zhiminy commited on
Commit
39cbf48
·
1 Parent(s): 325abdd

remove msr

Browse files
Files changed (2) hide show
  1. app.py +62 -29
  2. msr.py +0 -1224
app.py CHANGED
@@ -48,6 +48,7 @@ DEBUG_REVIEW_METADATA_CACHE = defaultdict(list)
48
 
49
  AGENTS_REPO = "SWE-Arena/swe_agents" # HuggingFace dataset for agent metadata
50
  REVIEW_METADATA_REPO = "SWE-Arena/review_metadata" # HuggingFace dataset for review metadata
 
51
 
52
  LEADERBOARD_COLUMNS = [
53
  ("Agent Name", "string"),
@@ -770,17 +771,14 @@ def calculate_monthly_metrics_by_agent():
770
  }
771
  }
772
  """
773
- # Get current year for loading metadata
774
- current_year = datetime.now().year
775
-
776
  # Load ALL agents from HuggingFace agents repo
777
  agents = load_agents_from_hf()
778
 
779
  # Create mapping from agent_identifier to agent_name
780
  identifier_to_name = {agent.get('github_identifier'): agent.get('agent_name') for agent in agents if agent.get('github_identifier')}
781
 
782
- # Load all review metadata for current year from review_metadata dataset
783
- all_metadata = load_review_metadata_for_year(current_year)
784
 
785
  if not all_metadata:
786
  return {'agents': [], 'months': [], 'data': {}}
@@ -967,27 +965,42 @@ def save_review_metadata_to_hf(metadata_list, agent_identifier):
967
  return False
968
 
969
 
970
- def load_review_metadata_for_year(year):
971
  """
972
- Load all review metadata for a specific year from HuggingFace.
973
- Scans all agent folders and loads daily files matching the year.
974
- In debug mode, loads from in-memory cache if available.
975
 
976
  Structure: [agent_identifier]/YYYY.MM.DD.jsonl
977
 
978
  Returns:
979
  List of dictionaries with 'agent_identifier' added to each review metadata.
 
980
  """
 
 
 
 
981
  # In debug mode, check in-memory cache first
982
  if DEBUG_MODE and DEBUG_REVIEW_METADATA_CACHE:
983
  all_metadata = []
984
  for agent_identifier, metadata_list in DEBUG_REVIEW_METADATA_CACHE.items():
985
  for review_meta in metadata_list:
 
 
 
 
 
 
 
 
 
 
986
  review_with_agent = review_meta.copy()
987
  review_with_agent['agent_identifier'] = agent_identifier
988
  all_metadata.append(review_with_agent)
989
  if all_metadata:
990
- print(f"🐛 DEBUG MODE: Loading review metadata from in-memory cache ({len(all_metadata)} reviews)")
991
  return all_metadata
992
 
993
  try:
@@ -997,22 +1010,33 @@ def load_review_metadata_for_year(year):
997
  # List all files in the repository
998
  files = api.list_repo_files(repo_id=REVIEW_METADATA_REPO, repo_type="dataset")
999
 
1000
- # Filter for files matching the year pattern: [agent_identifier]/YYYY.MM.DD.jsonl
1001
- # Extract year from filename
1002
- year_str = str(year)
1003
- year_files = []
1004
  for f in files:
1005
  if f.endswith('.jsonl'):
1006
  parts = f.split('/')
1007
  if len(parts) == 2: # [agent_identifier]/YYYY.MM.DD.jsonl
1008
  filename = parts[1]
1009
- if filename.startswith(year_str + '.'):
1010
- year_files.append(f)
 
 
 
 
 
 
 
 
 
 
 
 
1011
 
1012
- print(f"📥 Loading review metadata for {year} ({len(year_files)} daily files across all agents)...")
1013
 
1014
  all_metadata = []
1015
- for filename in year_files:
1016
  try:
1017
  # Extract agent_identifier from path (first part)
1018
  # Format: agent_identifier/YYYY.MM.DD.jsonl
@@ -1031,20 +1055,32 @@ def load_review_metadata_for_year(year):
1031
  )
1032
  day_metadata = load_jsonl(file_path)
1033
 
1034
- # Add agent_identifier to each review metadata for processing
 
1035
  for review_meta in day_metadata:
 
 
 
 
 
 
 
 
 
 
1036
  review_meta['agent_identifier'] = agent_identifier
 
 
1037
 
1038
- all_metadata.extend(day_metadata)
1039
- print(f" ✓ Loaded {len(day_metadata)} reviews from {filename}")
1040
  except Exception as e:
1041
  print(f" Warning: Could not load {filename}: {str(e)}")
1042
 
1043
- print(f"✓ Loaded {len(all_metadata)} total reviews for {year}")
1044
  return all_metadata
1045
 
1046
  except Exception as e:
1047
- print(f"✗ Error loading review metadata for {year}: {str(e)}")
1048
  return []
1049
 
1050
 
@@ -1532,7 +1568,6 @@ def update_all_agents_incremental():
1532
  Returns dictionary of all agent data with current stats.
1533
  """
1534
  token = get_github_token()
1535
- current_year = datetime.now().year
1536
 
1537
  # Load agent metadata from HuggingFace
1538
  agents = load_agents_from_hf()
@@ -1587,9 +1622,9 @@ def update_all_agents_incremental():
1587
  else:
1588
  print(f" No new reviews to save")
1589
 
1590
- # Load ALL metadata for current year to calculate stats (aggregates entire last 6 months)
1591
  print(f"📊 Calculating statistics from ALL stored metadata (last 6 months)...")
1592
- all_year_metadata = load_review_metadata_for_year(current_year)
1593
 
1594
  # Filter for this specific agent
1595
  agent_metadata = [review for review in all_year_metadata if review.get("agent_identifier") == identifier]
@@ -1624,8 +1659,6 @@ def construct_leaderboard_from_metadata():
1624
  Returns dictionary of agent stats.
1625
  """
1626
  print("📊 Constructing leaderboard from review metadata...")
1627
- current_year = datetime.now().year
1628
-
1629
  # Load agents
1630
  agents = load_agents_from_hf()
1631
  if not agents:
@@ -1633,7 +1666,7 @@ def construct_leaderboard_from_metadata():
1633
  return {}
1634
 
1635
  # Load all review metadata for current year
1636
- all_metadata = load_review_metadata_for_year(current_year)
1637
 
1638
  cache_dict = {}
1639
 
 
48
 
49
  AGENTS_REPO = "SWE-Arena/swe_agents" # HuggingFace dataset for agent metadata
50
  REVIEW_METADATA_REPO = "SWE-Arena/review_metadata" # HuggingFace dataset for review metadata
51
+ LEADERBOARD_TIME_FRAME_DAYS = 180 # Time frame for leaderboard (past 6 months)
52
 
53
  LEADERBOARD_COLUMNS = [
54
  ("Agent Name", "string"),
 
771
  }
772
  }
773
  """
 
 
 
774
  # Load ALL agents from HuggingFace agents repo
775
  agents = load_agents_from_hf()
776
 
