance_rates': list of acceptance rates by month,
'total_reviews': list of review counts by month,
'merged_prs': list of merged PR counts by month,
}
}
}
"""
# Load ALL agents from HuggingFace agents repo
agents = load_agents_from_hf()
# Create mapping from agent_identifier to agent_name
identifier_to_name = {agent.get('github_identifier'): agent.get('name') for agent in agents if agent.get('github_identifier')}
# Load all review metadata from review_metadata dataset
all_metadata = load_review_metadata()
if not all_metadata:
return {'agents': [], 'months': [], 'data': {}}
# Group by agent and month
agent_month_data = defaultdict(lambda: defaultdict(list))
for review_meta in all_metadata:
agent_identifier = review_meta.get('agent_identifier')
reviewed_at = review_meta.get('reviewed_at')
if not agent_identifier or not reviewed_at:
continue
# Get agent_name from identifier
agent_name = identifier_to_name.get(agent_identifier, agent_identifier)
try:
dt = datetime.fromisoformat(reviewed_at.replace('Z', '+00:00'))
month_key = f"{dt.year}-{dt.month:02d}"
agent_month_data[agent_name][month_key].append(review_meta)
except Exception as e:
print(f"Warning: Could not parse date '{reviewed_at}': {e}")
continue
# Get all unique months and sort them
all_months = set()
for agent_data in agent_month_data.values():
all_months.update(agent_data.keys())
months = sorted(list(all_months))
# Calculate metrics for each agent and month
result_data = {}
for agent_name, month_dict in agent_month_data.items():
acceptance_rates = []
total_reviews_list = []
merged_prs_list = []
for month in months:
reviews_in_month = month_dict.get(month, [])
# Count merged PRs (merged_at is set)
merged_count = sum(1 for review in reviews_in_month
if get_pr_status_from_metadata(review) == 'merged')
# Count rejected PRs (closed without merging)
rejected_count = sum(1 for review in reviews_in_month
if get_pr_status_from_metadata(review) == 'closed')
# Total reviews created in this month
total_count = len(reviews_in_month)
# Calculate acceptance rate (exclude pending PRs)
completed_count = merged_count + rejected_count
acceptance_rate = (merged_count / completed_count * 100) if completed_count > 0 else None
acceptance_rates.append(acceptance_rate)
total_reviews_list.append(total_count)
merged_prs_list.append(merged_count)
result_data[agent_name] = {
'acceptance_rates': acceptance_rates,
'total_reviews': total_reviews_list,
'merged_prs': merged_prs_list,
}
# Filter to top N agents if specified
agents_list = sorted(list(agent_month_data.keys()))
if top_n is not None and top_n > 0:
# Calculate total reviews for each agent across all months
agent_totals = []
for agent_name in agents_list:
total_reviews = sum(result_data[agent_name]['total_reviews'])
agent_totals.append((agent_name, total_reviews))
# Sort by total reviews (descending) and take top N
agent_totals.sort(key=lambda x: x[1], reverse=True)
top_agents = [agent_name for agent_name, _ in agent_totals[:top_n]]
# Filter result_data to only include top agents
result_data = {agent: result_data[agent] for agent in top_agents if agent in result_data}
agents_list = top_agents
return {
'agents': agents_list,
'months': months,
'data': result_data
}
# =============================================================================
# REVIEW METADATA STORAGE & RETRIEVAL
# =============================================================================
def group_metadata_by_date(metadata_list):
"""
Group review metadata by exact date (year.month.day) for efficient daily storage.
Returns dict: {(year, month, day): [metadata_list]}
"""
grouped = defaultdict(list)
for review_meta in metadata_list:
reviewed_at = review_meta.get('reviewed_at')
if not reviewed_at:
continue
try:
dt = datetime.fromisoformat(reviewed_at.replace('Z', '+00:00'))
key = (dt.year, dt.month, dt.day)
grouped[key].append(review_meta)
except Exception as e:
print(f"Warning: Could not parse date '{reviewed_at}': {e}")
return dict(grouped)
def save_review_metadata_to_hf(metadata_list, agent_identifier):
"""
Save review metadata to HuggingFace dataset, organized by [agent_identifier]/YYYY.MM.DD.jsonl.
Each file is stored in the agent's folder and named YYYY.MM.DD.jsonl for that day's reviews.
This function APPENDS new metadata and DEDUPLICATES by URL.
Uses batch upload to avoid rate limit (uploads entire folder in single commit).
Args:
metadata_list: List of review metadata dictionaries
agent_identifier: GitHub identifier of the agent (used as folder name)
"""
import tempfile
import shutil
try:
token = get_hf_token()
if not token:
raise Exception("No HuggingFace token found")
api = HfApi()
# Group by exact date (year, month, day)
grouped = group_metadata_by_date(metadata_list)
# Create a temporary directory for batch upload
temp_dir = tempfile.mkdtemp()
agent_folder = os.path.join(temp_dir, agent_identifier)
os.makedirs(agent_folder, exist_ok=True)
try:
print(f"πŸ“¦ Preparing batch upload for {len(grouped)} daily files...")
