Spaces:
Sleeping
Sleeping
File size: 98,696 Bytes
9b447a6 5750bb3 9b447a6 3d31827 9b447a6 f1f4f5c 9b447a6 f1f4f5c 9b447a6 3d31827 9b447a6 d2e40c0 9b447a6 b110dcd 94818e2 9b447a6 325abdd 9b447a6 0a68078 9b447a6 0a68078 9b447a6 0a68078 9b447a6 f1f4f5c 87c2ab6 f1f4f5c 87c2ab6 f1f4f5c 87c2ab6 f1f4f5c 87c2ab6 f1f4f5c 87c2ab6 f1f4f5c 87c2ab6 f1f4f5c 87c2ab6 f1f4f5c 87c2ab6 f1f4f5c 3d31827 0fd77fe 313696f 22ee755 0fd77fe 313696f 0fd77fe 313696f 0fd77fe 313696f 0fd77fe 313696f 0fd77fe 313696f 3d31827 313696f 3d31827 f1f4f5c 3d31827 f1f4f5c 3d31827 f1f4f5c 3d31827 f1f4f5c 3d31827 f1f4f5c 3d31827 f1f4f5c 3d31827 f1f4f5c 3d31827 f1f4f5c 3d31827 f1f4f5c 3d31827 f1f4f5c 3d31827 5750bb3 3d31827 5750bb3 3d31827 5750bb3 3d31827 c0eda81 3d31827 5750bb3 3d31827 dcdb282 3d31827 dcdb282 5750bb3 dcdb282 5750bb3 dcdb282 3d31827 c0eda81 3d31827 5750bb3 3d31827 9b447a6 74e2c25 9b447a6 74e2c25 9b447a6 74e2c25 9b447a6 74e2c25 9b447a6 74e2c25 9b447a6 3bf98ae 9b447a6 3bf98ae 74e2c25 3bf98ae 74e2c25 3bf98ae 74e2c25 3bf98ae 74e2c25 3bf98ae 9b447a6 74e2c25 9b447a6 c0eda81 9b447a6 74e2c25 9b447a6 74e2c25 9b447a6 c0eda81 9b447a6 c0eda81 9b447a6 c0eda81 9b447a6 c0eda81 9b447a6 c0eda81 9b447a6 c0eda81 9b447a6 c0eda81 9b447a6 c0eda81 9b447a6 c0eda81 74e2c25 c0eda81 74e2c25 c0eda81 74e2c25 9b447a6 5750bb3 9b447a6 5750bb3 9b447a6 5750bb3 9b447a6 c0eda81 9b447a6 5750bb3 9b447a6 c0eda81 9b447a6 c0eda81 5750bb3 9b447a6 c0eda81 9b447a6 c0eda81 9b447a6 325abdd 9b447a6 c0eda81 9b447a6 c0eda81 325abdd c0eda81 9b447a6 c0eda81 9b447a6 c0eda81 9b447a6 325abdd 9b447a6 325abdd 9b447a6 c0eda81 9b447a6 c0eda81 675e937 9b447a6 c0eda81 9b447a6 325abdd 9b447a6 c0eda81 9b447a6 39cbf48 9b447a6 325abdd 9b447a6 5750bb3 325abdd 5750bb3 9b447a6 5750bb3 9b447a6 325abdd 9b447a6 325abdd 9b447a6 325abdd 9b447a6 c0eda81 9b447a6 c0eda81 9b447a6 5750bb3 8f68ab4 9b447a6 8f68ab4 9b447a6 8f68ab4 9b447a6 8f68ab4 5750bb3 8f68ab4 5750bb3 8f68ab4 4a42d8c f1f4f5c 8f68ab4 4a42d8c 8f68ab4 9b447a6 8f68ab4 9b447a6 39cbf48 9b447a6 39cbf48 9b447a6 39cbf48 9b447a6 39cbf48 9b447a6 f1f4f5c 9b447a6 39cbf48 9b447a6 39cbf48 9b447a6 39cbf48 9b447a6 c0eda81 39cbf48 9b447a6 c0eda81 9b447a6 f1f4f5c 9b447a6 39cbf48 9b447a6 39cbf48 9b447a6 39cbf48 9b447a6 39cbf48 9b447a6 39cbf48 c0eda81 9b447a6 39cbf48 9b447a6 f1f4f5c 9b447a6 f1f4f5c 9b447a6 c0eda81 9b447a6 c0eda81 9b447a6 c0eda81 9b447a6 c0eda81 9b447a6 f1f4f5c 9b447a6 c0eda81 9b447a6 c0eda81 9b447a6 c0eda81 9b447a6 c0eda81 9b447a6 c0eda81 9b447a6 f1f4f5c 9b447a6 f1f4f5c 9b447a6 c0eda81 f1f4f5c c0eda81 9b447a6 d454e42 f1f4f5c d454e42 002c8f0 f1f4f5c 002c8f0 9b447a6 5a89f16 9b447a6 092b200 9b447a6 092b200 e98a10e 092b200 267a222 9b447a6 092b200 e98a10e 092b200 47008cd 092b200 47008cd 092b200 0fd77fe 267a222 0fd77fe 267a222 0fd77fe 092b200 47008cd 092b200 9b447a6 c0eda81 9b447a6 c0eda81 9b447a6 c0eda81 675e937 39cbf48 c0eda81 9b447a6 c0eda81 9b447a6 f1f4f5c 9b447a6 c0eda81 9b447a6 22ee755 9b447a6 c0eda81 22ee755 9b447a6 d454e42 9b447a6 3d31827 9b447a6 3d31827 9b447a6 3d31827 9b447a6 3d31827 9b447a6 c0eda81 3d31827 9b447a6 3d31827 9b447a6 c0eda81 3d31827 9b447a6 5750bb3 9b447a6 c0eda81 9b447a6 3d31827 9b447a6 c0eda81 9b447a6 d454e42 eed1a0a 9b447a6 d454e42 9b447a6 c0eda81 9b447a6 c0eda81 9b447a6 c0eda81 9b447a6 c0eda81 9b447a6 c0eda81 9b447a6 f1f4f5c 9b447a6 c0eda81 325abdd 9b447a6 c0eda81 9b447a6 325abdd 9b447a6 eed1a0a 9b447a6 c0eda81 9b447a6 452bbc0 9b447a6 c0eda81 9b447a6 c0eda81 5750bb3 9b447a6 c0eda81 9b447a6 5750bb3 9b447a6 c0eda81 9b447a6 c0eda81 9b447a6 f1f4f5c 5750bb3 9b447a6 c0eda81 9b447a6 d454e42 e98a10e c0eda81 9b447a6 47008cd d454e42 47008cd 9b447a6 5a89f16 47008cd 9b447a6 711093a 47008cd 711093a 9b447a6 e8d1aad 9b447a6 805848b 9b447a6 c0eda81 9b447a6 e8d1aad 9b447a6 c0eda81 9b447a6 5750bb3 9b447a6 c0eda81 9b447a6 c0eda81 22ee755 c0eda81 9b447a6 c0eda81 9b447a6 5750bb3 9b447a6 452bbc0 c0eda81 9b447a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter
import json
import os
import time
import tempfile
import requests
from datetime import datetime, timezone, timedelta
from collections import defaultdict
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.errors import HfHubHTTPError
from datasets import load_dataset, Dataset
import threading
import backoff
from dotenv import load_dotenv
import pandas as pd
import random
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.triggers.cron import CronTrigger
from google.cloud import bigquery
# Load environment variables
load_dotenv()
# =============================================================================
# CONFIGURATION
# =============================================================================
AGENTS_REPO = "SWE-Arena/agent_metadata" # HuggingFace dataset for agent metadata
REVIEW_METADATA_REPO = "SWE-Arena/review_metadata" # HuggingFace dataset for review metadata
LEADERBOARD_REPO = "SWE-Arena/leaderboard_metadata" # HuggingFace dataset for leaderboard data
LEADERBOARD_TIME_FRAME_DAYS = 180 # Time frame for constructing leaderboard
UPDATE_TIME_FRAME_DAYS = 30 # Time frame for mining new reviews
LEADERBOARD_COLUMNS = [
("Agent Name", "string"),
("Website", "string"),
("Total Reviews", "number"),
("Merged PRs", "number"),
("Acceptance Rate (%)", "number"),
]
# =============================================================================
# JSONL FILE OPERATIONS
# =============================================================================
def load_jsonl(filename):
"""Load JSONL file and return list of dictionaries."""
if not os.path.exists(filename):
return []
data = []
with open(filename, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if line:
try:
entry = json.loads(line)
data.append(entry)
except json.JSONDecodeError as e:
print(f"Warning: Skipping invalid JSON line: {e}")
return data
def save_jsonl(filename, data):
"""Save list of dictionaries to JSONL file."""
with open(filename, 'w', encoding='utf-8') as f:
for item in data:
f.write(json.dumps(item) + '\n')
def cache_to_dict(cache_list):
"""Convert list of cache entries to dictionary by identifier."""
return {entry['github_identifier']: entry for entry in cache_list}
def dict_to_cache(cache_dict):
"""Convert dictionary back to list of values."""
return list(cache_dict.values())
def normalize_date_format(date_string):
"""
Convert date strings to standardized ISO 8601 format with Z suffix.
Handles both old format (2025-10-15T23:23:47.983068) and new format (2025-10-15T23:23:47Z).
"""
if not date_string or date_string == 'N/A':
return 'N/A'
try:
# Replace space with 'T' for ISO format compatibility
date_string = date_string.replace(' ', 'T')
# Fix incomplete timezone offset (+00 or -00 -> +00:00 or -00:00)
if date_string[-3:-2] in ('+', '-') and ':' not in date_string[-3:]:
date_string = date_string + ':00'
# Parse the date string (handles both with and without microseconds)
dt = datetime.fromisoformat(date_string.replace('Z', '+00:00'))
# Convert to standardized format
return dt.strftime('%Y-%m-%dT%H:%M:%SZ')
except Exception as e:
print(f"Warning: Could not parse date '{date_string}': {e}")
return date_string
# =============================================================================
# HUGGINGFACE API WRAPPERS WITH BACKOFF
# =============================================================================
def is_rate_limit_error(e):
"""Check if exception is a HuggingFace rate limit error (429)."""
if isinstance(e, HfHubHTTPError):
return e.response.status_code == 429
return False
@backoff.on_exception(
backoff.expo,
HfHubHTTPError,
max_tries=8,
base=300,
max_value=3600,
giveup=lambda e: not is_rate_limit_error(e),
on_backoff=lambda details: print(
f"β³ Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/8..."