777
  # Create mapping from agent_identifier to agent_name
778
  identifier_to_name = {agent.get('github_identifier'): agent.get('agent_name') for agent in agents if agent.get('github_identifier')}
779
 
780
+ # Load all review metadata from review_metadata dataset
781
+ all_metadata = load_review_metadata()
782
 
783
  if not all_metadata:
784
  return {'agents': [], 'months': [], 'data': {}}
 
965
  return False
966
 
967
 
968
+ def load_review_metadata():
969
  """
970
+ Load review metadata from the last LEADERBOARD_TIME_FRAME_DAYS.
971
+
972
+ In debug mode, loads from in-memory cache if available and filters by time frame.
973
 
974
  Structure: [agent_identifier]/YYYY.MM.DD.jsonl
975
 
976
  Returns:
977
  List of dictionaries with 'agent_identifier' added to each review metadata.
978
+ Only includes reviews from the last LEADERBOARD_TIME_FRAME_DAYS.
979
  """
980
+ # Calculate cutoff date based on LEADERBOARD_TIME_FRAME_DAYS
981
+ current_time = datetime.now(timezone.utc)
982
+ cutoff_date = current_time - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
983
+
984
  # In debug mode, check in-memory cache first
985
  if DEBUG_MODE and DEBUG_REVIEW_METADATA_CACHE:
986
  all_metadata = []
987
  for agent_identifier, metadata_list in DEBUG_REVIEW_METADATA_CACHE.items():
988
  for review_meta in metadata_list:
989
+ # Filter by time frame
990
+ reviewed_at = review_meta.get('reviewed_at')
991
+ if reviewed_at:
992
+ try:
993
+ dt = datetime.fromisoformat(reviewed_at.replace('Z', '+00:00'))
994
+ if dt < cutoff_date:
995
+ continue # Skip reviews older than time frame
996
+ except Exception:
997
+ pass # Keep reviews with unparseable dates
998
+
999
  review_with_agent = review_meta.copy()
1000
  review_with_agent['agent_identifier'] = agent_identifier
1001
  all_metadata.append(review_with_agent)
1002
  if all_metadata:
1003
+ print(f"🐛 DEBUG MODE: Loading review metadata from in-memory cache (last {LEADERBOARD_TIME_FRAME_DAYS} days, {len(all_metadata)} reviews)")
1004
  return all_metadata
1005
 
1006
  try:
 
1010
  # List all files in the repository
1011
  files = api.list_repo_files(repo_id=REVIEW_METADATA_REPO, repo_type="dataset")
1012
 
1013
+ # Filter for files matching the pattern: [agent_identifier]/YYYY.MM.DD.jsonl
1014
+ # AND within the time frame (parse date from filename)
1015
+ time_frame_files = []
 
1016
  for f in files:
1017
  if f.endswith('.jsonl'):
1018
  parts = f.split('/')
1019
  if len(parts) == 2: # [agent_identifier]/YYYY.MM.DD.jsonl
1020
  filename = parts[1]
1021
+ # Parse date from filename: YYYY.MM.DD.jsonl
1022
+ try:
1023
+ date_part = filename.replace('.jsonl', '') # Get YYYY.MM.DD
1024
+ date_components = date_part.split('.')
1025
+ if len(date_components) == 3:
1026
+ file_year, file_month, file_day = map(int, date_components)
1027
+ file_date = datetime(file_year, file_month, file_day, tzinfo=timezone.utc)
1028
+
1029
+ # Only include files within the time frame
1030
+ if file_date >= cutoff_date:
1031
+ time_frame_files.append(f)
1032
+ except Exception:
1033
+ # If we can't parse the date, skip this file
1034
+ continue
1035
 
1036
+ print(f"📥 Loading review metadata from last {LEADERBOARD_TIME_FRAME_DAYS} days ({len(time_frame_files)} daily files across all agents)...")
1037
 
1038
  all_metadata = []
1039
+ for filename in time_frame_files:
1040
  try:
1041
  # Extract agent_identifier from path (first part)
1042
  # Format: agent_identifier/YYYY.MM.DD.jsonl
 
1055
  )
1056
  day_metadata = load_jsonl(file_path)
1057
 
1058
+ # Add agent_identifier and filter by time frame (double-check)
1059
+ filtered_count = 0
1060
  for review_meta in day_metadata:
1061
+ # Validate review date is within time frame
1062
+ reviewed_at = review_meta.get('reviewed_at')
1063
+ if reviewed_at:
1064
+ try:
1065
+ dt = datetime.fromisoformat(reviewed_at.replace('Z', '+00:00'))
1066
+ if dt < cutoff_date:
1067
+ continue # Skip reviews older than time frame
1068
+ except Exception:
1069
+ pass # Keep reviews with unparseable dates
1070
+
1071
  review_meta['agent_identifier'] = agent_identifier
1072
+ all_metadata.append(review_meta)
1073
+ filtered_count += 1
1074
 
1075
+ print(f" ✓ Loaded {filtered_count} reviews from {filename}")
 
1076
  except Exception as e:
1077
  print(f" Warning: Could not load {filename}: {str(e)}")
1078
 
1079
+ print(f"✓ Loaded {len(all_metadata)} total reviews from last {LEADERBOARD_TIME_FRAME_DAYS} days")
1080
  return all_metadata
1081
 
1082
  except Exception as e:
1083
+ print(f"✗ Error loading review metadata from last {LEADERBOARD_TIME_FRAME_DAYS} days: {str(e)}")
1084
  return []
1085
 
1086
 
 
1568
  Returns dictionary of all agent data with current stats.
1569
  """
1570
  token = get_github_token()
 
1571
 
1572
  # Load agent metadata from HuggingFace
1573
  agents = load_agents_from_hf()
 
1622
  else:
1623
  print(f" No new reviews to save")
1624
 
1625
+ # Load ALL metadata to calculate stats (aggregates entire last 6 months)
1626
  print(f"📊 Calculating statistics from ALL stored metadata (last 6 months)...")
1627
+ all_year_metadata = load_review_metadata()
1628
 
1629
  # Filter for this specific agent
1630
  agent_metadata = [review for review in all_year_metadata if review.get("agent_identifier") == identifier]
 
1659
  Returns dictionary of agent stats.
1660
  """
1661
  print("📊 Constructing leaderboard from review metadata...")
 
 
1662
  # Load agents
1663
  agents = load_agents_from_hf()
1664
  if not agents:
 
1666
  return {}
1667
 
1668
  # Load all review metadata for current year
1669
+ all_metadata = load_review_metadata()
1670
 