# Process each daily file
for (review_year, month, day), day_metadata in grouped.items():
filename = f"{agent_identifier}/{review_year}.{month:02d}.{day:02d}.jsonl"
local_filename = os.path.join(agent_folder, f"{review_year}.{month:02d}.{day:02d}.jsonl")
# Download existing file if it exists
existing_metadata = []
try:
file_path = hf_hub_download(
repo_id=REVIEW_METADATA_REPO,
filename=filename,
repo_type="dataset",
token=token
)
existing_metadata = load_jsonl(file_path)
print(f" Found {len(existing_metadata)} existing reviews in {filename}")
except Exception:
print(f" Creating new file: {filename}")
# Merge and deduplicate by URL
existing_by_url = {meta['url']: meta for meta in existing_metadata if meta.get('url')}
new_by_url = {meta['url']: meta for meta in day_metadata if meta.get('url')}
# Update with new data (new data overwrites old)
existing_by_url.update(new_by_url)
merged_metadata = list(existing_by_url.values())
# Save to temp directory
save_jsonl(local_filename, merged_metadata)
print(f" Prepared {len(merged_metadata)} reviews for {filename}")
# Upload entire folder using upload_large_folder (optimized for large files)
# Note: upload_large_folder creates multiple commits automatically and doesn't support custom commit_message
print(f"πŸ“€ Uploading {len(grouped)} files...")
upload_large_folder_with_backoff(
api=api,
folder_path=temp_dir,
repo_id=REVIEW_METADATA_REPO,
repo_type="dataset"
)
print(f" βœ“ Batch upload complete for {agent_identifier}")
return True
finally:
# Always clean up temp directory
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
except Exception as e:
print(f"βœ— Error saving review metadata: {str(e)}")
import traceback
traceback.print_exc()
return False
def load_review_metadata():
"""
Load review metadata from the last LEADERBOARD_TIME_FRAME_DAYS.
Structure: [agent_identifier]/YYYY.MM.DD.jsonl
Returns:
List of dictionaries with 'agent_identifier' added to each review metadata.
Only includes reviews from the last LEADERBOARD_TIME_FRAME_DAYS.
"""
# Calculate cutoff date based on LEADERBOARD_TIME_FRAME_DAYS
current_time = datetime.now(timezone.utc)
cutoff_date = current_time - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
try:
api = HfApi()
token = get_hf_token()
# List all files in the repository
files = list_repo_files_with_backoff(api=api, repo_id=REVIEW_METADATA_REPO, repo_type="dataset")
# Filter for files matching the pattern: [agent_identifier]/YYYY.MM.DD.jsonl
# AND within the time frame (parse date from filename)
time_frame_files = []
for f in files:
if f.endswith('.jsonl'):
parts = f.split('/')
if len(parts) == 2: # [agent_identifier]/YYYY.MM.DD.jsonl
filename = parts[1]
# Parse date from filename: YYYY.MM.DD.jsonl
try:
date_part = filename.replace('.jsonl', '') # Get YYYY.MM.DD
date_components = date_part.split('.')
if len(date_components) == 3:
file_year, file_month, file_day = map(int, date_components)
file_date = datetime(file_year, file_month, file_day, tzinfo=timezone.utc)
# Only include files within the time frame
if file_date >= cutoff_date:
time_frame_files.append(f)
except Exception:
# If we can't parse the date, skip this file
continue
print(f"πŸ“₯ Loading review metadata from last {LEADERBOARD_TIME_FRAME_DAYS} days ({len(time_frame_files)} daily files across all agents)...")
all_metadata = []
agent_identifiers_found = set()
for filename in time_frame_files:
try:
# Extract agent_identifier from path (first part)
# Format: agent_identifier/YYYY.MM.DD.jsonl
parts = filename.split('/')
if len(parts) != 2:
print(f" Warning: Unexpected filename format: {filename}")
continue
agent_identifier = parts[0]
agent_identifiers_found.add(agent_identifier)
file_path = hf_hub_download_with_backoff(
repo_id=REVIEW_METADATA_REPO,
filename=filename,
repo_type="dataset",
token=token
)
day_metadata = load_jsonl(file_path)
# Add agent_identifier and filter by time frame (double-check)
filtered_count = 0
for review_meta in day_metadata:
# Validate review date is within time frame
reviewed_at = review_meta.get('reviewed_at')
if reviewed_at:
try:
dt = datetime.fromisoformat(reviewed_at.replace('Z', '+00:00'))
if dt < cutoff_date:
continue # Skip reviews older than time frame
except Exception:
pass # Keep reviews with unparseable dates
review_meta['agent_identifier'] = agent_identifier
all_metadata.append(review_meta)
filtered_count += 1
print(f" βœ“ Loaded {filtered_count} reviews from {filename}")
except Exception as e:
print(f" Warning: Could not load {filename}: {str(e)}")
print(f"βœ“ Loaded {len(all_metadata)} total reviews from last {LEADERBOARD_TIME_FRAME_DAYS} days")
return all_metadata
except Exception as e:
print(f"βœ— Error loading review metadata from last {LEADERBOARD_TIME_FRAME_DAYS} days: {str(e)}")
return []
def get_latest_review_date_for_agent(agent_identifier):
"""
Get the latest review creation date for an agent from stored metadata.
Used for incremental updates - only fetch reviews newer than this date.
Structure: [agent_identifier]/YYYY.MM.DD.jsonl
Args:
agent_identifier: GitHub identifier of the agent
Returns:
datetime or None if no existing reviews found.