)
)
def upload_large_folder_with_backoff(api, **kwargs):
"""Wrapper for api.upload_large_folder() with exponential backoff for rate limits."""
return api.upload_large_folder(**kwargs)
@backoff.on_exception(
backoff.expo,
HfHubHTTPError,
max_tries=8,
base=300,
max_value=3600,
giveup=lambda e: not is_rate_limit_error(e),
on_backoff=lambda details: print(
f"β³ Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/8..."
)
)
def list_repo_files_with_backoff(api, **kwargs):
"""Wrapper for api.list_repo_files() with exponential backoff for rate limits."""
return api.list_repo_files(**kwargs)
@backoff.on_exception(
backoff.expo,
HfHubHTTPError,
max_tries=8,
base=300,
max_value=3600,
giveup=lambda e: not is_rate_limit_error(e),
on_backoff=lambda details: print(
f"β³ Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/8..."
)
)
def hf_hub_download_with_backoff(**kwargs):
"""Wrapper for hf_hub_download() with exponential backoff for rate limits."""
return hf_hub_download(**kwargs)
@backoff.on_exception(
backoff.expo,
HfHubHTTPError,
max_tries=8,
base=300,
max_value=3600,
giveup=lambda e: not is_rate_limit_error(e),
on_backoff=lambda details: print(
f"β³ Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/8..."
)
)
def upload_file_with_backoff(api, **kwargs):
"""Wrapper for api.upload_file() with exponential backoff for rate limits."""
return api.upload_file(**kwargs)
# =============================================================================
# BIGQUERY FUNCTIONS
# =============================================================================
def get_bigquery_client():
"""
Initialize BigQuery client using credentials from environment variable.
Expects GOOGLE_APPLICATION_CREDENTIALS_JSON environment variable containing
the service account JSON credentials as a string.
"""
# Get the JSON content from environment variable
creds_json = os.environ.get('GOOGLE_APPLICATION_CREDENTIALS_JSON')
if creds_json:
# Create a temporary file to store credentials
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.json') as temp_file:
temp_file.write(creds_json)
temp_path = temp_file.name
# Set environment variable to point to temp file
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = temp_path
# Initialize BigQuery client
client = bigquery.Client()
# Clean up temp file
os.unlink(temp_path)
return client
else:
raise ValueError("GOOGLE_APPLICATION_CREDENTIALS_JSON not found in environment")
def fetch_all_pr_metadata_batched(client, identifiers, start_date, end_date, batch_size=50, upload_immediately=True):
"""
Fetch PR review metadata for ALL agents using BATCHED BigQuery queries.
Splits agents into smaller batches to avoid performance issues with large queries.
Args:
client: BigQuery client instance
identifiers: List of GitHub usernames/bot identifiers
start_date: Start datetime (timezone-aware)
end_date: End datetime (timezone-aware)
batch_size: Number of agents to process per batch (default: 50)
upload_immediately: If True, upload each batch to HuggingFace immediately after processing (default: True)
Returns:
Dictionary mapping agent identifier to list of PR metadata
"""
print(f"\nπ Using BATCHED approach: {len(identifiers)} agents in batches of {batch_size}")
# Log upload mode
if upload_immediately:
print(f" π€ Upload mode: IMMEDIATE (upload after each batch)")
else:
print(f" π€ Upload mode: DEFERRED (upload after all batches complete)")
# Split identifiers into batches
batches = [identifiers[i:i + batch_size] for i in range(0, len(identifiers), batch_size)]
total_batches = len(batches)
print(f" Total batches: {total_batches}")
# Collect results from all batches
all_metadata = {}
successful_batches = 0
failed_batches = 0
for batch_num, batch_identifiers in enumerate(batches, 1):
print(f"\nπ¦ Processing batch {batch_num}/{total_batches} ({len(batch_identifiers)} agents)...")
try:
# Query this batch - process each agent in the batch
batch_results = {}
for identifier in batch_identifiers:
review_rows = fetch_reviews_from_bigquery(client, identifier, start_date, end_date)
# Extract metadata
metadata_list = []
seen_prs = set()
for row in review_rows:
url = row.url
if url in seen_prs:
continue
seen_prs.add(url)
metadata = extract_review_metadata_from_bigquery(row)
metadata_list.append(metadata)
if metadata_list:
all_metadata[identifier] = metadata_list
batch_results[identifier] = metadata_list
successful_batches += 1
print(f" β Batch {batch_num}/{total_batches} complete: {len(batch_identifiers)} agents processed")
# Upload immediately after this batch if enabled
if upload_immediately and batch_results:
print(f"\n π€ Uploading batch {batch_num}/{total_batches} results to HuggingFace...")
upload_success = 0
upload_errors = 0
for identifier, metadata_list in batch_results.items():
if metadata_list:
if save_review_metadata_to_hf(metadata_list, identifier):
upload_success += 1
else:
upload_errors += 1
print(f" β Batch {batch_num}/{total_batches} upload complete ({upload_success} agents uploaded, {upload_errors} errors)")
except Exception as e:
failed_batches += 1
print(f" β Batch {batch_num}/{total_batches} failed: {str(e)}")
print(f" Continuing with remaining batches...")
continue
print(f"\nπ Batching Summary:")
print(f" Total batches: {total_batches}")
print(f" Successful: {successful_batches}")
print(f" Failed: {failed_batches}")
print(f" Total agents with data: {len(all_metadata)}")
return all_metadata
def fetch_reviews_from_bigquery(client, identifier, start_date, end_date):
"""
Fetch PR review events from GitHub Archive for a SINGLE agent.
NOTE: This function is designed for querying a single agent at a time.
For querying multiple agents efficiently, use fetch_all_pr_metadata_batched() instead.
Queries githubarchive.day.YYYYMMDD tables for PullRequestReviewEvent where
actor.login matches the agent identifier, and joins with PR status.
Args:
client: BigQuery client instance
identifier: GitHub username or bot identifier (e.g., 'amazon-inspector-beta[bot]')
start_date: Start datetime (timezone-aware)
end_date: End datetime (timezone-aware)
Returns:
List of review event rows with PR information including merged_at and closed_at
"""
print(f"\nπ Querying BigQuery for reviews by {identifier}")
print(f" Time range: {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}")
# Generate list of table names for each day in the range
review_tables = []
current_date = start_date
while current_date < end_date:
table_name = f"`githubarchive.day.{current_date.strftime('%Y%m%d')}`"
review_tables.append(f"SELECT * FROM {table_name}")
current_date += timedelta(days=1)
review_union = " UNION ALL ".join(review_tables)
# Generate status tables (lookback for PR status)
status_start = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
status_tables = []
current_date = status_start
while current_date < end_date:
table_name = f"`githubarchive.day.{current_date.strftime('%Y%m%d')}`"
status_tables.append(f"SELECT * FROM {table_name}")
current_date += timedelta(days=1)
status_union = " UNION ALL ".join(status_tables)
# Build comprehensive query with CTEs for PR status
query = f"""
WITH review_events AS (
SELECT
JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') as url,
COALESCE(
JSON_EXTRACT_SCALAR(payload, '$.review.submitted_at'),
CAST(created_at AS STRING)
) as reviewed_at,
actor.login as reviewer,
created_at
FROM (
{review_union}
)
WHERE type = 'PullRequestReviewEvent'
AND actor.login = @identifier
AND JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') IS NOT NULL
),
pr_status AS (
SELECT
JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') as url,
JSON_EXTRACT_SCALAR(payload, '$.pull_request.merged_at') as merged_at,
JSON_EXTRACT_SCALAR(payload, '$.pull_request.closed_at') as closed_at,
created_at
FROM (
{status_union}
)
WHERE type = 'PullRequestEvent'
AND JSON_EXTRACT_SCALAR(payload, '$.action') = 'closed'
AND JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') IN (
SELECT DISTINCT url FROM review_events
)
QUALIFY ROW_NUMBER() OVER (PARTITION BY url ORDER BY created_at DESC) = 1
)
SELECT DISTINCT
re.url,
re.reviewed_at,
re.created_at,
ps.merged_at,
ps.closed_at
FROM review_events re
LEFT JOIN pr_status ps ON re.url = ps.url
ORDER BY re.reviewed_at DESC
"""
job_config = bigquery.QueryJobConfig(
query_parameters=[
bigquery.ScalarQueryParameter("identifier", "STRING", identifier)
]
)
print(f" Querying {len(review_tables)} review tables and {len(status_tables)} status tables...")
try:
query_job = client.query(query, job_config=job_config)
results = list(query_job.result())
print(f" β Found {len(results)} review events")
return results
except Exception as e:
print(f" β BigQuery error: {str(e)}")
return []
def extract_review_metadata_from_bigquery(review_row):
"""
Extract minimal PR review metadata from BigQuery row.
Args:
review_row: BigQuery row from PullRequestReviewEvent query
Returns:
Dictionary with review metadata containing:
- url: PR URL
- reviewed_at: Review timestamp
- merged_at: Merge timestamp (if merged, else None)
- closed_at: Close timestamp (if closed, else None)
"""
url = review_row.url
reviewed_at = review_row.reviewed_at or review_row.created_at
merged_at = getattr(review_row, 'merged_at', None)
closed_at = getattr(review_row, 'closed_at', None)
# Convert to ISO format if datetime and normalize
if hasattr(reviewed_at, 'isoformat'):
reviewed_at = reviewed_at.isoformat()
reviewed_at = normalize_date_format(reviewed_at) if reviewed_at else None
if merged_at and hasattr(merged_at, 'isoformat'):
merged_at = merged_at.isoformat()
merged_at = normalize_date_format(merged_at) if merged_at else None
if closed_at and hasattr(closed_at, 'isoformat'):
closed_at = closed_at.isoformat()
closed_at = normalize_date_format(closed_at) if closed_at else None
return {
'url': url,
'reviewed_at': reviewed_at,
'merged_at': merged_at,
'closed_at': closed_at
}
# =============================================================================
# GITHUB API OPERATIONS
# =============================================================================
def request_with_backoff(method, url, *, headers=None, params=None, json_body=None, data=None, max_retries=10, timeout=30, token_pool=None, token=None):
"""
Perform an HTTP request with exponential backoff and jitter for GitHub API.
Retries on 403/429 (rate limits), 5xx server errors, and transient network exceptions.
Args:
token_pool: Optional TokenPool instance for rate limit tracking
token: Optional token string to mark as rate-limited if 403/429 occurs
Returns the final requests.Response on success or non-retryable status, or None after exhausting retries.