1671
  cache_dict = {}
1672
 
msr.py DELETED
@@ -1,1224 +0,0 @@
1
- """
2
- Standalone miner to fetch PR review metadata and update the leaderboard immediately.
3
-
4
- This script reuses the same logic and on-disk/HuggingFace formats as app.py, but
5
- has no UI or scheduler. You can run it once, or run it in a loop for hours.
6
-
7
- Datasets used:
8
- - Agents: SWE-Arena/swe_agents
9
- - Review metadata: SWE-Arena/review_metadata
10
-
11
- Environment:
12
- - Requires HF_TOKEN (for HuggingFace uploads)
13
- - Optional GITHUB_TOKEN (highly recommended to avoid low rate limits)
14
- - Reads .env if present
15
-
16
- CLI flags:
17
- - --debug / --no-debug: Same semantics as app.py (debug limits to 10 PRs/pattern
18
- and DOES NOT save to HF, mirroring app.py behavior).
19
- - --loop: Keep running in a loop.
20
- - --interval-seconds N: Sleep between loops (default 3600 seconds).
21
-
22
- Note: In production mode (default), data will be saved to HuggingFace datasets.
23
- """
24
-
25
- import argparse
26
- import json
27
- import os
28
- import random
29
- import sys
30
- import time
31
- from collections import defaultdict
32
- from datetime import datetime, timezone, timedelta
33
-
34
- import pandas as pd
35
- import requests
36
- from dotenv import load_dotenv
37
- from huggingface_hub import HfApi, hf_hub_download
38
-
39
-
40
- # =============================================================================
41
- # Environment & CLI
42
- # =============================================================================
43
-
44
- load_dotenv()
45
-
46
- parser = argparse.ArgumentParser(description="Immediate PR review miner for SWE Arena")
47
- parser.add_argument("--debug", "--DEBUG", action="store_true", help="Enable debug mode (limits PR retrieval to 10 per query; does NOT save to HF)")
48
- parser.add_argument("--no-debug", "--production", action="store_true", help="Explicitly disable debug mode (force production mode)")
49
- parser.add_argument("--loop", action="store_true", help="Run in a loop until interrupted")
50
- parser.add_argument("--interval-seconds", type=int, default=3600, help="Sleep interval between loops in seconds (default: 3600)")
51
- args = parser.parse_args()
52
-
53
- # DEBUG MODE priority: 1) flags, 2) env var, 3) default False
54
- if args.no_debug:
55
- DEBUG_MODE = False
56
- elif args.debug:
57
- DEBUG_MODE = True
58
- else:
59
- DEBUG_MODE = os.getenv("DEBUG_MODE", "False").lower() in ("true", "1", "yes")
60
-
61
-
62
- # =============================================================================
63
- # Constants (match app.py)
64
- # =============================================================================
65
-
66
- DEBUG_REVIEW_METADATA_CACHE = defaultdict(list)
67
-
68
- AGENTS_REPO = "SWE-Arena/swe_agents"
69
- REVIEW_METADATA_REPO = "SWE-Arena/review_metadata"
70
-
71
-
72
- # =============================================================================
73
- # Utilities & I/O (match app.py behavior exactly)
74
- # =============================================================================
75
-
76
- def load_jsonl(filename):
77
- """Load JSONL file and return list of dictionaries."""
78
- if not os.path.exists(filename):
79
- return []
80
-
81
- data = []
82
- with open(filename, 'r', encoding='utf-8') as f:
83
- for line in f:
84
- line = line.strip()
85
- if line:
86
- try:
87
- entry = json.loads(line)
88
- data.append(entry)
89
- except json.JSONDecodeError as e:
90
- print(f"Warning: Skipping invalid JSON line: {e}")
91
- return data
92
-
93
-
94
- def save_jsonl(filename, data):
95
- """Save list of dictionaries to JSONL file."""
96
- with open(filename, 'w', encoding='utf-8') as f:
97
- for item in data:
98
- f.write(json.dumps(item) + '\n')
99
-
100
-
101
- def cache_to_dict(cache_list):
102
- return {entry['github_identifier']: entry for entry in cache_list}
103
-
104
-
105
- def dict_to_cache(cache_dict):
106
- return list(cache_dict.values())
107
-
108
-
109
- def get_github_token():
110
- token = os.getenv('GITHUB_TOKEN')
111
- if not token:
112
- print("Warning: GITHUB_TOKEN not found. API rate limits: 60/hour (authenticated: 5000/hour)")
113
- return token
114
-
115
-
116
- def get_hf_token():
117
- token = os.getenv('HF_TOKEN')
118
- if not token:
119
- print("Warning: HF_TOKEN not found in environment variables")
120
- return token
121
-
122
-
123
- def upload_with_retry(api, path_or_fileobj, path_in_repo, repo_id, repo_type, token, max_retries=5):
124
- """
125
- Upload file to HuggingFace with exponential backoff retry logic.
126
-
127
- Args:
128
- api: HfApi instance
129
- path_or_fileobj: Local file path to upload
130
- path_in_repo: Target path in the repository
131
- repo_id: Repository ID
132
- repo_type: Type of repository (e.g., "dataset")
133
- token: HuggingFace token
134
- max_retries: Maximum number of retry attempts
135
-
136
- Returns:
137
- True if upload succeeded, raises exception if all retries failed
138
- """
139
- delay = 2.0 # Initial delay in seconds
140
-
141
- for attempt in range(max_retries):
142
- try:
143
- api.upload_file(
144
- path_or_fileobj=path_or_fileobj,
145
- path_in_repo=path_in_repo,
146
- repo_id=repo_id,
147
- repo_type=repo_type,
148
- token=token
149
- )
150
- if attempt > 0:
151
- print(f" ✓ Upload succeeded on attempt {attempt + 1}/{max_retries}")
152
- return True
153
-
154
- except Exception as e:
155
- if attempt < max_retries - 1:
156
- wait_time = delay + random.uniform(0, 1.0)
157
- print(f" ⚠️ Upload failed (attempt {attempt + 1}/{max_retries}): {str(e)}")
158
- print(f" ⏳ Retrying in {wait_time:.1f} seconds...")
159
- time.sleep(wait_time)
160
- delay = min(delay * 2, 60.0) # Exponential backoff, max 60s
161
- else:
162
- print(f" ✗ Upload failed after {max_retries} attempts: {str(e)}")
163
- raise
164
-
165
-
166
- # =============================================================================
167
- # GitHub API with backoff (same as app.py)
168
- # =============================================================================
169
-
170
- def request_with_backoff(method, url, *, headers=None, params=None, json_body=None, data=None, max_retries=10, timeout=30):
171
- delay = 1.0
172
- for attempt in range(max_retries):
173
- try:
174
- resp = requests.request(
175
- method,
176
- url,
177
- headers=headers or {},
178
- params=params,
179