"""
try:
api = HfApi()
token = get_hf_token()
# List all files in the repository
files = list_repo_files_with_backoff(api=api, repo_id=REVIEW_METADATA_REPO, repo_type="dataset")
# Filter for files in this agent's folder
# New structure: [agent_identifier]/YYYY.MM.DD.jsonl
agent_pattern = f"{agent_identifier}/"
agent_files = [f for f in files if f.startswith(agent_pattern) and f.endswith('.jsonl')]
if not agent_files:
return None
# Find latest created_at across all files
latest_date = None
for filename in agent_files:
try:
file_path = hf_hub_download_with_backoff(
repo_id=REVIEW_METADATA_REPO,
filename=filename,
repo_type="dataset",
token=token
)
metadata = load_jsonl(file_path)
for review_meta in metadata:
reviewed_at = review_meta.get("reviewed_at")
if reviewed_at:
try:
dt = datetime.fromisoformat(reviewed_at.replace("Z", "+00:00"))
if latest_date is None or dt > latest_date:
latest_date = dt
except Exception:
continue
except Exception:
continue
return latest_date
except Exception:
return None
def get_daily_files_last_time_frame(agent_identifier):
"""
Get list of daily file paths for an agent from the configured time frame.
Args:
agent_identifier: GitHub identifier of the agent
Returns:
List of file paths in format: [agent_identifier]/YYYY.MM.DD.jsonl
"""
try:
api = HfApi()
token = get_hf_token()
# Calculate date range using configured time frame
today = datetime.now(timezone.utc)
cutoff_date = today - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
# List all files in the repository
files = list_repo_files_with_backoff(api=api, repo_id=REVIEW_METADATA_REPO, repo_type="dataset")
# Filter for files in this agent's folder
agent_pattern = f"{agent_identifier}/"
agent_files = [f for f in files if f.startswith(agent_pattern) and f.endswith('.jsonl')]
# Filter by date range (extract date from filename)
recent_files = []
for filename in agent_files:
try:
# Extract date from filename: YYYY.MM.DD.jsonl
parts = filename.split('/')
if len(parts) != 2:
continue
date_part = parts[1].replace('.jsonl', '') # Get YYYY.MM.DD
date_components = date_part.split('.')
if len(date_components) != 3:
continue
file_year, file_month, file_day = map(int, date_components)
file_date = datetime(file_year, file_month, file_day, tzinfo=timezone.utc)
# Include if within configured time frame
if cutoff_date <= file_date <= today:
recent_files.append(filename)
except Exception:
continue
return recent_files
except Exception as e:
print(f"Error getting daily files: {str(e)}")
return []
def fetch_review_current_status(review_url, token):
"""
Fetch the current revert status of a single review from GitHub API.
Args:
token: GitHub API token
token: GitHub API token
Returns:
Dictionary with updated is_reverted and revert_at, or None if failed
"""
try:
# Convert HTML URL to API URL
# https://github.com/owner/repo/reviews/123 -> https://api.github.com/repos/owner/repo/reviews/123
parts = review_url.replace('https://github.com/', '').split('/')
if len(parts) < 4:
return None
owner, repo, review_word, review_number = parts[0], parts[1], parts[2], parts[3]
api_url = f'https://api.github.com/repos/{owner}/{repo}/reviews/{review_number}'
headers = {'Authorization': f'token {token}'} if token else {}
response = request_with_backoff('GET', api_url, headers=headers, max_retries=3)
if response is None or response.status_code != 200:
return None
review_data = response.json()
state = review_data.get('state')
state_reason = review_data.get('state_reason')
closed_at = review_data.get('closed_at')
return {
'state': state,
'state_reason': state_reason,
'closed_at': closed_at
}
except Exception as e:
print(f" Error fetching review status for {review_url}: {str(e)}")
return None
def refresh_review_status_for_agent(agent_identifier, token):
"""
Refresh status for all open reviews from the last month for an agent.
Only updates reviews that are still open (state="open" or no state_reason).
This implements the smart update strategy:
- Skip reviews that are already closed/resolved
- Fetch current status for open reviews
- Update and save back to daily files
Args:
agent_identifier: GitHub identifier of the agent
token: GitHub API token
Returns:
Tuple: (total_checked, updated_count)
"""
print(f"\nπŸ”„ Refreshing open reviews for {agent_identifier} (last month)...")