"""
delay = 1.0
for attempt in range(max_retries):
try:
resp = requests.request(
method,
url,
headers=headers or {},
params=params,
json=json_body,
data=data,
timeout=timeout
)
status = resp.status_code
# Success
if 200 <= status < 300:
return resp
# Rate limits or server errors -> retry with backoff
if status in (403, 429) or 500 <= status < 600:
wait = None
reset_timestamp = None
# Prefer Retry-After when present
retry_after = resp.headers.get('Retry-After') or resp.headers.get('retry-after')
if retry_after:
try:
wait = float(retry_after)
except Exception:
wait = None
# Fallback to X-RateLimit-Reset when 403/429
if wait is None and status in (403, 429):
reset_hdr = resp.headers.get('X-RateLimit-Reset') or resp.headers.get('x-ratelimit-reset')
if reset_hdr:
try:
reset_timestamp = int(float(reset_hdr))
wait = max(reset_timestamp - time.time() + 2, 1)
except Exception:
wait = None
# Mark token as rate-limited if we have token pool and token
if status in (403, 429) and token_pool and token:
token_pool.mark_rate_limited(token, reset_timestamp)
# Final fallback: exponential backoff with jitter
if wait is None:
wait = delay + random.uniform(0, 0.5)
# Cap individual wait to avoid extreme sleeps
wait = max(1.0, min(wait, 120.0))
print(f"GitHub API {status}. Backing off {wait:.1f}s (attempt {attempt + 1}/{max_retries})...")
time.sleep(wait)
delay = min(delay * 2, 60.0)
continue
# Non-retryable error; return response for caller to handle
return resp
except requests.RequestException as e:
# Network error -> retry with backoff
wait = delay + random.uniform(0, 0.5)
wait = max(1.0, min(wait, 60.0))
print(f"Request error: {e}. Retrying in {wait:.1f}s (attempt {attempt + 1}/{max_retries})...")
time.sleep(wait)
delay = min(delay * 2, 60.0)
print(f"Exceeded max retries for {url}")
return None
def get_github_tokens():
"""Get all GitHub tokens from environment variables (all vars starting with GITHUB_TOKEN)."""
tokens = []
for key, value in os.environ.items():
if key.startswith('GITHUB_TOKEN') and value:
tokens.append(value)
if not tokens:
print("Warning: No GITHUB_TOKEN found. API rate limits: 60/hour (authenticated: 5000/hour)")
else:
print(f"β Loaded {len(tokens)} GitHub token(s) for rotation")
return tokens
def get_github_token():
"""Get first GitHub token from environment variables (backward compatibility)."""
tokens = get_github_tokens()
return tokens[0] if tokens else None
class TokenPool:
"""
Hybrid token pool with parallel execution and round-robin fallback.
Splits tokens into two pools:
- Parallel pool (50%): For concurrent API calls to maximize throughput
- Round-robin pool (50%): Backup pool for rate limit fallback
Features:
- Automatic fallback when parallel tokens hit rate limits
- Rate limit tracking with timestamp-based recovery
- Thread-safe token management
- Real-time statistics monitoring
"""
def __init__(self, tokens):
import threading
self.all_tokens = tokens if tokens else [None]
self.lock = threading.Lock()
# Split tokens into parallel and round-robin pools (50/50)
total_tokens = len(self.all_tokens)
split_point = max(1, total_tokens // 2)
self.parallel_tokens = self.all_tokens[:split_point]
self.roundrobin_tokens = self.all_tokens[split_point:] if total_tokens > 1 else self.all_tokens
# Round-robin index for fallback pool
self.roundrobin_index = 0
# Rate limit tracking: {token: reset_timestamp}
self.parallel_rate_limited = set()
self.roundrobin_rate_limited = set()
self.rate_limit_resets = {}
# Statistics
self.stats = {
'parallel_calls': 0,
'roundrobin_calls': 0,
'fallback_triggers': 0
}
print(f"π Token Pool Initialized:")
print(f" Total tokens: {total_tokens}")
print(f" Parallel pool: {len(self.parallel_tokens)} tokens")
print(f" Round-robin pool: {len(self.roundrobin_tokens)} tokens")
def _cleanup_expired_rate_limits(self):
"""Remove tokens from rate-limited sets if their reset time has passed."""
current_time = time.time()
expired_tokens = [
token for token, reset_time in self.rate_limit_resets.items()
if current_time >= reset_time
]
for token in expired_tokens:
self.parallel_rate_limited.discard(token)
self.roundrobin_rate_limited.discard(token)
del self.rate_limit_resets[token]
if expired_tokens:
print(f" β Recovered {len(expired_tokens)} token(s) from rate limit")
def get_parallel_token(self):
"""Get an available token from the parallel pool."""
with self.lock:
self._cleanup_expired_rate_limits()
# Find first non-rate-limited parallel token
for token in self.parallel_tokens:
if token not in self.parallel_rate_limited:
self.stats['parallel_calls'] += 1
return token
return None
def get_roundrobin_token(self):
"""Get the next available token from round-robin pool."""
with self.lock:
self._cleanup_expired_rate_limits()
# Try all tokens in round-robin order
attempts = 0
while attempts < len(self.roundrobin_tokens):
token = self.roundrobin_tokens[self.roundrobin_index]
self.roundrobin_index = (self.roundrobin_index + 1) % len(self.roundrobin_tokens)
if token not in self.roundrobin_rate_limited:
self.stats['roundrobin_calls'] += 1
return token
attempts += 1
return None
def get_next_token(self):
"""
Get next available token, trying parallel pool first, then falling back to round-robin.
Returns:
Token string or None if all tokens are rate-limited
"""
# Try parallel pool first
token = self.get_parallel_token()
if token:
return token
# Fallback to round-robin pool
with self.lock:
self.stats['fallback_triggers'] += 1
token = self.get_roundrobin_token()
if not token:
print(" β οΈ All tokens are rate-limited, waiting...")
return token
def get_headers(self):
"""Get headers with the next available token."""
token = self.get_next_token()
return {'Authorization': f'token {token}'} if token else {}
def mark_rate_limited(self, token, reset_timestamp=None):
"""
Mark a token as rate-limited with optional reset timestamp.
Args:
token: The token to mark as rate-limited
reset_timestamp: Unix timestamp when rate limit resets (optional)
"""
if not token:
return
with self.lock:
# Determine which pool the token belongs to
if token in self.parallel_tokens:
self.parallel_rate_limited.add(token)
if token in self.roundrobin_tokens:
self.roundrobin_rate_limited.add(token)
# Store reset timestamp if provided
if reset_timestamp:
self.rate_limit_resets[token] = reset_timestamp
reset_time = datetime.fromtimestamp(reset_timestamp, tz=timezone.utc)
print(f" β° Token rate-limited until {reset_time.strftime('%H:%M:%S')} UTC")
def get_available_parallel_tokens(self):
"""Get list of all available (non-rate-limited) parallel tokens."""
with self.lock:
self._cleanup_expired_rate_limits()
return [t for t in self.parallel_tokens if t not in self.parallel_rate_limited]
def get_stats(self):
"""Get token pool usage statistics."""
with self.lock:
return {
'parallel_calls': self.stats['parallel_calls'],
'roundrobin_calls': self.stats['roundrobin_calls'],
'fallback_triggers': self.stats['fallback_triggers'],
'parallel_rate_limited': len(self.parallel_rate_limited),
'roundrobin_rate_limited': len(self.roundrobin_rate_limited)
}
def print_stats(self):
"""Print token pool usage statistics."""
stats = self.get_stats()
total_calls = stats['parallel_calls'] + stats['roundrobin_calls']
print(f"\nπ Token Pool Statistics:")
print(f" Total API calls: {total_calls}")
if total_calls > 0:
print(f" Parallel calls: {stats['parallel_calls']} ({stats['parallel_calls']/total_calls*100:.1f}%)")
print(f" Round-robin calls: {stats['roundrobin_calls']} ({stats['roundrobin_calls']/total_calls*100:.1f}%)")
print(f" Fallback triggers: {stats['fallback_triggers']}")
print(f" Currently rate-limited: {stats['parallel_rate_limited']} parallel, {stats['roundrobin_rate_limited']} round-robin")
def validate_github_username(identifier):
"""Verify that a GitHub identifier exists with backoff-aware requests."""
try:
token = get_github_token()
headers = {'Authorization': f'token {token}'} if token else {}
url = f'https://api.github.com/users/{identifier}'
response = request_with_backoff('GET', url, headers=headers, max_retries=1)
if response is None:
return False, "Validation error: network/rate limit exhausted"
if response.status_code == 200:
return True, "Username is valid"
elif response.status_code == 404:
return False, "GitHub identifier not found"
else:
return False, f"Validation error: HTTP {response.status_code}"
except Exception as e:
return False, f"Validation error: {str(e)}"
def fetch_reviews_with_time_partition(base_query, start_date, end_date, token_pool, prs_by_url, depth=0):
"""
Fetch reviews within a specific time range using time-based partitioning.
Recursively splits the time range if hitting the 1000-result limit.
Supports splitting by day, hour, minute, and second as needed.
Args:
depth: Current recursion depth (for tracking)
Returns the number of reviews found in this time partition.
"""
# Calculate time difference
time_diff = end_date - start_date
total_seconds = time_diff.total_seconds()
# Determine granularity and format dates accordingly
if total_seconds >= 86400: # >= 1 day
# Use day granularity (YYYY-MM-DD)
start_str = start_date.strftime('%Y-%m-%d')
end_str = end_date.strftime('%Y-%m-%d')
elif total_seconds >= 3600: # >= 1 hour but < 1 day
# Use hour granularity (YYYY-MM-DDTHH:MM:SSZ)
start_str = start_date.strftime('%Y-%m-%dT%H:00:00Z')
end_str = end_date.strftime('%Y-%m-%dT%H:59:59Z')
elif total_seconds >= 60: # >= 1 minute but < 1 hour
# Use minute granularity (YYYY-MM-DDTHH:MM:SSZ)
start_str = start_date.strftime('%Y-%m-%dT%H:%M:00Z')
end_str = end_date.strftime('%Y-%m-%dT%H:%M:59Z')
else: # < 1 minute
# Use second granularity (YYYY-MM-DDTHH:MM:SSZ)
start_str = start_date.strftime('%Y-%m-%dT%H:%M:%SZ')
end_str = end_date.strftime('%Y-%m-%dT%H:%M:%SZ')
# Add date range to query (use created for PR search)
query = f'{base_query} created:{start_str}..{end_str}'
indent = " " + " " * depth
print(f"{indent}Searching range {start_str} to {end_str}...")
page = 1
per_page = 100
total_in_partition = 0
while True:
url = 'https://api.github.com/search/issues' # Use issues endpoint for PR search
params = {
'q': query,
'per_page': per_page,
'page': page,
'sort': 'created',
'order': 'asc'
}
token = token_pool.get_next_token()
headers = {'Authorization': f'token {token}'} if token else {}
try:
response = request_with_backoff('GET', url, headers=headers, params=params, token_pool=token_pool, token=token)
if response is None:
print(f"{indent} Error: retries exhausted for range {start_str} to {end_str}")
return total_in_partition
if response.status_code != 200:
print(f"{indent} Error: HTTP {response.status_code} for range {start_str} to {end_str}")
return total_in_partition
data = response.json()
total_count = data.get('total_count', 0)
items = data.get('items', [])
if not items:
break
# Add PR reviews to global dict (keyed by PR URL)
for pr in items:
url = pr.get('url')
pr_number = pr.get('number')
# Use PR URL as unique key (more reliable than number alone)
if url and url not in prs_by_url:
prs_by_url[url] = pr
total_in_partition += 1
# Check if we hit the 1000-result limit
if total_count > 1000 and page == 10:
print(f"{indent} β οΈ Hit 1000-result limit ({total_count} total). Splitting time range...")