- json=json_body,
180
- data=data,
181
- timeout=timeout
182
- )
183
-
184
- status = resp.status_code
185
-
186
- if 200 <= status < 300:
187
- return resp
188
-
189
- if status in (403, 429) or 500 <= status < 600:
190
- wait = None
191
- retry_after = resp.headers.get('Retry-After') or resp.headers.get('retry-after')
192
- if retry_after:
193
- try:
194
- wait = float(retry_after)
195
- except Exception:
196
- wait = None
197
- if wait is None and status in (403, 429):
198
- reset_hdr = resp.headers.get('X-RateLimit-Reset') or resp.headers.get('x-ratelimit-reset')
199
- if reset_hdr:
200
- try:
201
- reset_ts = int(float(reset_hdr))
202
- wait = max(reset_ts - time.time() + 2, 1)
203
- except Exception:
204
- wait = None
205
- if wait is None:
206
- wait = delay + random.uniform(0, 0.5)
207
- wait = max(1.0, min(wait, 120.0))
208
- print(f"GitHub API {status}. Backing off {wait:.1f}s (attempt {attempt + 1}/{max_retries})...")
209
- time.sleep(wait)
210
- delay = min(delay * 2, 60.0)
211
- continue
212
-
213
- return resp
214
-
215
- except requests.RequestException as e:
216
- wait = delay + random.uniform(0, 0.5)
217
- wait = max(1.0, min(wait, 60.0))
218
- print(f"Request error: {e}. Retrying in {wait:.1f}s (attempt {attempt + 1}/{max_retries})...")
219
- time.sleep(wait)
220
- delay = min(delay * 2, 60.0)
221
-
222
- print(f"Exceeded max retries for {url}")
223
- return None
224
-
225
-
226
- def fetch_reviews_with_time_partition(base_query, start_date, end_date, headers, prs_by_url, debug_limit=None, depth=0):
227
- """
228
- Fetch PR reviews within a specific time range using time-based partitioning.
229
- Recursively splits the time range if hitting the 1000-result limit.
230
- Supports splitting by day, hour, minute, and second as needed.
231
-
232
- Args:
233
- debug_limit: If set, stops fetching after this many NEW PRs total across all partitions (for testing)
234
- depth: Current recursion depth (for tracking)
235
-
236
- Returns the number of PRs found in this time partition.
237
- """
238
- # Calculate time difference
239
- time_diff = end_date - start_date
240
- total_seconds = time_diff.total_seconds()
241
-
242
- # Determine granularity and format dates accordingly
243
- if total_seconds >= 86400: # >= 1 day
244
- # Use day granularity (YYYY-MM-DD)
245
- start_str = start_date.strftime('%Y-%m-%d')
246
- end_str = end_date.strftime('%Y-%m-%d')
247
- elif total_seconds >= 3600: # >= 1 hour but < 1 day
248
- # Use hour granularity (YYYY-MM-DDTHH:MM:SSZ)
249
- start_str = start_date.strftime('%Y-%m-%dT%H:00:00Z')
250
- end_str = end_date.strftime('%Y-%m-%dT%H:59:59Z')
251
- elif total_seconds >= 60: # >= 1 minute but < 1 hour
252
- # Use minute granularity (YYYY-MM-DDTHH:MM:SSZ)
253
- start_str = start_date.strftime('%Y-%m-%dT%H:%M:00Z')
254
- end_str = end_date.strftime('%Y-%m-%dT%H:%M:59Z')
255
- else: # < 1 minute
256
- # Use second granularity (YYYY-MM-DDTHH:MM:SSZ)
257
- start_str = start_date.strftime('%Y-%m-%dT%H:%M:%SZ')
258
- end_str = end_date.strftime('%Y-%m-%dT%H:%M:%SZ')
259
-
260
- query = f'{base_query} created:{start_str}..{end_str}'
261
-
262
- indent = " " + " " * depth
263
- print(f"{indent}Searching range {start_str} to {end_str}...")
264
-
265
- page = 1
266
- per_page = 100
267
- total_in_partition = 0
268
-
269
- while True:
270
- # Check debug limit GLOBALLY (total unique PRs across all partitions)
271
- if debug_limit is not None and len(prs_by_url) >= debug_limit:
272
- print(f"{indent} 🐛 DEBUG MODE: Reached global limit of {debug_limit} PRs, stopping...")
273
- return total_in_partition
274
-
275
- url = 'https://api.github.com/search/issues' # Use issues endpoint for PR search
276
- params = {
277
- 'q': query,
278
- 'per_page': per_page,
279
- 'page': page,
280
- 'sort': 'created',
281
- 'order': 'asc'
282
- }
283
- headers_with_accept = headers.copy() if headers else {}
284
-
285
- try:
286
- response = request_with_backoff('GET', url, headers=headers_with_accept, params=params)
287
- if response is None:
288
- print(f"{indent} Error: retries exhausted for range {start_str} to {end_str}")
289
- return total_in_partition
290
-
291
- if response.status_code != 200:
292
- print(f"{indent} Error: HTTP {response.status_code} for range {start_str} to {end_str}")
293
- return total_in_partition
294
-
295
- data = response.json()
296
- total_count = data.get('total_count', 0)
297
- items = data.get('items', [])
298
-
299
- if not items:
300
- break
301
-
302
- # Add PR reviews to global dict (keyed by PR URL)
303
- for pr in items:
304
- pr_url = pr.get('html_url')
305
- pr_number = pr.get('number')
306
- # Use PR URL as unique key (more reliable than number alone)
307
- if pr_url and pr_url not in prs_by_url:
308
- prs_by_url[pr_url] = pr
309
- total_in_partition += 1
310
-
311
- # Check if we hit the 1000-result limit
312
- if total_count > 1000 and page == 10:
313
- print(f"{indent} ⚠️ Hit 1000-result limit ({total_count} total). Splitting time range...")
314
-
315
- # Determine how to split based on time range duration
316
- if total_seconds < 2: # Less than 2 seconds - can't split further
317
- print(f"{indent} ⚠️ Cannot split further (range < 2 seconds). Some results may be missing.")
318
- break
319
-
320
- elif total_seconds < 120: # Less than 2 minutes - split by seconds
321
- # Split into 2-4 parts depending on range
322
- num_splits = min(4, max(2, int(total_seconds / 30)))
323
- split_duration = time_diff / num_splits
324
- split_dates = [start_date + split_duration * i for i in range(num_splits + 1)]
325
-
326
- total_from_splits = 0
327
- for i in range(num_splits):
328
- split_start = split_dates[i]
329
- split_end = split_dates[i + 1]
330
- # Avoid overlapping ranges (add 1 second to start)
331
- if i > 0:
332
- split_start = split_start + timedelta(seconds=1)
333
-
334
- count = fetch_reviews_with_time_partition(
335
- base_query, split_start, split_end, headers, prs_by_url, debug_limit, depth + 1
336
- )
337
- total_from_splits += count
338
-
339
- return total_from_splits
340
-
341
- elif total_seconds < 7200: # Less than 2 hours - split by minutes
342
- # Split into 2-4 parts
343
- num_splits = min(4, max(2, int(total_seconds / 1800)))
344
- split_duration = time_diff / num_splits
345
- split_dates = [start_date + split_duration * i for i in range(num_splits + 1)]
346
-
347
- total_from_splits = 0
348