try:
# Get daily files from configured time frame
recent_files = get_daily_files_last_time_frame(agent_identifier)
if not recent_files:
print(f" No recent files found for {agent_identifier}")
return (0, 0)
print(f" Found {len(recent_files)} daily files to check")
total_checked = 0
updated_count = 0
# Process each file
for filename in recent_files:
try:
# Download file
file_path = hf_hub_download(
repo_id=REVIEW_METADATA_REPO,
filename=filename,
repo_type="dataset",
token=get_hf_token()
)
reviews = load_jsonl(file_path)
if not reviews:
continue
updated_reviews = []
file_had_updates = False
# Check each review
for review in reviews:
# Skip if already closed (has a state_reason)
if review.get("is_reverted"):
updated_reviews.append(review)
continue
# Review may have been reverted, check status
review_url = review.get("url")
if not review_url:
updated_reviews.append(review)
continue
current_status = fetch_review_current_status(review_url, token)
if current_status:
# Check if status changed (now closed)
if current_status['state'] == 'closed':
print(f" βœ“ Review status changed: {review_url}")
review['state'] = current_status['state']
review['state_reason'] = current_status['state_reason']
review['closed_at'] = current_status['closed_at']
updated_count += 1
file_had_updates = True
updated_reviews.append(review)
time.sleep(0.1) # Rate limiting courtesy delay
# Save file if there were updates
if file_had_updates:
# Extract filename components for local save
parts = filename.split('/')
local_filename = parts[-1] # Just YYYY.MM.DD.jsonl
# Save locally
save_jsonl(local_filename, updated_reviews)
try:
# Upload back to HuggingFace
api = HfApi()
upload_with_retry(
api=api,
path_or_fileobj=local_filename,
path_in_repo=filename,
repo_id=REVIEW_METADATA_REPO,
repo_type="dataset",
token=get_hf_token()
)
print(f" πŸ’Ύ Updated {filename}")
finally:
# Always clean up local file, even if upload fails
if os.path.exists(local_filename):
os.remove(local_filename)
except Exception as e:
print(f" Warning: Could not process {filename}: {str(e)}")
continue
print(f" βœ… Refresh complete: {total_checked} open reviews checked, {updated_count} updated")
return (total_checked, updated_count)
except Exception as e:
print(f" βœ— Error refreshing reviews for {agent_identifier}: {str(e)}")
return (0, 0)
# =============================================================================
# HUGGINGFACE DATASET OPERATIONS
# =============================================================================
def load_agents_from_hf():
"""Load all agent metadata JSON files from HuggingFace dataset."""
try:
api = HfApi()
agents = []
# List all files in the repository
files = list_repo_files_with_backoff(api=api, repo_id=AGENTS_REPO, repo_type="dataset")
# Filter for JSON files only
json_files = [f for f in files if f.endswith('.json')]
# Download and parse each JSON file
for json_file in json_files:
try:
file_path = hf_hub_download_with_backoff(
repo_id=AGENTS_REPO,
filename=json_file,
repo_type="dataset"
)
with open(file_path, 'r') as f:
agent_data = json.load(f)
# Only process agents with status == "public"
if agent_data.get('status') != 'public':
print(f"Skipping {json_file}: status is not 'public'")
continue
# Extract github_identifier from filename (e.g., "claude[bot].json" -> "claude[bot]")
filename_identifier = json_file.replace('.json', '')
# Add or override github_identifier to match filename
agent_data['github_identifier'] = filename_identifier
agents.append(agent_data)
except Exception as e:
print(f"Warning: Could not load {json_file}: {str(e)}")
continue
print(f"βœ“ Loaded {len(agents)} agents from HuggingFace")
return agents
except Exception as e:
print(f"Could not load agents from HuggingFace: {str(e)}")
return None
def get_hf_token():
"""Get HuggingFace token from environment variables."""
token = os.getenv('HF_TOKEN')
if not token:
print("Warning: HF_TOKEN not found in environment variables")
return token
def upload_with_retry(api, path_or_fileobj, path_in_repo, repo_id, repo_type, token, max_retries=5):
"""
Upload file to HuggingFace with exponential backoff retry logic.
Args:
api: HfApi instance
path_or_fileobj: Local file path to upload
path_in_repo: Target path in the repository
repo_id: Repository ID
repo_type: Type of repository (e.g., "dataset")
token: HuggingFace token
max_retries: Maximum number of retry attempts
Returns:
True if upload succeeded, raises exception if all retries failed
"""
delay = 2.0 # Initial delay in seconds
for attempt in range(max_retries):
try:
api.upload_file(
path_or_fileobj=path_or_fileobj,
path_in_repo=path_in_repo,
repo_id=repo_id,
repo_type=repo_type,
token=token
)
if attempt > 0:
print(f" βœ“ Upload succeeded on attempt {attempt + 1}/{max_retries}")
return True
except Exception as e:
if attempt < max_retries - 1:
wait_time = delay + random.uniform(0, 1.0)
print(f" ⚠️ Upload failed (attempt {attempt + 1}/{max_retries}): {str(e)}")
print(f" ⏳ Retrying in {wait_time:.1f} seconds...")
time.sleep(wait_time)
delay = min(delay * 2, 60.0) # Exponential backoff, max 60s
else:
print(f" βœ— Upload failed after {max_retries} attempts: {str(e)}")
raise
def save_agent_to_hf(data):
"""Save a new agent to HuggingFace dataset as {identifier}.json in root."""
try:
api = HfApi()
token = get_hf_token()
if not token:
raise Exception("No HuggingFace token found. Please set HF_TOKEN in your Space settings.")
identifier = data['github_identifier']
filename = f"{identifier}.json"
# Save locally first
with open(filename, 'w') as f:
json.dump(data, f, indent=2)
try:
# Upload to HuggingFace (root directory)
upload_with_retry(
api=api,
path_or_fileobj=filename,
path_in_repo=filename,
repo_id=AGENTS_REPO,
repo_type="dataset",
token=token
)
print(f"βœ“ Saved agent to HuggingFace: {filename}")
return True
finally:
# Always clean up local file, even if upload fails
if os.path.exists(filename):
os.remove(filename)
except Exception as e:
print(f"βœ— Error saving agent: {str(e)}")
return False
def save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics):
"""
Save leaderboard data and monthly metrics to HuggingFace dataset as swe-review.json.