# Determine how to split based on time range duration
if total_seconds < 2: # Less than 2 seconds - can't split further
print(f"{indent} β οΈ Cannot split further (range < 2 seconds). Some results may be missing.")
break
elif total_seconds < 120: # Less than 2 minutes - split by seconds
# Split into 2-4 parts depending on range
num_splits = min(4, max(2, int(total_seconds / 30)))
split_duration = time_diff / num_splits
split_dates = [start_date + split_duration * i for i in range(num_splits + 1)]
total_from_splits = 0
for i in range(num_splits):
split_start = split_dates[i]
split_end = split_dates[i + 1]
# Avoid overlapping ranges (add 1 second to start)
if i > 0:
split_start = split_start + timedelta(seconds=1)
count = fetch_reviews_with_time_partition(
base_query, split_start, split_end, token_pool, prs_by_url, depth + 1
)
total_from_splits += count
return total_from_splits
elif total_seconds < 7200: # Less than 2 hours - split by minutes
# Split into 2-4 parts
num_splits = min(4, max(2, int(total_seconds / 1800)))
split_duration = time_diff / num_splits
split_dates = [start_date + split_duration * i for i in range(num_splits + 1)]
total_from_splits = 0
for i in range(num_splits):
split_start = split_dates[i]
split_end = split_dates[i + 1]
# Avoid overlapping ranges (add 1 minute to start)
if i > 0:
split_start = split_start + timedelta(minutes=1)
count = fetch_reviews_with_time_partition(
base_query, split_start, split_end, token_pool, prs_by_url, depth + 1
)
total_from_splits += count
return total_from_splits
elif total_seconds < 172800: # Less than 2 days - split by hours
# Split into 2-4 parts
num_splits = min(4, max(2, int(total_seconds / 43200)))
split_duration = time_diff / num_splits
split_dates = [start_date + split_duration * i for i in range(num_splits + 1)]
total_from_splits = 0
for i in range(num_splits):
split_start = split_dates[i]
split_end = split_dates[i + 1]
# Avoid overlapping ranges (add 1 hour to start)
if i > 0:
split_start = split_start + timedelta(hours=1)
count = fetch_reviews_with_time_partition(
base_query, split_start, split_end, token_pool, prs_by_url, depth + 1
)
total_from_splits += count
return total_from_splits
else: # 2+ days - split by days
days_diff = time_diff.days
# Use aggressive splitting for large ranges or deep recursion
# Split into 4 parts if range is > 30 days, otherwise split in half
if days_diff > 30 or depth > 5:
# Split into 4 parts for more aggressive partitioning
quarter_diff = time_diff / 4
split_dates = [
start_date,
start_date + quarter_diff,
start_date + quarter_diff * 2,
start_date + quarter_diff * 3,
end_date
]
total_from_splits = 0
for i in range(4):
split_start = split_dates[i]
split_end = split_dates[i + 1]
# Avoid overlapping ranges
if i > 0:
split_start = split_start + timedelta(days=1)
count = fetch_reviews_with_time_partition(
base_query, split_start, split_end, token_pool, prs_by_url, depth + 1
)
total_from_splits += count
return total_from_splits
else:
# Binary split for smaller ranges
mid_date = start_date + time_diff / 2
# Recursively fetch both halves
count1 = fetch_reviews_with_time_partition(
base_query, start_date, mid_date, token_pool, prs_by_url, depth + 1
)
count2 = fetch_reviews_with_time_partition(
base_query, mid_date + timedelta(days=1), end_date, token_pool, prs_by_url, depth + 1
)
return count1 + count2
# Normal pagination: check if there are more pages
if len(items) < per_page or page >= 10:
break
page += 1
time.sleep(0.5) # Courtesy delay between pages
except Exception as e:
print(f"{indent} Error fetching range {start_str} to {end_str}: {str(e)}")
return total_in_partition
if total_in_partition > 0:
print(f"{indent} β Found {total_in_partition} reviews in range {start_str} to {end_str}")
return total_in_partition
def fetch_reviews_parallel(query_patterns, start_date, end_date, token_pool, prs_by_url):
"""
Fetch reviews for multiple query patterns in parallel using available parallel tokens.
This function uses ThreadPoolExecutor to execute multiple query patterns concurrently,
with each pattern using a dedicated token from the parallel pool. Falls back to
sequential execution if insufficient parallel tokens are available.
Args:
query_patterns: List of query pattern strings (e.g., ['is:pr author:bot1', 'is:pr reviewed-by:bot1'])
start_date: Start datetime for time range
end_date: End datetime for time range
token_pool: TokenPool instance for token management
prs_by_url: Dictionary to collect PRs by URL (shared across patterns)
Returns:
Total number of PRs found across all patterns
"""
from concurrent.futures import ThreadPoolExecutor, as_completed
import threading
# Check how many parallel tokens are available
available_tokens = token_pool.get_available_parallel_tokens()
if len(available_tokens) < 2 or len(query_patterns) < 2:
# Not enough tokens or patterns for parallelization, use sequential
print(f" β οΈ Sequential execution: {len(available_tokens)} parallel tokens available for {len(query_patterns)} patterns")
total_found = 0
for pattern in query_patterns:
pattern_prs = {}
count = fetch_reviews_with_time_partition(
pattern, start_date, end_date, token_pool, pattern_prs, depth=0
)
# Merge pattern results into global dict
with threading.Lock():
for url, pr in pattern_prs.items():
if url not in prs_by_url:
prs_by_url[url] = pr
total_found += count
return total_found
# Use parallel execution
print(f" π Parallel execution: {len(available_tokens)} parallel tokens for {len(query_patterns)} patterns")
# Thread-safe lock for updating prs_by_url
lock = threading.Lock()
def fetch_pattern(pattern):
"""Fetch reviews for a single pattern (runs in parallel)."""
pattern_prs = {}
try:
count = fetch_reviews_with_time_partition(
pattern, start_date, end_date, token_pool, pattern_prs, depth=0
)
return pattern, pattern_prs, count
except Exception as e:
print(f" Error fetching pattern '{pattern}': {str(e)}")
return pattern, {}, 0
# Execute patterns in parallel
max_workers = min(len(query_patterns), len(available_tokens))
total_found = 0
with ThreadPoolExecutor(max_workers=max_workers) as executor:
# Submit all patterns
future_to_pattern = {
executor.submit(fetch_pattern, pattern): pattern
for pattern in query_patterns
}
# Collect results as they complete
for future in as_completed(future_to_pattern):
pattern = future_to_pattern[future]
try:
_, pattern_prs, count = future.result()
# Merge results into global dict (thread-safe)
with lock:
for url, pr in pattern_prs.items():
if url not in prs_by_url:
prs_by_url[url] = pr
total_found += count
print(f" β Pattern '{pattern}' completed: {count} PRs found")
except Exception as e:
print(f" β Pattern '{pattern}' failed: {str(e)}")
return total_found
def extract_review_metadata(pr):
"""
Extract minimal PR review metadata for efficient storage.
Only keeps essential fields: url, reviewed_at, merged_at, closed_at.
Note: agent_name is not stored as it's inferred from the folder structure.
Status can be derived from the timestamps:
- merged_at: Timestamp if PR was merged, None otherwise
- closed_at: Timestamp if PR was closed (either merged or just closed), None otherwise
Merged PR = PR that was merged (merged_at is not None)
Rejected PR = PR that was closed without merging (closed_at is not None but merged_at is None)
Open PR = PR still open (both merged_at and closed_at are None)
"""
# Extract PR metadata from search results
# The GitHub search API returns PR data from /search/issues endpoint
url = pr.get('url')
created_at = pr.get('created_at')
closed_at = pr.get('closed_at')
# Check if PR has pull_request field (indicates it's a PR, not an issue)
pull_request_data = pr.get('pull_request', {})
merged_at = pull_request_data.get('merged_at') if pull_request_data else None
return {
'url': url,
'reviewed_at': created_at, # When the PR was created (agent reviewed it)
'merged_at': merged_at,
'closed_at': closed_at
}
def get_pr_status_from_metadata(review_meta):
"""
Derive PR status from merged_at and closed_at fields.
Args:
review_meta: Dictionary containing merged_at and closed_at fields
Returns:
str: 'merged', 'closed', or 'open'
"""
merged_at = review_meta.get('merged_at')
closed_at = review_meta.get('closed_at')
# If merged_at is set (not None and not False), PR is merged
if merged_at:
return 'merged'
# If closed_at is set but not merged, PR is closed without merging
elif closed_at:
return 'closed'
# Otherwise, PR is still open
else:
return 'open'
def calculate_review_stats_from_metadata(metadata_list):
"""
Calculate statistics from a list of review metadata (lightweight objects).
Works with minimal metadata: url, reviewed_at, merged_at, closed_at.
Returns a dictionary with comprehensive review metrics.
Acceptance Rate is calculated as:
merged PRs / (merged PRs + rejected PRs) * 100
Merged PRs = PRs that were merged (merged_at is not None)
Rejected PRs = PRs that were closed without merging (closed_at is not None but merged_at is None)
Pending PRs = PRs still open (both merged_at and closed_at are None) - excluded from acceptance rate
"""
total_reviews = len(metadata_list)
# Count merged PRs (merged_at is set)
merged_prs = sum(1 for review_meta in metadata_list
if get_pr_status_from_metadata(review_meta) == 'merged')
# Count rejected PRs (closed without merging)
rejected_prs = sum(1 for review_meta in metadata_list
if get_pr_status_from_metadata(review_meta) == 'closed')
# Count pending PRs (still open)
pending_prs = sum(1 for review_meta in metadata_list
if get_pr_status_from_metadata(review_meta) == 'open')
# Calculate acceptance rate (exclude pending PRs)
completed_prs = merged_prs + rejected_prs
acceptance_rate = (merged_prs / completed_prs * 100) if completed_prs > 0 else 0
return {
'total_reviews': total_reviews,
'merged_prs': merged_prs,
'pending_prs': pending_prs,
'acceptance_rate': round(acceptance_rate, 2),
}
def calculate_monthly_metrics_by_agent(top_n=None):
"""
Calculate monthly metrics for all agents (or top N agents) for visualization.