- for i in range(num_splits):
349
- split_start = split_dates[i]
350
- split_end = split_dates[i + 1]
351
- # Avoid overlapping ranges (add 1 minute to start)
352
- if i > 0:
353
- split_start = split_start + timedelta(minutes=1)
354
-
355
- count = fetch_reviews_with_time_partition(
356
- base_query, split_start, split_end, headers, prs_by_url, debug_limit, depth + 1
357
- )
358
- total_from_splits += count
359
-
360
- return total_from_splits
361
-
362
- elif total_seconds < 172800: # Less than 2 days - split by hours
363
- # Split into 2-4 parts
364
- num_splits = min(4, max(2, int(total_seconds / 43200)))
365
- split_duration = time_diff / num_splits
366
- split_dates = [start_date + split_duration * i for i in range(num_splits + 1)]
367
-
368
- total_from_splits = 0
369
- for i in range(num_splits):
370
- split_start = split_dates[i]
371
- split_end = split_dates[i + 1]
372
- # Avoid overlapping ranges (add 1 hour to start)
373
- if i > 0:
374
- split_start = split_start + timedelta(hours=1)
375
-
376
- count = fetch_reviews_with_time_partition(
377
- base_query, split_start, split_end, headers, prs_by_url, debug_limit, depth + 1
378
- )
379
- total_from_splits += count
380
-
381
- return total_from_splits
382
-
383
- else: # 2+ days - split by days
384
- days_diff = time_diff.days
385
-
386
- # Use aggressive splitting for large ranges or deep recursion
387
- # Split into 4 parts if range is > 30 days, otherwise split in half
388
- if days_diff > 30 or depth > 5:
389
- # Split into 4 parts for more aggressive partitioning
390
- quarter_diff = time_diff / 4
391
- split_dates = [
392
- start_date,
393
- start_date + quarter_diff,
394
- start_date + quarter_diff * 2,
395
- start_date + quarter_diff * 3,
396
- end_date
397
- ]
398
-
399
- total_from_splits = 0
400
- for i in range(4):
401
- split_start = split_dates[i]
402
- split_end = split_dates[i + 1]
403
- # Avoid overlapping ranges
404
- if i > 0:
405
- split_start = split_start + timedelta(days=1)
406
-
407
- count = fetch_reviews_with_time_partition(
408
- base_query, split_start, split_end, headers, prs_by_url, debug_limit, depth + 1
409
- )
410
- total_from_splits += count
411
-
412
- return total_from_splits
413
- else:
414
- # Binary split for smaller ranges
415
- mid_date = start_date + time_diff / 2
416
-
417
- # Recursively fetch both halves
418
- count1 = fetch_reviews_with_time_partition(
419
- base_query, start_date, mid_date, headers, prs_by_url, debug_limit, depth + 1
420
- )
421
- count2 = fetch_reviews_with_time_partition(
422
- base_query, mid_date + timedelta(days=1), end_date, headers, prs_by_url, debug_limit, depth + 1
423
- )
424
-
425
- return count1 + count2
426
-
427
- # Normal pagination: check if there are more pages
428
- if len(items) < per_page or page >= 10:
429
- break
430
-
431
- page += 1
432
- time.sleep(0.5) # Courtesy delay between pages
433
-
434
- except Exception as e:
435
- print(f"{indent} Error fetching range {start_str} to {end_str}: {str(e)}")
436
- return total_in_partition
437
-
438
- if total_in_partition > 0:
439
- print(f"{indent} ✓ Found {total_in_partition} PRs in range {start_str} to {end_str}")
440
-
441
- return total_in_partition
442
-
443
-
444
- def extract_review_metadata(pr):
445
- """
446
- Extract minimal PR review metadata for efficient storage.
447
- Only keeps essential fields: html_url, reviewed_at, pr_status, pr_merged, pr_closed_at.
448
- Note: agent_name is not stored as it's inferred from the folder structure.
449
-
450
- PR status:
451
- - pr_status: 'open', 'merged', or 'closed'
452
- - pr_merged: True if PR was merged, False otherwise
453
- - pr_closed_at: Date when PR was closed/merged (if applicable)
454
-
455
- merged PR = PR that was merged after agent review
456
- Rejected PR = PR that was closed without merging after agent review
457
- """
458
- # Extract PR metadata from search results
459
- # The GitHub search API returns PR data from /search/issues endpoint
460
- pr_url = pr.get('html_url')
461
- pr_number = pr.get('number')
462
- created_at = pr.get('created_at')
463
- closed_at = pr.get('closed_at')
464
- state = pr.get('state', 'open') # open or closed
465
-
466
- # Check if PR has pull_request field (indicates it's a PR, not an issue)
467
- pull_request_data = pr.get('pull_request', {})
468
-
469
- # For initial extraction, we don't know if merged yet
470
- # This will be updated by update_pr_status function
471
- pr_merged = pull_request_data.get('merged_at') is not None if pull_request_data else False
472
-
473
- # Determine initial status
474
- if pr_merged:
475
- status = 'merged'
476
- elif state == 'closed':
477
- status = 'closed'
478
- else:
479
- status = 'open'
480
-
481
- return {
482
- 'html_url': pr_url,
483
- 'reviewed_at': created_at, # When the PR was created (agent reviewed it)
484
- 'pr_status': status,
485
- 'pr_merged': pr_merged,
486
- 'pr_closed_at': closed_at,
487
- 'pr_url': pr_url, # Store PR URL for tracking
488
- 'review_id': f"pr_{pr_number}" # Use PR number for deduplication
489
- }
490
-
491
-
492
- def update_pr_status(metadata_list, headers, token):
493
- """
494
- Update PR status for reviews to get current merged/closed state.
495
-
496
- For each PR associated with a review, fetch current status from GitHub API.
497
- Updates metadata_list in-place with PR status information.
498
-
499
- In DEBUG MODE: Skips status updates to avoid API rate limits.
500
-
501
- Args:
502
- metadata_list: List of review metadata dictionaries
503
- headers: HTTP headers for GitHub API
504
- token: GitHub API token
505
-
506
- Returns:
507
- Updated metadata_list with current PR status
508
- """
509
- if not metadata_list:
510
- return metadata_list
511
-
512
- # In debug mode, skip status updates to avoid excessive API calls
513
- if DEBUG_MODE:
514
- print(f" 🐛 DEBUG MODE: Skipping PR status updates for {len(metadata_list)} reviews")
515
- return metadata_list
516
-
517
- # Track unique PRs to avoid duplicate API calls
518
- pr_url_to_status = {}
519
- updated_count = 0
520
-
521
- for metadata in metadata_list:
522
- pr_url = metadata.get('pr_url')
523
- if not pr_url:
524
- continue
525
-
526
- # Skip if already fetched for this PR
527
- if pr_url in pr_url_to_status:
528
- status_info = pr_url_to_status[pr_url]
529
- metadata['pr_status'] = status_info['status']
530
- metadata['pr_merged'] = status_info['merged']