Args:
leaderboard_dict: Dictionary of agent stats from construct_leaderboard_from_metadata()
monthly_metrics: Monthly metrics data from calculate_monthly_metrics_by_agent()
Returns:
bool: True if successful, False otherwise
"""
try:
api = HfApi()
token = get_hf_token()
if not token:
raise Exception("No HuggingFace token found. Please set HF_TOKEN in your Space settings.")
filename = "swe-review.json"
# Combine leaderboard and monthly metrics
combined_data = {
'last_updated': datetime.now(timezone.utc).isoformat(),
'leaderboard': leaderboard_dict,
'monthly_metrics': monthly_metrics,
'metadata': {
'leaderboard_time_frame_days': LEADERBOARD_TIME_FRAME_DAYS,
'update_time_frame_days': UPDATE_TIME_FRAME_DAYS
}
}
# Save locally first
with open(filename, 'w') as f:
json.dump(combined_data, f, indent=2)
try:
# Upload to HuggingFace
upload_with_retry(
api=api,
path_or_fileobj=filename,
path_in_repo=filename,
repo_id=LEADERBOARD_REPO,
repo_type="dataset",
token=token
)
print(f"βœ“ Saved leaderboard data to HuggingFace: {filename}")
return True
finally:
# Always clean up local file, even if upload fails
if os.path.exists(filename):
os.remove(filename)
except Exception as e:
print(f"βœ— Error saving leaderboard data: {str(e)}")
import traceback
traceback.print_exc()
return False
def load_leaderboard_data_from_hf():
"""
Load leaderboard data and monthly metrics from HuggingFace dataset.
Returns:
dict: Dictionary with 'leaderboard', 'monthly_metrics', and 'last_updated' keys
Returns None if file doesn't exist or error occurs
"""
try:
token = get_hf_token()
filename = "swe-review.json"
# Download file
file_path = hf_hub_download_with_backoff(
repo_id=LEADERBOARD_REPO,
filename=filename,
repo_type="dataset",
token=token
)
# Load JSON data
with open(file_path, 'r') as f:
data = json.load(f)
last_updated = data.get('last_updated', 'Unknown')
print(f"βœ“ Loaded leaderboard data from HuggingFace (last updated: {last_updated})")
return data
except Exception as e:
print(f"⚠️ Could not load leaderboard data from HuggingFace: {str(e)}")
return None
def save_leaderboard_and_metrics_to_hf():
"""
Creates a comprehensive JSON file with both leaderboard stats and monthly metrics.
If the file exists, it will be overwritten.
Returns:
bool: True if successful, False otherwise
"""
import io
try:
token = get_hf_token()
if not token:
raise Exception("No HuggingFace token found")
api = HfApi(token=token)
print(f"\n{'='*80}")
print(f"πŸ“Š Preparing leaderboard and metrics data for upload...")
print(f"{'='*80}\n")
# Get leaderboard data from review metadata
print(" Constructing leaderboard data from review metadata...")
leaderboard_data = construct_leaderboard_from_metadata()
# Get monthly metrics data (all agents, not just top N)
print(" Calculating monthly metrics from review metadata...")
monthly_metrics = calculate_monthly_metrics_by_agent(top_n=None)
# Combine into a single structure
combined_data = {
"leaderboard": leaderboard_data,
"monthly_metrics": monthly_metrics,
"metadata": {
"last_updated": datetime.now(timezone.utc).isoformat(),
"time_frame_days": LEADERBOARD_TIME_FRAME_DAYS,
"total_agents": len(leaderboard_data)
}
}
print(f" Leaderboard entries: {len(leaderboard_data)}")
print(f" Monthly metrics for: {len(monthly_metrics['agents'])} agents")
print(f" Time frame: {LEADERBOARD_TIME_FRAME_DAYS} days")
# Convert to JSON and create file-like object
json_content = json.dumps(combined_data, indent=2)
file_like_object = io.BytesIO(json_content.encode('utf-8'))
# Upload to HuggingFace (will overwrite if exists)
print(f"\nπŸ€— Uploading to {LEADERBOARD_REPO}...")
upload_file_with_backoff(
api=api,
path_or_fileobj=file_like_object,
path_in_repo="swe-review.json",
repo_id=LEADERBOARD_REPO,
repo_type="dataset",
token=token,
commit_message=f"Update leaderboard data - {datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S')} UTC"
)
print(f" βœ“ Successfully uploaded swe-review.json")
print(f"{'='*80}\n")
return True
except Exception as e:
print(f"βœ— Error saving leaderboard and metrics: {str(e)}")
import traceback
traceback.print_exc()
return False
# =============================================================================
# DATA MANAGEMENT
# =============================================================================
def mine_all_agents():
"""
Mine review metadata for all agents within UPDATE_TIME_FRAME_DAYS and save to HuggingFace.
Uses BATCHED BigQuery queries for all agents (efficient approach).
"""
# Load agent metadata from HuggingFace
agents = load_agents_from_hf()
if not agents:
print("No agents found in HuggingFace dataset")
return
# Extract all identifiers
identifiers = [agent['github_identifier'] for agent in agents if agent.get('github_identifier')]
if not identifiers:
print("No valid agent identifiers found")
return
print(f"\n{'='*80}")
print(f"Starting review metadata mining for {len(identifiers)} agents")
print(f"Time frame: Last {UPDATE_TIME_FRAME_DAYS} days")
print(f"Data source: BigQuery + GitHub Archive (BATCHED QUERIES)")
print(f"{'='*80}\n")
# Initialize BigQuery client
try:
client = get_bigquery_client()
except Exception as e:
print(f"βœ— Failed to initialize BigQuery client: {str(e)}")
return
# Define time range: past UPDATE_TIME_FRAME_DAYS (excluding today)
current_time = datetime.now(timezone.utc)
end_date = current_time.replace(hour=0, minute=0, second=0, microsecond=0)
start_date = end_date - timedelta(days=UPDATE_TIME_FRAME_DAYS)
try:
# Use batched approach for better performance
# upload_immediately=True means each batch uploads to HuggingFace right after BigQuery completes
all_metadata = fetch_all_pr_metadata_batched(
client, identifiers, start_date, end_date, batch_size=50, upload_immediately=True
)
# Calculate summary statistics
total_prs = sum(len(metadata_list) for metadata_list in all_metadata.values())
agents_with_data = sum(1 for metadata_list in all_metadata.values() if metadata_list)
print(f"\n{'='*80}")
print(f"βœ… BigQuery mining and upload complete!")