Loads data directly from SWE-Arena/review_metadata dataset.
Args:
top_n: If specified, only return metrics for the top N agents by total reviews.
Agents are ranked by their total review count across all months.
Returns:
dict: {
'agents': list of agent names,
'months': list of month labels (e.g., '2025-01'),
'data': {
agent_name: {
'acceptance_rates': list of acceptance rates by month,
'total_reviews': list of review counts by month,
'merged_prs': list of merged PR counts by month,
}
}
}
"""
# Load ALL agents from HuggingFace agents repo
agents = load_agents_from_hf()
# Create mapping from agent_identifier to agent_name
identifier_to_name = {agent.get('github_identifier'): agent.get('name') for agent in agents if agent.get('github_identifier')}
# Load all review metadata from review_metadata dataset
all_metadata = load_review_metadata()
if not all_metadata:
return {'agents': [], 'months': [], 'data': {}}
# Group by agent and month
agent_month_data = defaultdict(lambda: defaultdict(list))
for review_meta in all_metadata:
agent_identifier = review_meta.get('agent_identifier')
reviewed_at = review_meta.get('reviewed_at')
if not agent_identifier or not reviewed_at:
continue
# Get agent_name from identifier
agent_name = identifier_to_name.get(agent_identifier, agent_identifier)
try:
dt = datetime.fromisoformat(reviewed_at.replace('Z', '+00:00'))
month_key = f"{dt.year}-{dt.month:02d}"
agent_month_data[agent_name][month_key].append(review_meta)
except Exception as e:
print(f"Warning: Could not parse date '{reviewed_at}': {e}")
continue
# Get all unique months and sort them
all_months = set()
for agent_data in agent_month_data.values():
all_months.update(agent_data.keys())
months = sorted(list(all_months))
# Calculate metrics for each agent and month
result_data = {}
for agent_name, month_dict in agent_month_data.items():
acceptance_rates = []
total_reviews_list = []
merged_prs_list = []
for month in months:
reviews_in_month = month_dict.get(month, [])
# Count merged PRs (merged_at is set)
merged_count = sum(1 for review in reviews_in_month
if get_pr_status_from_metadata(review) == 'merged')
# Count rejected PRs (closed without merging)
rejected_count = sum(1 for review in reviews_in_month
if get_pr_status_from_metadata(review) == 'closed')
# Total reviews created in this month
total_count = len(reviews_in_month)
# Calculate acceptance rate (exclude pending PRs)
completed_count = merged_count + rejected_count
acceptance_rate = (merged_count / completed_count * 100) if completed_count > 0 else None
acceptance_rates.append(acceptance_rate)
total_reviews_list.append(total_count)
merged_prs_list.append(merged_count)
result_data[agent_name] = {
'acceptance_rates': acceptance_rates,
'total_reviews': total_reviews_list,
'merged_prs': merged_prs_list,
}
# Filter to top N agents if specified
agents_list = sorted(list(agent_month_data.keys()))
if top_n is not None and top_n > 0:
# Calculate total reviews for each agent across all months
agent_totals = []
for agent_name in agents_list:
total_reviews = sum(result_data[agent_name]['total_reviews'])
agent_totals.append((agent_name, total_reviews))
# Sort by total reviews (descending) and take top N
agent_totals.sort(key=lambda x: x[1], reverse=True)
top_agents = [agent_name for agent_name, _ in agent_totals[:top_n]]
# Filter result_data to only include top agents
result_data = {agent: result_data[agent] for agent in top_agents if agent in result_data}
agents_list = top_agents
return {
'agents': agents_list,
'months': months,
'data': result_data
}
# =============================================================================
# REVIEW METADATA STORAGE & RETRIEVAL
# =============================================================================
def group_metadata_by_date(metadata_list):
"""
Group review metadata by exact date (year.month.day) for efficient daily storage.
Returns dict: {(year, month, day): [metadata_list]}
"""
grouped = defaultdict(list)
for review_meta in metadata_list:
reviewed_at = review_meta.get('reviewed_at')
if not reviewed_at:
continue
try:
dt = datetime.fromisoformat(reviewed_at.replace('Z', '+00:00'))
key = (dt.year, dt.month, dt.day)
grouped[key].append(review_meta)
except Exception as e:
print(f"Warning: Could not parse date '{reviewed_at}': {e}")
return dict(grouped)
def save_review_metadata_to_hf(metadata_list, agent_identifier):
"""
Save review metadata to HuggingFace dataset, organized by [agent_identifier]/YYYY.MM.DD.jsonl.
Each file is stored in the agent's folder and named YYYY.MM.DD.jsonl for that day's reviews.
This function APPENDS new metadata and DEDUPLICATES by URL.
Uses batch upload to avoid rate limit (uploads entire folder in single commit).
Args:
metadata_list: List of review metadata dictionaries
agent_identifier: GitHub identifier of the agent (used as folder name)
"""
import tempfile
import shutil
try:
token = get_hf_token()
if not token:
raise Exception("No HuggingFace token found")
api = HfApi()
# Group by exact date (year, month, day)
grouped = group_metadata_by_date(metadata_list)
# Create a temporary directory for batch upload
temp_dir = tempfile.mkdtemp()
agent_folder = os.path.join(temp_dir, agent_identifier)
os.makedirs(agent_folder, exist_ok=True)
try:
print(f"π¦ Preparing batch upload for {len(grouped)} daily files...")
# Process each daily file
for (review_year, month, day), day_metadata in grouped.items():
filename = f"{agent_identifier}/{review_year}.{month:02d}.{day:02d}.jsonl"
local_filename = os.path.join(agent_folder, f"{review_year}.{month:02d}.{day:02d}.jsonl")
# Download existing file if it exists
existing_metadata = []
try:
file_path = hf_hub_download(
repo_id=REVIEW_METADATA_REPO,
filename=filename,
repo_type="dataset",
token=token
)
existing_metadata = load_jsonl(file_path)
print(f" Found {len(existing_metadata)} existing reviews in {filename}")
except Exception:
print(f" Creating new file: {filename}")
# Merge and deduplicate by URL
existing_by_url = {meta['url']: meta for meta in existing_metadata if meta.get('url')}
new_by_url = {meta['url']: meta for meta in day_metadata if meta.get('url')}
# Update with new data (new data overwrites old)
existing_by_url.update(new_by_url)
merged_metadata = list(existing_by_url.values())
# Save to temp directory
save_jsonl(local_filename, merged_metadata)
print(f" Prepared {len(merged_metadata)} reviews for {filename}")
# Upload entire folder using upload_large_folder (optimized for large files)
# Note: upload_large_folder creates multiple commits automatically and doesn't support custom commit_message
print(f"π€ Uploading {len(grouped)} files...")
upload_large_folder_with_backoff(
api=api,
folder_path=temp_dir,
repo_id=REVIEW_METADATA_REPO,
repo_type="dataset"
)
print(f" β Batch upload complete for {agent_identifier}")
return True
finally:
# Always clean up temp directory
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
except Exception as e:
print(f"β Error saving review metadata: {str(e)}")
import traceback
traceback.print_exc()
return False
def load_review_metadata():
"""
Load review metadata from the last LEADERBOARD_TIME_FRAME_DAYS.
Structure: [agent_identifier]/YYYY.MM.DD.jsonl
Returns:
List of dictionaries with 'agent_identifier' added to each review metadata.
Only includes reviews from the last LEADERBOARD_TIME_FRAME_DAYS.
"""
# Calculate cutoff date based on LEADERBOARD_TIME_FRAME_DAYS
current_time = datetime.now(timezone.utc)
cutoff_date = current_time - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
try:
api = HfApi()
token = get_hf_token()
# List all files in the repository
files = list_repo_files_with_backoff(api=api, repo_id=REVIEW_METADATA_REPO, repo_type="dataset")
# Filter for files matching the pattern: [agent_identifier]/YYYY.MM.DD.jsonl
# AND within the time frame (parse date from filename)
time_frame_files = []
for f in files:
if f.endswith('.jsonl'):
parts = f.split('/')
if len(parts) == 2: # [agent_identifier]/YYYY.MM.DD.jsonl
filename = parts[1]
# Parse date from filename: YYYY.MM.DD.jsonl
try:
date_part = filename.replace('.jsonl', '') # Get YYYY.MM.DD
date_components = date_part.split('.')
if len(date_components) == 3:
file_year, file_month, file_day = map(int, date_components)
file_date = datetime(file_year, file_month, file_day, tzinfo=timezone.utc)
# Only include files within the time frame
if file_date >= cutoff_date:
time_frame_files.append(f)
except Exception:
# If we can't parse the date, skip this file
continue
print(f"π₯ Loading review metadata from last {LEADERBOARD_TIME_FRAME_DAYS} days ({len(time_frame_files)} daily files across all agents)...")
all_metadata = []
agent_identifiers_found = set()
for filename in time_frame_files:
try:
# Extract agent_identifier from path (first part)
# Format: agent_identifier/YYYY.MM.DD.jsonl
parts = filename.split('/')
if len(parts) != 2:
print(f" Warning: Unexpected filename format: {filename}")
continue
agent_identifier = parts[0]
agent_identifiers_found.add(agent_identifier)
file_path = hf_hub_download_with_backoff(
repo_id=REVIEW_METADATA_REPO,
filename=filename,
repo_type="dataset",
token=token
)
day_metadata = load_jsonl(file_path)
# Add agent_identifier and filter by time frame (double-check)
filtered_count = 0
for review_meta in day_metadata:
# Validate review date is within time frame
reviewed_at = review_meta.get('reviewed_at')
if reviewed_at:
try:
dt = datetime.fromisoformat(reviewed_at.replace('Z', '+00:00'))
if dt < cutoff_date:
continue # Skip reviews older than time frame
except Exception:
pass # Keep reviews with unparseable dates
review_meta['agent_identifier'] = agent_identifier
all_metadata.append(review_meta)
filtered_count += 1
print(f" β Loaded {filtered_count} reviews from {filename}")
except Exception as e:
print(f" Warning: Could not load {filename}: {str(e)}")
print(f"β Loaded {len(all_metadata)} total reviews from last {LEADERBOARD_TIME_FRAME_DAYS} days")
return all_metadata
except Exception as e:
print(f"β Error loading review metadata from last {LEADERBOARD_TIME_FRAME_DAYS} days: {str(e)}")
return []
def get_latest_review_date_for_agent(agent_identifier):
"""
Get the latest review creation date for an agent from stored metadata.