531
- metadata['pr_closed_at'] = status_info['closed_at']
532
- continue
533
-
534
- try:
535
- # Convert HTML URL to API URL
536
- # https://github.com/owner/repo/pull/123 -> https://api.github.com/repos/owner/repo/pulls/123
537
- parts = pr_url.replace('https://github.com/', '').split('/')
538
- if len(parts) >= 4:
539
- owner, repo, pull_word, pr_number = parts[0], parts[1], parts[2], parts[3]
540
- api_url = f'https://api.github.com/repos/{owner}/{repo}/pulls/{pr_number}'
541
-
542
- response = request_with_backoff('GET', api_url, headers=headers, max_retries=3)
543
-
544
- if response and response.status_code == 200:
545
- pr_data = response.json()
546
- state = pr_data.get('state', 'open')
547
- merged = pr_data.get('merged', False)
548
- closed_at = pr_data.get('closed_at')
549
- merged_at = pr_data.get('merged_at')
550
-
551
- # Determine final status
552
- if merged:
553
- status = 'merged'
554
- elif state == 'closed':
555
- status = 'closed'
556
- else:
557
- status = 'open'
558
-
559
- status_info = {
560
- 'status': status,
561
- 'merged': merged,
562
- 'closed_at': closed_at or merged_at
563
- }
564
-
565
- # Cache and update
566
- pr_url_to_status[pr_url] = status_info
567
- metadata['pr_status'] = status
568
- metadata['pr_merged'] = merged
569
- metadata['pr_closed_at'] = closed_at or merged_at
570
- updated_count += 1
571
-
572
- # Small delay to avoid rate limiting
573
- time.sleep(0.1)
574
-
575
- except Exception as e:
576
- print(f" Warning: Could not check PR status for {pr_url}: {e}")
577
- continue
578
-
579
- if updated_count > 0:
580
- print(f" ✓ Updated status for {updated_count} unique PRs")
581
-
582
- return metadata_list
583
-
584
-
585
- def fetch_all_reviews_metadata(identifier, agent_name, token=None, start_from_date=None, year=None, exclude_dates=None):
586
- """
587
- Fetch PR reviews associated with a GitHub user or bot for the past 6 months.
588
- Returns lightweight metadata instead of full review objects.
589
-
590
- This function employs time-based partitioning to navigate GitHub's 1000-result limit per query.
591
- It searches using the query pattern:
592
- - reviewed-by:{identifier} (PR reviews by the agent)
593
-
594
- After fetching reviews, it updates PR status to determine if PRs were merged or closed.
595
-
596
- Args:
597
- identifier: GitHub username or bot identifier
598
- agent_name: Human-readable name of the agent for metadata purposes
599
- token: GitHub API token for authentication
600
- start_from_date: Only fetch reviews created after this date (for incremental updates)
601
- year: Year parameter (deprecated, retained for compatibility but not utilized)
602
- exclude_dates: Set of date objects to exclude from mining (dates that have already been processed)
603
-
604
- Returns:
605
- List of dictionaries containing minimal PR review metadata with PR status
606
- """
607
- headers = {'Authorization': f'token {token}'} if token else {}
608
-
609
- # Debug mode: limit review retrieval for testing
610
- debug_limit_per_pattern = 10 if DEBUG_MODE else None
611
-
612
- if DEBUG_MODE:
613
- print(f"\n🐛 DEBUG MODE ENABLED: Limiting to {debug_limit_per_pattern} PRs per query pattern")
614
-
615
- # Define query pattern for PR reviews:
616
- query_patterns = []
617
-
618
- # Add reviewed-by pattern for PR reviews
619
- query_patterns.append(f'is:pr reviewed-by:{identifier}')
620
-
621
- # Use a dict to deduplicate PRs by URL
622
- prs_by_url = {}
623
-
624
- # Define time range: past 6 months only (or from start_from_date if specified)
625
- current_time = datetime.now(timezone.utc)
626
- six_months_ago = current_time - timedelta(days=180) # ~6 months
627
-
628
- if start_from_date:
629
- # Use start_from_date but ensure it's not older than 6 months
630
- start_date = max(start_from_date, six_months_ago)
631
- else:
632
- start_date = six_months_ago
633
-
634
- # End date is current time
635
- end_date = current_time
636
-
637
- for query_pattern in query_patterns:
638
- print(f"\n🔍 Searching with query: {query_pattern}")
639
- print(f" Time range: {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}")
640
-
641
- pattern_start_time = time.time()
642
- initial_count = len(prs_by_url)
643
-
644
- # Fetch with time partitioning
645
- reviews_found = fetch_reviews_with_time_partition(
646
- query_pattern,
647
- start_date,
648
- end_date,
649
- headers,
650
- prs_by_url,
651
- debug_limit_per_pattern
652
- )
653
-
654
- pattern_duration = time.time() - pattern_start_time
655
- new_reviews = len(prs_by_url) - initial_count
656
-
657
- print(f" ✓ Pattern complete: {new_reviews} new PRs found ({reviews_found} total fetched, {len(prs_by_url) - initial_count - (reviews_found - new_reviews)} duplicates)")
658
- print(f" ⏱️ Time taken: {pattern_duration:.1f} seconds")
659
-
660
- # Delay between different query patterns (shorter in debug mode)
661
- time.sleep(0.2 if DEBUG_MODE else 1.0)
662
-
663
- # Convert to lightweight metadata
664
- all_prs = list(prs_by_url.values())
665
-
666
- # Filter out PRs from excluded dates if specified
667
- if exclude_dates:
668
- filtered_prs = []
669
- excluded_count = 0
670
- for pr in all_prs:
671
- created_at = pr.get('created_at')
672
- if created_at:
673
- try:
674
- dt = datetime.fromisoformat(created_at.replace('Z', '+00:00'))
675
- pr_date = dt.date()
676
- if pr_date not in exclude_dates:
677
- filtered_prs.append(pr)
678
- else:
679
- excluded_count += 1
680
- except Exception:
681
- filtered_prs.append(pr) # Keep PRs with unparseable dates
682
- else:
683
- filtered_prs.append(pr) # Keep PRs without created_at
684
-
685
- if excluded_count > 0:
686
- print(f" ⏭️ Skipped {excluded_count} PRs from already-mined dates")
687
- all_prs = filtered_prs
688
-
689
- if DEBUG_MODE:
690
- print(f"\n✅ COMPLETE (DEBUG MODE): Found {len(all_prs)} unique PRs reviewed by {identifier}")
691
- print(f" Note: In production mode, this would fetch ALL PRs")
692
- else:
693
- print(f"\n✅ COMPLETE: Found {len(all_prs)} unique PRs reviewed by {identifier}")
694
- print(f"📦 Extracting minimal metadata and updating PR status...")
695
-
696
- # Extract metadata for each PR review
697
- metadata_list = [extract_review_metadata(pr) for pr in all_prs]
698
-
699
- # Update PR status to get current merged/closed state
700
- print(f"🔍 Updating PR status for reviewed PRs...")
701