print(f" Total agents: {len(agents)}")
print(f" Agents with data: {agents_with_data}")
print(f" Total PRs found: {total_prs}")
print(f"{'='*80}\n")
except Exception as e:
print(f"βœ— Error during BigQuery fetch: {str(e)}")
import traceback
traceback.print_exc()
return
# After mining is complete, save leaderboard and metrics to HuggingFace
print(f"πŸ“€ Uploading leaderboard and metrics data...")
if save_leaderboard_and_metrics_to_hf():
print(f"βœ“ Leaderboard and metrics successfully uploaded to {LEADERBOARD_REPO}")
else:
print(f"⚠️ Failed to upload leaderboard and metrics data")
def construct_leaderboard_from_metadata():
"""
Construct leaderboard from stored review metadata instead of fetching all reviews.
Much more memory-efficient and faster.
Returns dictionary of agent stats.
"""
print("πŸ“Š Constructing leaderboard from review metadata...")
# Load agents
agents = load_agents_from_hf()
if not agents:
print("⚠️ No agents found")
return {}
print(f"βœ“ Loaded {len(agents)} agents")
# Load all review metadata
all_metadata = load_review_metadata()
print(f"βœ“ Loaded {len(all_metadata)} review metadata entries")
cache_dict = {}
for agent in agents:
identifier = agent.get('github_identifier')
agent_name = agent.get('name', 'Unknown')
# Filter metadata for this agent
agent_metadata = [review for review in all_metadata if review.get("agent_identifier") == identifier]
# Calculate stats
stats = calculate_review_stats_from_metadata(agent_metadata)
cache_dict[identifier] = {
'name': agent_name,
'name': agent_name, # Store both for compatibility
'website': agent.get('website', 'N/A'),
'github_identifier': identifier,
**stats
}
print(f"βœ“ Constructed cache with {len(cache_dict)} agent entries")
return cache_dict
# =============================================================================
# UI FUNCTIONS
# =============================================================================
def create_monthly_metrics_plot(top_n=5):
"""
Create a Plotly figure with dual y-axes showing:
- Left y-axis: Acceptance Rate (%) as line curves
- Right y-axis: Total Reviews created as bar charts
Each agent gets a unique color for both their line and bars.
Args:
top_n: Number of top agents to show (default: 5)
"""
# Try loading from saved dataset first
saved_data = load_leaderboard_data_from_hf()
if saved_data and 'monthly_metrics' in saved_data:
metrics = saved_data['monthly_metrics']
print(f"πŸ“ˆ Loaded monthly metrics from saved dataset")
# Apply top_n filter if specified
if top_n is not None and top_n > 0 and metrics.get('agents'):
# Calculate total reviews for each agent
agent_totals = []
for agent_name in metrics['agents']:
agent_data = metrics['data'].get(agent_name, {})
total_reviews = sum(agent_data.get('total_reviews', []))
agent_totals.append((agent_name, total_reviews))
# Sort by total reviews and take top N
agent_totals.sort(key=lambda x: x[1], reverse=True)
top_agents = [agent_name for agent_name, _ in agent_totals[:top_n]]
# Filter metrics to only include top agents
metrics = {
'agents': top_agents,
'months': metrics['months'],
'data': {agent: metrics['data'][agent] for agent in top_agents if agent in metrics['data']}
}
else:
# Fallback: calculate from metadata if saved data doesn't exist
print(f"πŸ“ˆ Saved data not available, calculating monthly metrics from metadata...")