Used for incremental updates - only fetch reviews newer than this date.
Structure: [agent_identifier]/YYYY.MM.DD.jsonl
Args:
agent_identifier: GitHub identifier of the agent
Returns:
datetime or None if no existing reviews found.
"""
try:
api = HfApi()
token = get_hf_token()
# List all files in the repository
files = list_repo_files_with_backoff(api=api, repo_id=REVIEW_METADATA_REPO, repo_type="dataset")
# Filter for files in this agent's folder
# New structure: [agent_identifier]/YYYY.MM.DD.jsonl
agent_pattern = f"{agent_identifier}/"
agent_files = [f for f in files if f.startswith(agent_pattern) and f.endswith('.jsonl')]
if not agent_files:
return None
# Find latest created_at across all files
latest_date = None
for filename in agent_files:
try:
file_path = hf_hub_download_with_backoff(
repo_id=REVIEW_METADATA_REPO,
filename=filename,
repo_type="dataset",
token=token
)
metadata = load_jsonl(file_path)
for review_meta in metadata:
reviewed_at = review_meta.get("reviewed_at")
if reviewed_at:
try:
dt = datetime.fromisoformat(reviewed_at.replace("Z", "+00:00"))
if latest_date is None or dt > latest_date:
latest_date = dt
except Exception:
continue
except Exception:
continue
return latest_date
except Exception:
return None
def get_daily_files_last_time_frame(agent_identifier):
"""
Get list of daily file paths for an agent from the configured time frame.
Args:
agent_identifier: GitHub identifier of the agent
Returns:
List of file paths in format: [agent_identifier]/YYYY.MM.DD.jsonl
"""
try:
api = HfApi()
token = get_hf_token()
# Calculate date range using configured time frame
today = datetime.now(timezone.utc)
cutoff_date = today - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
# List all files in the repository
files = list_repo_files_with_backoff(api=api, repo_id=REVIEW_METADATA_REPO, repo_type="dataset")
# Filter for files in this agent's folder
agent_pattern = f"{agent_identifier}/"
agent_files = [f for f in files if f.startswith(agent_pattern) and f.endswith('.jsonl')]
# Filter by date range (extract date from filename)
recent_files = []
for filename in agent_files:
try:
# Extract date from filename: YYYY.MM.DD.jsonl
parts = filename.split('/')
if len(parts) != 2:
continue
date_part = parts[1].replace('.jsonl', '') # Get YYYY.MM.DD
date_components = date_part.split('.')
if len(date_components) != 3:
continue
file_year, file_month, file_day = map(int, date_components)
file_date = datetime(file_year, file_month, file_day, tzinfo=timezone.utc)
# Include if within configured time frame
if cutoff_date <= file_date <= today:
recent_files.append(filename)
except Exception:
continue
return recent_files
except Exception as e:
print(f"Error getting daily files: {str(e)}")
return []
def fetch_review_current_status(review_url, token):
"""
Fetch the current revert status of a single review from GitHub API.
Args:
token: GitHub API token
token: GitHub API token
Returns:
Dictionary with updated is_reverted and revert_at, or None if failed
"""
try:
# Convert HTML URL to API URL
# https://github.com/owner/repo/reviews/123 -> https://api.github.com/repos/owner/repo/reviews/123
parts = review_url.replace('https://github.com/', '').split('/')
if len(parts) < 4:
return None
owner, repo, review_word, review_number = parts[0], parts[1], parts[2], parts[3]
api_url = f'https://api.github.com/repos/{owner}/{repo}/reviews/{review_number}'
headers = {'Authorization': f'token {token}'} if token else {}
response = request_with_backoff('GET', api_url, headers=headers, max_retries=3)
if response is None or response.status_code != 200:
return None
review_data = response.json()
state = review_data.get('state')
state_reason = review_data.get('state_reason')
closed_at = review_data.get('closed_at')
return {
'state': state,
'state_reason': state_reason,
'closed_at': closed_at
}
except Exception as e:
print(f" Error fetching review status for {review_url}: {str(e)}")
return None
def refresh_review_status_for_agent(agent_identifier, token):
"""
Refresh status for all open reviews from the last month for an agent.
Only updates reviews that are still open (state="open" or no state_reason).
This implements the smart update strategy:
- Skip reviews that are already closed/resolved
- Fetch current status for open reviews
- Update and save back to daily files
Args:
agent_identifier: GitHub identifier of the agent
token: GitHub API token
Returns:
Tuple: (total_checked, updated_count)
"""
print(f"\nπ Refreshing open reviews for {agent_identifier} (last month)...")
try:
# Get daily files from configured time frame
recent_files = get_daily_files_last_time_frame(agent_identifier)
if not recent_files:
print(f" No recent files found for {agent_identifier}")
return (0, 0)
print(f" Found {len(recent_files)} daily files to check")
total_checked = 0
updated_count = 0
# Process each file
for filename in recent_files:
try:
# Download file
file_path = hf_hub_download(
repo_id=REVIEW_METADATA_REPO,
filename=filename,
repo_type="dataset",
token=get_hf_token()
)
reviews = load_jsonl(file_path)
if not reviews:
continue
updated_reviews = []
file_had_updates = False
# Check each review
for review in reviews:
# Skip if already closed (has a state_reason)
if review.get("is_reverted"):
updated_reviews.append(review)
continue
# Review may have been reverted, check status
review_url = review.get("url")
if not review_url:
updated_reviews.append(review)
continue
current_status = fetch_review_current_status(review_url, token)
if current_status:
# Check if status changed (now closed)
if current_status['state'] == 'closed':
print(f" β Review status changed: {review_url}")
review['state'] = current_status['state']
review['state_reason'] = current_status['state_reason']
review['closed_at'] = current_status['closed_at']
updated_count += 1
file_had_updates = True
updated_reviews.append(review)
time.sleep(0.1) # Rate limiting courtesy delay
# Save file if there were updates
if file_had_updates:
# Extract filename components for local save
parts = filename.split('/')
local_filename = parts[-1] # Just YYYY.MM.DD.jsonl
# Save locally
save_jsonl(local_filename, updated_reviews)
try:
# Upload back to HuggingFace
api = HfApi()
upload_with_retry(
api=api,
path_or_fileobj=local_filename,
path_in_repo=filename,
repo_id=REVIEW_METADATA_REPO,
repo_type="dataset",
token=get_hf_token()
)
print(f" πΎ Updated {filename}")
finally:
# Always clean up local file, even if upload fails
if os.path.exists(local_filename):
os.remove(local_filename)
except Exception as e:
print(f" Warning: Could not process {filename}: {str(e)}")
continue
print(f" β
Refresh complete: {total_checked} open reviews checked, {updated_count} updated")
return (total_checked, updated_count)
except Exception as e:
print(f" β Error refreshing reviews for {agent_identifier}: {str(e)}")
return (0, 0)
# =============================================================================
# HUGGINGFACE DATASET OPERATIONS
# =============================================================================
def load_agents_from_hf():
"""Load all agent metadata JSON files from HuggingFace dataset."""
try:
api = HfApi()
agents = []
# List all files in the repository
files = list_repo_files_with_backoff(api=api, repo_id=AGENTS_REPO, repo_type="dataset")
# Filter for JSON files only
json_files = [f for f in files if f.endswith('.json')]
# Download and parse each JSON file
for json_file in json_files:
try:
file_path = hf_hub_download_with_backoff(
repo_id=AGENTS_REPO,
filename=json_file,
repo_type="dataset"
)
with open(file_path, 'r') as f:
agent_data = json.load(f)
# Only process agents with status == "public"
if agent_data.get('status') != 'public':
print(f"Skipping {json_file}: status is not 'public'")
continue
# Extract github_identifier from filename (e.g., "claude[bot].json" -> "claude[bot]")
filename_identifier = json_file.replace('.json', '')
# Add or override github_identifier to match filename
agent_data['github_identifier'] = filename_identifier
agents.append(agent_data)
except Exception as e:
print(f"Warning: Could not load {json_file}: {str(e)}")
continue
print(f"β Loaded {len(agents)} agents from HuggingFace")
return agents
except Exception as e:
print(f"Could not load agents from HuggingFace: {str(e)}")
return None
def get_hf_token():
"""Get HuggingFace token from environment variables."""
token = os.getenv('HF_TOKEN')
if not token:
print("Warning: HF_TOKEN not found in environment variables")
return token
def upload_with_retry(api, path_or_fileobj, path_in_repo, repo_id, repo_type, token, max_retries=5):
"""
Upload file to HuggingFace with exponential backoff retry logic.
Args:
api: HfApi instance
path_or_fileobj: Local file path to upload
path_in_repo: Target path in the repository
repo_id: Repository ID
repo_type: Type of repository (e.g., "dataset")
token: HuggingFace token
max_retries: Maximum number of retry attempts
Returns:
True if upload succeeded, raises exception if all retries failed
"""
delay = 2.0 # Initial delay in seconds
for attempt in range(max_retries):
try:
api.upload_file(
path_or_fileobj=path_or_fileobj,
path_in_repo=path_in_repo,
repo_id=repo_id,
repo_type=repo_type,
token=token
)
if attempt > 0:
print(f" β Upload succeeded on attempt {attempt + 1}/{max_retries}")
return True
except Exception as e:
if attempt < max_retries - 1:
wait_time = delay + random.uniform(0, 1.0)
print(f" β οΈ Upload failed (attempt {attempt + 1}/{max_retries}): {str(e)}")
print(f" β³ Retrying in {wait_time:.1f} seconds...")
time.sleep(wait_time)
delay = min(delay * 2, 60.0) # Exponential backoff, max 60s
else:
print(f" β Upload failed after {max_retries} attempts: {str(e)}")
raise
def save_agent_to_hf(data):
"""Save a new agent to HuggingFace dataset as {identifier}.json in root."""
try:
api = HfApi()
token = get_hf_token()
if not token:
raise Exception("No HuggingFace token found. Please set HF_TOKEN in your Space settings.")
identifier = data['github_identifier']
filename = f"{identifier}.json"
# Save locally first
with open(filename, 'w') as f:
json.dump(data, f, indent=2)
try:
# Upload to HuggingFace (root directory)
upload_with_retry(
api=api,
path_or_fileobj=filename,
path_in_repo=filename,
repo_id=AGENTS_REPO,
repo_type="dataset",
token=token
)
print(f"β Saved agent to HuggingFace: {filename}")
return True
finally:
# Always clean up local file, even if upload fails
if os.path.exists(filename):
os.remove(filename)
except Exception as e:
print(f"β Error saving agent: {str(e)}")
return False
def save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics):
"""
Save leaderboard data and monthly metrics to HuggingFace dataset as swe-review.json.