- metadata_list = update_pr_status(metadata_list, headers, token)
702
-
703
- # Calculate memory savings
704
- original_size = sys.getsizeof(str(all_prs))
705
- metadata_size = sys.getsizeof(str(metadata_list))
706
- savings_pct = ((original_size - metadata_size) / original_size * 100) if original_size > 0 else 0
707
-
708
- print(f"💾 Memory efficiency: {original_size // 1024}KB → {metadata_size // 1024}KB (saved {savings_pct:.1f}%)")
709
-
710
- return metadata_list
711
-
712
-
713
- def group_metadata_by_date(metadata_list):
714
- """
715
- Group review metadata by exact date (year.month.day) for efficient daily storage.
716
- Returns dict: {(year, month, day): [metadata_list]}
717
- """
718
- grouped = defaultdict(list)
719
-
720
- for review_meta in metadata_list:
721
- reviewed_at = review_meta.get('reviewed_at')
722
- if not reviewed_at:
723
- continue
724
-
725
- try:
726
- dt = datetime.fromisoformat(reviewed_at.replace('Z', '+00:00'))
727
- key = (dt.year, dt.month, dt.day)
728
- grouped[key].append(review_meta)
729
- except Exception as e:
730
- print(f"Warning: Could not parse date '{reviewed_at}': {e}")
731
-
732
- return dict(grouped)
733
-
734
-
735
- def save_review_metadata_to_hf(metadata_list, agent_identifier):
736
- """
737
- Save review metadata to HuggingFace dataset, organized by [agent_identifier]/YYYY.MM.DD.jsonl.
738
- Each file is stored in the agent's folder and named YYYY.MM.DD.jsonl for that day's reviews.
739
- In debug mode, saves to in-memory cache only.
740
-
741
- This function APPENDS new metadata and DEDUPLICATES by sha.
742
-
743
- Args:
744
- metadata_list: List of review metadata dictionaries
745
- agent_identifier: GitHub identifier of the agent (used as folder name)
746
- """
747
- # Skip saving to HF in debug mode - use in-memory cache instead
748
- if DEBUG_MODE:
749
- global DEBUG_REVIEW_METADATA_CACHE
750
- # Merge with existing cache, deduplicating by review_id
751
- existing = {review['review_id']: review for review in DEBUG_REVIEW_METADATA_CACHE[agent_identifier] if review.get('review_id')}
752
- new = {review['review_id']: review for review in metadata_list if review.get('review_id')}
753
- existing.update(new)
754
- DEBUG_REVIEW_METADATA_CACHE[agent_identifier] = list(existing.values())
755
- print(f"🐛 DEBUG MODE: Saved to in-memory cache only ({len(metadata_list)} reviews) - NOT saved to HuggingFace")
756
- return True
757
-
758
- try:
759
- token = get_hf_token()
760
- if not token:
761
- raise Exception("No HuggingFace token found")
762
-
763
- api = HfApi()
764
-
765
- # Group by exact date (year, month, day)
766
- grouped = group_metadata_by_date(metadata_list)
767
-
768
- for (review_year, month, day), day_metadata in grouped.items():
769
- # New structure: [agent_identifier]/YYYY.MM.DD.jsonl
770
- filename = f"{agent_identifier}/{review_year}.{month:02d}.{day:02d}.jsonl"
771
- local_filename = f"{review_year}.{month:02d}.{day:02d}.jsonl"
772
- print(f"📤 Uploading {len(day_metadata)} reviews to {filename}...")
773
-
774
- # Download existing file if it exists
775
- existing_metadata = []
776
- try:
777
- file_path = hf_hub_download(
778
- repo_id=REVIEW_METADATA_REPO,
779
- filename=filename,
780
- repo_type="dataset",
781
- token=token
782
- )
783
- existing_metadata = load_jsonl(file_path)
784
- print(f" Found {len(existing_metadata)} existing reviews in {filename}")
785
- except Exception:
786
- print(f" No existing file found for {filename}, creating new")
787
-
788
- # Merge and deduplicate by review_id
789
- existing_by_id = {meta['review_id']: meta for meta in existing_metadata if meta.get('review_id')}
790
- new_by_id = {meta['review_id']: meta for meta in day_metadata if meta.get('review_id')}
791
-
792
- # Update with new data (new data overwrites old)
793
- existing_by_id.update(new_by_id)
794
- merged_metadata = list(existing_by_id.values())
795
-
796
- # Save locally
797
- save_jsonl(local_filename, merged_metadata)
798
-
799
- try:
800
- # Upload to HuggingFace with folder path
801
- upload_with_retry(
802
- api=api,
803
- path_or_fileobj=local_filename,
804
- path_in_repo=filename,
805
- repo_id=REVIEW_METADATA_REPO,
806
- repo_type="dataset",
807
- token=token
808
- )
809
- print(f" ✓ Saved {len(merged_metadata)} total reviews to {filename}")
810
- finally:
811
- # Always clean up local file, even if upload fails
812
- if os.path.exists(local_filename):
813
- os.remove(local_filename)
814
-
815
- return True
816
-
817
- except Exception as e:
818
- print(f"✗ Error saving review metadata: {str(e)}")
819
- return False
820
-
821
-
822
- def load_agents_from_hf():
823
- try:
824
- api = HfApi()
825
- agents = []
826
- files = api.list_repo_files(repo_id=AGENTS_REPO, repo_type="dataset")
827
- json_files = [f for f in files if f.endswith('.json')]
828
- print(f"Found {len(json_files)} agent files in {AGENTS_REPO}")
829
- for json_file in json_files:
830
- try:
831
- file_path = hf_hub_download(
832
- repo_id=AGENTS_REPO,
833
- filename=json_file,
834
- repo_type="dataset"
835
- )
836
- with open(file_path, 'r') as f:
837
- agent_data = json.load(f)
838
- agents.append(agent_data)
839
- except Exception as e:
840
- print(f"Warning: Could not load {json_file}: {str(e)}")
841
- continue
842
- print(f"✓ Loaded {len(agents)} agents from HuggingFace")
843
- return agents
844
- except Exception as e:
845
- print(f"Could not load agents from HuggingFace: {str(e)}")
846
- return None
847
-
848
-
849
- def load_review_metadata_for_year(year):
850
- """
851
- Load all review metadata for a specific year from HuggingFace.
852
- Scans all agent folders and loads daily files matching the year.
853
- In debug mode, loads from in-memory cache if available.
854
-
855
- Structure: [agent_identifier]/YYYY.MM.DD.jsonl
856
-
857
- Returns:
858
- List of dictionaries with 'agent_identifier' added to each review metadata.
859
- """
860
- # In debug mode, check in-memory cache first
861
- if DEBUG_MODE and DEBUG_REVIEW_METADATA_CACHE:
862
- all_metadata = []
863
- for agent_identifier, metadata_list in DEBUG_REVIEW_METADATA_CACHE.items():
864
- for review_meta in metadata_list:
865
- review_with_agent = review_meta.copy()
866
- review_with_agent['agent_identifier'] = agent_identifier
867
- all_metadata.append(review_with_agent)
868
- if all_metadata:
869
- print(f"🐛 DEBUG MODE: Loading review metadata from in-memory cache ({len(all_metadata)} reviews)")