metrics = calculate_monthly_metrics_by_agent(top_n=top_n)
if not metrics['agents'] or not metrics['months']:
# Return an empty figure with a message
fig = go.Figure()
fig.add_annotation(
text="No data available for visualization",
xref="paper", yref="paper",
x=0.5, y=0.5, showarrow=False,
font=dict(size=16)
)
fig.update_layout(
title=None,
xaxis_title=None,
height=500
)
return fig
# Create figure with secondary y-axis
fig = make_subplots(specs=[[{"secondary_y": True}]])
# Generate unique colors for many agents using HSL color space
def generate_color(index, total):
"""Generate distinct colors using HSL color space for better distribution"""
hue = (index * 360 / total) % 360
saturation = 70 + (index % 3) * 10 # Vary saturation slightly
lightness = 45 + (index % 2) * 10 # Vary lightness slightly
return f'hsl({hue}, {saturation}%, {lightness}%)'
agents = metrics['agents']
months = metrics['months']
data = metrics['data']
# Generate colors for all agents
agent_colors = {agent: generate_color(idx, len(agents)) for idx, agent in enumerate(agents)}
# Add traces for each agent
for idx, agent_name in enumerate(agents):
color = agent_colors[agent_name]
agent_data = data[agent_name]
# Add line trace for acceptance rate (left y-axis)
acceptance_rates = agent_data['acceptance_rates']
# Filter out None values for plotting
x_acceptance = [month for month, rate in zip(months, acceptance_rates) if rate is not None]
y_acceptance = [rate for rate in acceptance_rates if rate is not None]
if x_acceptance and y_acceptance: # Only add trace if there's data
fig.add_trace(
go.Scatter(
x=x_acceptance,
y=y_acceptance,
name=agent_name,
mode='lines+markers',
line=dict(color=color, width=2),
marker=dict(size=8),
legendgroup=agent_name,
showlegend=(top_n is not None and top_n <= 10), # Show legend for top N agents
hovertemplate='<b>Agent: %{fullData.name}</b><br>' +
'Month: %{x}<br>' +
'Acceptance Rate: %{y:.2f}%<br>' +
'<extra></extra>'
),
secondary_y=False
)
# Add bar trace for total reviews (right y-axis)
# Only show bars for months where agent has reviews
x_bars = []
y_bars = []
for month, count in zip(months, agent_data['total_reviews']):
if count > 0: # Only include months with reviews
x_bars.append(month)
y_bars.append(count)
if x_bars and y_bars: # Only add trace if there's data
fig.add_trace(
go.Bar(
x=x_bars,
y=y_bars,
name=agent_name,
marker=dict(color=color, opacity=0.6),
legendgroup=agent_name,
showlegend=False, # Hide duplicate legend entry (already shown in Scatter)
hovertemplate='<b>Agent: %{fullData.name}</b><br>' +
'Month: %{x}<br>' +
'Total Reviews: %{y}<br>' +
'<extra></extra>',
offsetgroup=agent_name # Group bars by agent for proper spacing
),
secondary_y=True
)
# Update axes labels
fig.update_xaxes(title_text=None)
fig.update_yaxes(
title_text="<b>Acceptance Rate (%)</b>",
range=[0, 100],
secondary_y=False,
showticklabels=True,
tickmode='linear',
dtick=10,
showgrid=True
)
fig.update_yaxes(title_text="<b>Total Reviews</b>", secondary_y=True)
# Update layout
show_legend = (top_n is not None and top_n <= 10)
fig.update_layout(
title=None,
hovermode='closest', # Show individual agent info on hover
barmode='group',
height=600,
showlegend=show_legend,
margin=dict(l=50, r=150 if show_legend else 50, t=50, b=50) # More right margin when legend is shown
)
return fig
def get_leaderboard_dataframe():
"""
Load leaderboard from saved dataset and convert to pandas DataFrame for display.
Falls back to constructing from metadata if saved data is not available.
Returns formatted DataFrame sorted by total reviews.
"""
# Try loading from saved dataset first
saved_data = load_leaderboard_data_from_hf()
if saved_data and 'leaderboard' in saved_data:
cache_dict = saved_data['leaderboard']
print(f"πŸ“Š Loaded leaderboard from saved dataset (last updated: {saved_data.get('last_updated', 'Unknown')})")
else:
# Fallback: construct from metadata if saved data doesn't exist
print(f"πŸ“Š Saved data not available, constructing leaderboard from metadata...")
cache_dict = construct_leaderboard_from_metadata()
print(f"πŸ“Š Cache dict size: {len(cache_dict)}")
if not cache_dict:
print("⚠️ WARNING: cache_dict is empty!")
# Return empty DataFrame with correct columns if no data
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
return pd.DataFrame(columns=column_names)
rows = []
filtered_count = 0
for identifier, data in cache_dict.items():
total_reviews = data.get('total_reviews', 0)
print(f" Agent '{identifier}': {total_reviews} reviews")
# Filter out agents with zero total reviews
if total_reviews == 0:
filtered_count += 1
continue
# Only include display-relevant fields
rows.append([
data.get('name', 'Unknown'),
data.get('website', 'N/A'),
total_reviews,
data.get('merged_prs', 0),
data.get('acceptance_rate', 0.0),
])
print(f"πŸ“‰ Filtered out {filtered_count} agents with 0 reviews")
print(f"πŸ“ˆ Leaderboard will show {len(rows)} agents")
# Create DataFrame
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
df = pd.DataFrame(rows, columns=column_names)
# Ensure numeric types
numeric_cols = ["Total Reviews", "Merged PRs", "Acceptance Rate (%)"]
for col in numeric_cols:
if col in df.columns:
df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0)
# Sort by Total Reviews descending
if "Total Reviews" in df.columns and not df.empty:
df = df.sort_values(by="Total Reviews", ascending=False).reset_index(drop=True)
print(f"βœ… Final DataFrame shape: {df.shape}")
print("="*60 + "\n")
return df
def submit_agent(identifier, agent_name, developer, website):
"""
Submit a new agent to the leaderboard.
Validates input, saves submission, and fetches PR metadata (memory-efficient).