Args:
leaderboard_dict: Dictionary of agent stats from construct_leaderboard_from_metadata()
monthly_metrics: Monthly metrics data from calculate_monthly_metrics_by_agent()
Returns:
bool: True if successful, False otherwise
"""
try:
api = HfApi()
token = get_hf_token()
if not token:
raise Exception("No HuggingFace token found. Please set HF_TOKEN in your Space settings.")
filename = "swe-review.json"
# Combine leaderboard and monthly metrics
combined_data = {
'last_updated': datetime.now(timezone.utc).isoformat(),
'leaderboard': leaderboard_dict,
'monthly_metrics': monthly_metrics,
'metadata': {
'leaderboard_time_frame_days': LEADERBOARD_TIME_FRAME_DAYS,
'update_time_frame_days': UPDATE_TIME_FRAME_DAYS
}
}
# Save locally first
with open(filename, 'w') as f:
json.dump(combined_data, f, indent=2)
try:
# Upload to HuggingFace
upload_with_retry(
api=api,
path_or_fileobj=filename,
path_in_repo=filename,
repo_id=LEADERBOARD_REPO,
repo_type="dataset",
token=token
)
print(f"β Saved leaderboard data to HuggingFace: {filename}")
return True
finally:
# Always clean up local file, even if upload fails
if os.path.exists(filename):
os.remove(filename)
except Exception as e:
print(f"β Error saving leaderboard data: {str(e)}")
import traceback
traceback.print_exc()
return False
def load_leaderboard_data_from_hf():
"""
Load leaderboard data and monthly metrics from HuggingFace dataset.
Returns:
dict: Dictionary with 'leaderboard', 'monthly_metrics', and 'last_updated' keys
Returns None if file doesn't exist or error occurs
"""
try:
token = get_hf_token()
filename = "swe-review.json"
# Download file
file_path = hf_hub_download_with_backoff(
repo_id=LEADERBOARD_REPO,
filename=filename,
repo_type="dataset",
token=token
)
# Load JSON data
with open(file_path, 'r') as f:
data = json.load(f)
last_updated = data.get('last_updated', 'Unknown')
print(f"β Loaded leaderboard data from HuggingFace (last updated: {last_updated})")
return data
except Exception as e:
print(f"β οΈ Could not load leaderboard data from HuggingFace: {str(e)}")
return None
def save_leaderboard_and_metrics_to_hf():
"""
Creates a comprehensive JSON file with both leaderboard stats and monthly metrics.
If the file exists, it will be overwritten.
Returns:
bool: True if successful, False otherwise
"""
import io
try:
token = get_hf_token()
if not token:
raise Exception("No HuggingFace token found")
api = HfApi(token=token)
print(f"\n{'='*80}")
print(f"π Preparing leaderboard and metrics data for upload...")
print(f"{'='*80}\n")
# Get leaderboard data from review metadata
print(" Constructing leaderboard data from review metadata...")
leaderboard_data = construct_leaderboard_from_metadata()
# Get monthly metrics data (all agents, not just top N)
print(" Calculating monthly metrics from review metadata...")
monthly_metrics = calculate_monthly_metrics_by_agent(top_n=None)
# Combine into a single structure
combined_data = {
"leaderboard": leaderboard_data,
"monthly_metrics": monthly_metrics,
"metadata": {
"last_updated": datetime.now(timezone.utc).isoformat(),
"time_frame_days": LEADERBOARD_TIME_FRAME_DAYS,
"total_agents": len(leaderboard_data)
}
}
print(f" Leaderboard entries: {len(leaderboard_data)}")
print(f" Monthly metrics for: {len(monthly_metrics['agents'])} agents")
print(f" Time frame: {LEADERBOARD_TIME_FRAME_DAYS} days")
# Convert to JSON and create file-like object
json_content = json.dumps(combined_data, indent=2)
file_like_object = io.BytesIO(json_content.encode('utf-8'))
# Upload to HuggingFace (will overwrite if exists)
print(f"\nπ€ Uploading to {LEADERBOARD_REPO}...")
upload_file_with_backoff(
api=api,
path_or_fileobj=file_like_object,
path_in_repo="swe-review.json",
repo_id=LEADERBOARD_REPO,
repo_type="dataset",
token=token,
commit_message=f"Update leaderboard data - {datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S')} UTC"
)
print(f" β Successfully uploaded swe-review.json")
print(f"{'='*80}\n")
return True
except Exception as e:
print(f"β Error saving leaderboard and metrics: {str(e)}")
import traceback
traceback.print_exc()
return False
# =============================================================================
# DATA MANAGEMENT
# =============================================================================
def mine_all_agents():
"""
Mine review metadata for all agents within UPDATE_TIME_FRAME_DAYS and save to HuggingFace.
Uses BATCHED BigQuery queries for all agents (efficient approach).
"""
# Load agent metadata from HuggingFace
agents = load_agents_from_hf()
if not agents:
print("No agents found in HuggingFace dataset")
return
# Extract all identifiers
identifiers = [agent['github_identifier'] for agent in agents if agent.get('github_identifier')]
if not identifiers:
print("No valid agent identifiers found")
return
print(f"\n{'='*80}")
print(f"Starting review metadata mining for {len(identifiers)} agents")
print(f"Time frame: Last {UPDATE_TIME_FRAME_DAYS} days")
print(f"Data source: BigQuery + GitHub Archive (BATCHED QUERIES)")
print(f"{'='*80}\n")
# Initialize BigQuery client
try:
client = get_bigquery_client()
except Exception as e:
print(f"β Failed to initialize BigQuery client: {str(e)}")
return
# Define time range: past UPDATE_TIME_FRAME_DAYS (excluding today)
current_time = datetime.now(timezone.utc)
end_date = current_time.replace(hour=0, minute=0, second=0, microsecond=0)
start_date = end_date - timedelta(days=UPDATE_TIME_FRAME_DAYS)
try:
# Use batched approach for better performance
# upload_immediately=True means each batch uploads to HuggingFace right after BigQuery completes
all_metadata = fetch_all_pr_metadata_batched(
client, identifiers, start_date, end_date, batch_size=50, upload_immediately=True
)
# Calculate summary statistics
total_prs = sum(len(metadata_list) for metadata_list in all_metadata.values())
agents_with_data = sum(1 for metadata_list in all_metadata.values() if metadata_list)
print(f"\n{'='*80}")
print(f"β
BigQuery mining and upload complete!")
print(f" Total agents: {len(agents)}")
print(f" Agents with data: {agents_with_data}")
print(f" Total PRs found: {total_prs}")
print(f"{'='*80}\n")
except Exception as e:
print(f"β Error during BigQuery fetch: {str(e)}")
import traceback
traceback.print_exc()
return
# After mining is complete, save leaderboard and metrics to HuggingFace
print(f"π€ Uploading leaderboard and metrics data...")
if save_leaderboard_and_metrics_to_hf():
print(f"β Leaderboard and metrics successfully uploaded to {LEADERBOARD_REPO}")
else:
print(f"β οΈ Failed to upload leaderboard and metrics data")
def construct_leaderboard_from_metadata():
"""
Construct leaderboard from stored review metadata instead of fetching all reviews.
Much more memory-efficient and faster.
Returns dictionary of agent stats.
"""
print("π Constructing leaderboard from review metadata...")
# Load agents
agents = load_agents_from_hf()
if not agents:
print("β οΈ No agents found")
return {}
print(f"β Loaded {len(agents)} agents")
# Load all review metadata
all_metadata = load_review_metadata()
print(f"β Loaded {len(all_metadata)} review metadata entries")
cache_dict = {}
for agent in agents:
identifier = agent.get('github_identifier')
agent_name = agent.get('name', 'Unknown')
# Filter metadata for this agent
agent_metadata = [review for review in all_metadata if review.get("agent_identifier") == identifier]
# Calculate stats
stats = calculate_review_stats_from_metadata(agent_metadata)
cache_dict[identifier] = {
'name': agent_name,
'name': agent_name, # Store both for compatibility
'website': agent.get('website', 'N/A'),
'github_identifier': identifier,
**stats
}
print(f"β Constructed cache with {len(cache_dict)} agent entries")
return cache_dict
# =============================================================================
# UI FUNCTIONS
# =============================================================================
def create_monthly_metrics_plot(top_n=5):
"""
Create a Plotly figure with dual y-axes showing:
- Left y-axis: Acceptance Rate (%) as line curves
- Right y-axis: Total Reviews created as bar charts
Each agent gets a unique color for both their line and bars.
Args:
top_n: Number of top agents to show (default: 5)
"""
# Try loading from saved dataset first
saved_data = load_leaderboard_data_from_hf()
if saved_data and 'monthly_metrics' in saved_data:
metrics = saved_data['monthly_metrics']
print(f"π Loaded monthly metrics from saved dataset")
# Apply top_n filter if specified
if top_n is not None and top_n > 0 and metrics.get('agents'):
# Calculate total reviews for each agent
agent_totals = []
for agent_name in metrics['agents']:
agent_data = metrics['data'].get(agent_name, {})
total_reviews = sum(agent_data.get('total_reviews', []))
agent_totals.append((agent_name, total_reviews))
# Sort by total reviews and take top N
agent_totals.sort(key=lambda x: x[1], reverse=True)
top_agents = [agent_name for agent_name, _ in agent_totals[:top_n]]
# Filter metrics to only include top agents
metrics = {
'agents': top_agents,
'months': metrics['months'],
'data': {agent: metrics['data'][agent] for agent in top_agents if agent in metrics['data']}
}
else:
# Fallback: calculate from metadata if saved data doesn't exist
print(f"π Saved data not available, calculating monthly metrics from metadata...")
metrics = calculate_monthly_metrics_by_agent(top_n=top_n)
if not metrics['agents'] or not metrics['months']:
# Return an empty figure with a message
fig = go.Figure()
fig.add_annotation(
text="No data available for visualization",
xref="paper", yref="paper",
x=0.5, y=0.5, showarrow=False,
font=dict(size=16)
)
fig.update_layout(
title=None,
xaxis_title=None,
height=500
)
return fig
# Create figure with secondary y-axis
fig = make_subplots(specs=[[{"secondary_y": True}]])
# Generate unique colors for many agents using HSL color space
def generate_color(index, total):
"""Generate distinct colors using HSL color space for better distribution"""
hue = (index * 360 / total) % 360
saturation = 70 + (index % 3) * 10 # Vary saturation slightly
lightness = 45 + (index % 2) * 10 # Vary lightness slightly
return f'hsl({hue}, {saturation}%, {lightness}%)'
agents = metrics['agents']
months = metrics['months']
data = metrics['data']
# Generate colors for all agents
agent_colors = {agent: generate_color(idx, len(agents)) for idx, agent in enumerate(agents)}
# Add traces for each agent
for idx, agent_name in enumerate(agents):
color = agent_colors[agent_name]
agent_data = data[agent_name]
# Add line trace for acceptance rate (left y-axis)
acceptance_rates = agent_data['acceptance_rates']
# Filter out None values for plotting
x_acceptance = [month for month, rate in zip(months, acceptance_rates) if rate is not None]
y_acceptance = [rate for rate in acceptance_rates if rate is not None]
if x_acceptance and y_acceptance: # Only add trace if there's data
fig.add_trace(
go.Scatter(
x=x_acceptance,
y=y_acceptance,
name=agent_name,
mode='lines+markers',
line=dict(color=color, width=2),
marker=dict(size=8),
legendgroup=agent_name,
showlegend=(top_n is not None and top_n <= 10), # Show legend for top N agents
hovertemplate='<b>Agent: %{fullData.name}</b><br>' +
'Month: %{x}<br>' +
'Acceptance Rate: %{y:.2f}%<br>' +
'<extra></extra>'
),
secondary_y=False
)
# Add bar trace for total reviews (right y-axis)
# Only show bars for months where agent has reviews
x_bars = []
y_bars = []
for month, count in zip(months, agent_data['total_reviews']):
if count > 0: # Only include months with reviews
x_bars.append(month)
y_bars.append(count)
if x_bars and y_bars: # Only add trace if there's data
fig.add_trace(
go.Bar(
x=x_bars,
y=y_bars,
name=agent_name,
marker=dict(color=color, opacity=0.6),
legendgroup=agent_name,
showlegend=False, # Hide duplicate legend entry (already shown in Scatter)
hovertemplate='<b>Agent: %{fullData.name}</b><br>' +
'Month: %{x}<br>' +
'Total Reviews: %{y}<br>' +
'<extra></extra>',
offsetgroup=agent_name # Group bars by agent for proper spacing
),
secondary_y=True
)
# Update axes labels
fig.update_xaxes(title_text=None)
fig.update_yaxes(
title_text="<b>Acceptance Rate (%)</b>",
range=[0, 100],
secondary_y=False,
showticklabels=True,
tickmode='linear',
dtick=10,
showgrid=True
)
fig.update_yaxes(title_text="<b>Total Reviews</b>", secondary_y=True)
# Update layout
show_legend = (top_n is not None and top_n <= 10)
fig.update_layout(
title=None,
hovermode='closest', # Show individual agent info on hover
barmode='group',
height=600,
showlegend=show_legend,
margin=dict(l=50, r=150 if show_legend else 50, t=50, b=50) # More right margin when legend is shown
)
return fig
def get_leaderboard_dataframe():
"""
Load leaderboard from saved dataset and convert to pandas DataFrame for display.
Falls back to constructing from metadata if saved data is not available.
Returns formatted DataFrame sorted by total reviews.
"""
# Try loading from saved dataset first
saved_data = load_leaderboard_data_from_hf()
if saved_data and 'leaderboard' in saved_data:
cache_dict = saved_data['leaderboard']
print(f"π Loaded leaderboard from saved dataset (last updated: {saved_data.get('last_updated', 'Unknown')})")
else:
# Fallback: construct from metadata if saved data doesn't exist
print(f"π Saved data not available, constructing leaderboard from metadata...")
cache_dict = construct_leaderboard_from_metadata()
print(f"π Cache dict size: {len(cache_dict)}")
if not cache_dict:
print("β οΈ WARNING: cache_dict is empty!")
# Return empty DataFrame with correct columns if no data
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
return pd.DataFrame(columns=column_names)
rows = []
filtered_count = 0
for identifier, data in cache_dict.items():
total_reviews = data.get('total_reviews', 0)
print(f" Agent '{identifier}': {total_reviews} reviews")
# Filter out agents with zero total reviews
if total_reviews == 0:
filtered_count += 1
continue
# Only include display-relevant fields
rows.append([
data.get('name', 'Unknown'),
data.get('website', 'N/A'),
total_reviews,
data.get('merged_prs', 0),
data.get('acceptance_rate', 0.0),
])
print(f"π Filtered out {filtered_count} agents with 0 reviews")
print(f"π Leaderboard will show {len(rows)} agents")
# Create DataFrame
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
df = pd.DataFrame(rows, columns=column_names)
# Ensure numeric types
numeric_cols = ["Total Reviews", "Merged PRs", "Acceptance Rate (%)"]
for col in numeric_cols:
if col in df.columns:
df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0)
# Sort by Total Reviews descending
if "Total Reviews" in df.columns and not df.empty:
df = df.sort_values(by="Total Reviews", ascending=False).reset_index(drop=True)
print(f"β
Final DataFrame shape: {df.shape}")
print("="*60 + "\n")
return df
def submit_agent(identifier, agent_name, developer, website):
"""
Submit a new agent to the leaderboard.
Validates input, saves submission, and fetches PR metadata (memory-efficient).
"""
# Validate required fields
if not identifier or not identifier.strip():
return "β GitHub identifier is required", get_leaderboard_dataframe()
if not agent_name or not agent_name.strip():
return "β Agent name is required", get_leaderboard_dataframe()
if not developer or not developer.strip():
return "β Developer name is required", get_leaderboard_dataframe()
if not website or not website.strip():
return "β Website URL is required", get_leaderboard_dataframe()
# Clean inputs
identifier = identifier.strip()
agent_name = agent_name.strip()
developer = developer.strip()
website = website.strip()
# Validate GitHub identifier
is_valid, message = validate_github_username(identifier)
if not is_valid:
return f"β {message}", get_leaderboard_dataframe()
# Check for duplicates by loading agents from HuggingFace
agents = load_agents_from_hf()
if agents:
existing_names = {agent['github_identifier'] for agent in agents}
if identifier in existing_names:
return f"β οΈ Agent with identifier '{identifier}' already exists", get_leaderboard_dataframe()
# Create submission
submission = {
'name': agent_name,
'developer': developer,
'github_identifier': identifier,
'website': website,
}
# Save to HuggingFace
if not save_agent_to_hf(submission):
return "β Failed to save submission", get_leaderboard_dataframe()
# Reconstruct and save leaderboard data with new agent
try:
print(f"π Reconstructing leaderboard with new agent...")
leaderboard_dict = construct_leaderboard_from_metadata()
monthly_metrics = calculate_monthly_metrics_by_agent()
save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics)
print(f"β Leaderboard data updated")
except Exception as e:
print(f"β οΈ Failed to update leaderboard data: {str(e)}")
# Return success message - data will be populated by daily incremental updates
return f"β
Successfully submitted {agent_name}! Review data will be populated by the next daily incremental update.", get_leaderboard_dataframe()
# =============================================================================
# GRADIO APPLICATION
# =============================================================================
print(f"\nπ Starting SWE Agent PR Leaderboard")
print(f" Leaderboard time frame: {LEADERBOARD_TIME_FRAME_DAYS} days ({LEADERBOARD_TIME_FRAME_DAYS // 30} months)")
print(f" Mining update frequency: Every {UPDATE_TIME_FRAME_DAYS} days\n")
# Start APScheduler for monthly PR mining at 12:00 AM UTC every 1st of the month
scheduler = BackgroundScheduler(timezone="UTC")
scheduler.add_job(
mine_all_agents,
trigger=CronTrigger(day=1, hour=0, minute=0), # 12:00 AM UTC every 1st of the month
id='monthly_review_mining',
name='Monthly Review Mining',
replace_existing=True
)
scheduler.start()
print(f"\n{'='*80}")
print(f"β Scheduler initialized successfully")
print(f"βοΈ Mining schedule: Every 1st of the month at 12:00 AM UTC")
print(f"π₯ On startup: Only loads cached data from HuggingFace (no mining)")
print(f"{'='*80}\n")
# Create Gradio interface
with gr.Blocks(title="SWE Agent Review Leaderboard", theme=gr.themes.Soft()) as app:
total_months = LEADERBOARD_TIME_FRAME_DAYS // 30
gr.Markdown("# π SWE Agent Review Leaderboard")
gr.Markdown(f"Track and compare GitHub PR review acceptance statistics for SWE agents")
with gr.Tabs():
# Leaderboard Tab
with gr.Tab("π Leaderboard"):
gr.Markdown(f"*All statistics are based on reviews from the last {total_months} months*")
leaderboard_table = Leaderboard(
value=pd.DataFrame(columns=[col[0] for col in LEADERBOARD_COLUMNS]), # Empty initially
datatype=LEADERBOARD_COLUMNS,
search_columns=["Agent Name", "Website"],
filter_columns=[
ColumnFilter(
"Acceptance Rate (%)",
min=0,
max=100,
default=[0, 100],
type="slider",
label="Acceptance Rate (%)"
)
]
)
# Load leaderboard data when app starts
app.load(
fn=get_leaderboard_dataframe,
inputs=[],
outputs=[leaderboard_table]
)
# Monthly Metrics Section
gr.Markdown("---") # Divider
gr.Markdown("### π Monthly Performance - Top 5 Agents")
gr.Markdown("*Shows acceptance rate trends and review volumes for the most active agents*")
monthly_metrics_plot = gr.Plot(label="Monthly Metrics")
# Load monthly metrics when app starts
app.load(
fn=lambda: create_monthly_metrics_plot(),
inputs=[],
outputs=[monthly_metrics_plot]
)
# Submit Agent Tab
with gr.Tab("β Submit Agent"):
gr.Markdown("### Submit Your Agent")
gr.Markdown("Fill in the details below to add your agent to the leaderboard. Make sure you're logged in to HuggingFace CLI on your machine.")
with gr.Row():
with gr.Column():
github_input = gr.Textbox(
label="GitHub Identifier*",
placeholder="Your agent username (e.g., my-agent-bot)"
)
name_input = gr.Textbox(
label="Agent Name*",
placeholder="Your agent's display name"
)
with gr.Column():
developer_input = gr.Textbox(
label="Developer*",
placeholder="Your developer or team name"
)
website_input = gr.Textbox(
label="Website",
placeholder="https://your-agent-website.com"
)
submit_button = gr.Button(
"Submit Agent",
variant="primary"
)
submission_status = gr.Textbox(
label="Submission Status",
interactive=False
)
# Event handler
submit_button.click(
fn=submit_agent,
inputs=[github_input, name_input, developer_input, website_input],
outputs=[submission_status, leaderboard_table]
)
# Launch application
if __name__ == "__main__":
app.launch() |