"""
# Validate required fields
if not identifier or not identifier.strip():
return "❌ GitHub identifier is required", get_leaderboard_dataframe()
if not agent_name or not agent_name.strip():
return "❌ Agent name is required", get_leaderboard_dataframe()
if not developer or not developer.strip():
return "❌ Developer name is required", get_leaderboard_dataframe()
if not website or not website.strip():
return "❌ Website URL is required", get_leaderboard_dataframe()
# Clean inputs
identifier = identifier.strip()
agent_name = agent_name.strip()
developer = developer.strip()
website = website.strip()
# Validate GitHub identifier
is_valid, message = validate_github_username(identifier)
if not is_valid:
return f"❌ {message}", get_leaderboard_dataframe()
# Check for duplicates by loading agents from HuggingFace
agents = load_agents_from_hf()
if agents:
existing_names = {agent['github_identifier'] for agent in agents}
if identifier in existing_names:
return f"⚠️ Agent with identifier '{identifier}' already exists", get_leaderboard_dataframe()
# Create submission
submission = {
'name': agent_name,
'developer': developer,
'github_identifier': identifier,
'website': website,
}
# Save to HuggingFace
if not save_agent_to_hf(submission):
return "❌ Failed to save submission", get_leaderboard_dataframe()
# Reconstruct and save leaderboard data with new agent
try:
print(f"πŸ“Š Reconstructing leaderboard with new agent...")
leaderboard_dict = construct_leaderboard_from_metadata()
monthly_metrics = calculate_monthly_metrics_by_agent()
save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics)
print(f"βœ“ Leaderboard data updated")
except Exception as e:
print(f"⚠️ Failed to update leaderboard data: {str(e)}")
# Return success message - data will be populated by daily incremental updates
return f"βœ… Successfully submitted {agent_name}! Review data will be populated by the next daily incremental update.", get_leaderboard_dataframe()
# =============================================================================
# GRADIO APPLICATION
# =============================================================================
print(f"\nπŸš€ Starting SWE Agent PR Leaderboard")
print(f" Leaderboard time frame: {LEADERBOARD_TIME_FRAME_DAYS} days ({LEADERBOARD_TIME_FRAME_DAYS // 30} months)")
print(f" Mining update frequency: Every {UPDATE_TIME_FRAME_DAYS} days\n")
# Start APScheduler for monthly PR mining at 12:00 AM UTC every 1st of the month
scheduler = BackgroundScheduler(timezone="UTC")
scheduler.add_job(
mine_all_agents,
trigger=CronTrigger(day=1, hour=0, minute=0), # 12:00 AM UTC every 1st of the month
id='monthly_review_mining',
name='Monthly Review Mining',
replace_existing=True
)
scheduler.start()
print(f"\n{'='*80}")
print(f"βœ“ Scheduler initialized successfully")
print(f"⛏️ Mining schedule: Every 1st of the month at 12:00 AM UTC")
print(f"πŸ“₯ On startup: Only loads cached data from HuggingFace (no mining)")
print(f"{'='*80}\n")
# Create Gradio interface
with gr.Blocks(title="SWE Agent Review Leaderboard", theme=gr.themes.Soft()) as app:
total_months = LEADERBOARD_TIME_FRAME_DAYS // 30
gr.Markdown("# πŸ† SWE Agent Review Leaderboard")
gr.Markdown(f"Track and compare GitHub PR review acceptance statistics for SWE agents")
with gr.Tabs():
# Leaderboard Tab
with gr.Tab("πŸ“Š Leaderboard"):
gr.Markdown(f"*All statistics are based on reviews from the last {total_months} months*")
leaderboard_table = Leaderboard(
value=pd.DataFrame(columns=[col[0] for col in LEADERBOARD_COLUMNS]), # Empty initially
datatype=LEADERBOARD_COLUMNS,
search_columns=["Agent Name", "Website"],
filter_columns=[
ColumnFilter(
"Acceptance Rate (%)",
min=0,
max=100,
default=[0, 100],
type="slider",
label="Acceptance Rate (%)"
)
]
)
# Load leaderboard data when app starts
app.load(
fn=get_leaderboard_dataframe,
inputs=[],
outputs=[leaderboard_table]
)
# Monthly Metrics Section
gr.Markdown("---") # Divider
gr.Markdown("### πŸ“ˆ Monthly Performance - Top 5 Agents")
gr.Markdown("*Shows acceptance rate trends and review volumes for the most active agents*")
monthly_metrics_plot = gr.Plot(label="Monthly Metrics")
# Load monthly metrics when app starts
app.load(
fn=lambda: create_monthly_metrics_plot(),
inputs=[],
outputs=[monthly_metrics_plot]
)
# Submit Agent Tab
with gr.Tab("βž• Submit Agent"):
gr.Markdown("### Submit Your Agent")
gr.Markdown("Fill in the details below to add your agent to the leaderboard. Make sure you're logged in to HuggingFace CLI on your machine.")
with gr.Row():
with gr.Column():
github_input = gr.Textbox(
label="GitHub Identifier*",
placeholder="Your agent username (e.g., my-agent-bot)"
)
name_input = gr.Textbox(
label="Agent Name*",
placeholder="Your agent's display name"
)
with gr.Column():
developer_input = gr.Textbox(
label="Developer*",
placeholder="Your developer or team name"
)
website_input = gr.Textbox(
label="Website",
placeholder="https://your-agent-website.com"
)
submit_button = gr.Button(
"Submit Agent",
variant="primary"
)
submission_status = gr.Textbox(
label="Submission Status",
interactive=False
)
# Event handler
submit_button.click(
fn=submit_agent,
inputs=[github_input, name_input, developer_input, website_input],
outputs=[submission_status, leaderboard_table]
)
# Launch application
if __name__ == "__main__":
app.launch()