870
- return all_metadata
871
-
872
- try:
873
- api = HfApi()
874
- token = get_hf_token()
875
-
876
- # List all files in the repository
877
- files = api.list_repo_files(repo_id=REVIEW_METADATA_REPO, repo_type="dataset")
878
-
879
- # Filter for files matching the year pattern: [agent_identifier]/YYYY.MM.DD.jsonl
880
- # Extract year from filename
881
- year_str = str(year)
882
- year_files = []
883
- for f in files:
884
- if f.endswith('.jsonl'):
885
- parts = f.split('/')
886
- if len(parts) == 2: # [agent_identifier]/YYYY.MM.DD.jsonl
887
- filename = parts[1]
888
- if filename.startswith(year_str + '.'):
889
- year_files.append(f)
890
-
891
- print(f"📥 Loading review metadata for {year} ({len(year_files)} daily files across all agents)...")
892
-
893
- all_metadata = []
894
- for filename in year_files:
895
- try:
896
- # Extract agent_identifier from path (first part)
897
- # Format: agent_identifier/YYYY.MM.DD.jsonl
898
- parts = filename.split('/')
899
- if len(parts) != 2:
900
- print(f" Warning: Unexpected filename format: {filename}")
901
- continue
902
-
903
- agent_identifier = parts[0]
904
-
905
- file_path = hf_hub_download(
906
- repo_id=REVIEW_METADATA_REPO,
907
- filename=filename,
908
- repo_type="dataset",
909
- token=token
910
- )
911
- day_metadata = load_jsonl(file_path)
912
-
913
- # Add agent_identifier to each review metadata for processing
914
- for review_meta in day_metadata:
915
- review_meta['agent_identifier'] = agent_identifier
916
-
917
- all_metadata.extend(day_metadata)
918
- print(f" ✓ Loaded {len(day_metadata)} reviews from {filename}")
919
- except Exception as e:
920
- print(f" Warning: Could not load {filename}: {str(e)}")
921
-
922
- print(f"✓ Loaded {len(all_metadata)} total reviews for {year}")
923
- return all_metadata
924
-
925
- except Exception as e:
926
- print(f"✗ Error loading review metadata for {year}: {str(e)}")
927
- return []
928
-
929
-
930
- def get_latest_review_date_for_agent(agent_identifier):
931
- """
932
- Get the latest review creation date for an agent from stored metadata.
933
- Used for incremental updates - only fetch reviews newer than this date.
934
-
935
- Structure: [agent_identifier]/YYYY.MM.DD.jsonl
936
-
937
- Args:
938
- agent_identifier: GitHub identifier of the agent
939
-
940
- Returns:
941
- datetime or None if no existing reviews found.
942
- """
943
- try:
944
- api = HfApi()
945
- token = get_hf_token()
946
-
947
- # List all files in the repository
948
- files = api.list_repo_files(repo_id=REVIEW_METADATA_REPO, repo_type="dataset")
949
-
950
- # Filter for files in this agent's folder
951
- # New structure: [agent_identifier]/YYYY.MM.DD.jsonl
952
- agent_pattern = f"{agent_identifier}/"
953
- agent_files = [f for f in files if f.startswith(agent_pattern) and f.endswith('.jsonl')]
954
-
955
- if not agent_files:
956
- return None
957
-
958
- # Find latest review_at across all files
959
- latest_date = None
960
- for filename in agent_files:
961
- try:
962
- file_path = hf_hub_download(
963
- repo_id=REVIEW_METADATA_REPO,
964
- filename=filename,
965
- repo_type="dataset",
966
- token=token
967
- )
968
- metadata = load_jsonl(file_path)
969
-
970
- for review_meta in metadata:
971
- reviewed_at = review_meta.get("reviewed_at")
972
- if reviewed_at:
973
- try:
974
- dt = datetime.fromisoformat(reviewed_at.replace("Z", "+00:00"))
975
- if latest_date is None or dt > latest_date:
976
- latest_date = dt
977
- except Exception:
978
- continue
979
- except Exception:
980
- continue
981
-
982
- return latest_date
983
-
984
- except Exception:
985
- return None
986
-
987
-
988
- def get_already_mined_dates(agent_identifier, n_months=6):
989
- """
990
- Get set of dates that have already been mined for an agent.
991
-
992
- Args:
993
- agent_identifier: GitHub identifier of the agent
994
- n_months: Number of months to look back (default: 6)
995
-
996
- Returns:
997
- Set of date objects (datetime.date) that already have data files
998
- """
999
- try:
1000
- api = HfApi()
1001
-
1002
- # Calculate date range
1003
- today = datetime.now(timezone.utc)
1004
- n_months_ago = today - timedelta(days=30 * n_months)
1005
-
1006
- # List all files in the repository
1007
- files = api.list_repo_files(repo_id=REVIEW_METADATA_REPO, repo_type="dataset")
1008
-
1009
- # Filter for files in this agent's folder
1010
- agent_pattern = f"{agent_identifier}/"
1011
- agent_files = [f for f in files if f.startswith(agent_pattern) and f.endswith('.jsonl')]
1012
-
1013
- mined_dates = set()
1014
- for filename in agent_files:
1015
- try:
1016
- # Extract date from filename: [agent_identifier]/YYYY.MM.DD.jsonl
1017
- parts = filename.split('/')
1018
- if len(parts) != 2:
1019
- continue
1020
-
1021
- date_part = parts[1].replace('.jsonl', '') # Get YYYY.MM.DD
1022
- date_components = date_part.split('.')
1023
- if len(date_components) != 3:
1024
- continue
1025
-
1026
- file_year, file_month, file_day = map(int, date_components)
1027
- file_date = datetime(file_year, file_month, file_day, tzinfo=timezone.utc).date()
1028
-
1029
- # Only include dates within the last n_months
1030
- if n_months_ago.date() <= file_date <= today.date():
1031
- mined_dates.add(file_date)
1032
- except Exception as e:
1033
- print(f" Warning: Could not parse date from filename {filename}: {e}")
1034
- continue
1035
-
1036
- return mined_dates
1037
-
1038
- except Exception as e:
1039
- print(f" Warning: Could not get already-mined dates for {agent_identifier}: {str(e)}")
1040
- return set()
1041
-
1042
-
1043
-
1044
-
1045
- def calculate_review_stats_from_metadata(metadata_list):
1046
- """
1047
- Calculate statistics from a list of review metadata (lightweight objects).
1048
- Works with minimal metadata: html_url, reviewed_at, pr_status, pr_merged, pr_closed_at.
1049
-
1050
- Returns a dictionary with comprehensive review metrics.
1051
-
1052
- Acceptance Rate is calculated as:
1053
- merged PRs / (merged PRs + rejected PRs) * 100
1054
-
1055
- merged PRs = PRs that were merged (pr_status='merged')
1056
- Rejected PRs = PRs that were closed without merging (pr_status='closed')
1057
- Pending PRs = PRs still open (pr_status='open') - excluded from acceptance rate
1058
- """
1059
- total_reviews = len(metadata_list)
1060
-
1061
- # Count merged PRs (merged)
1062
- merged_prs = sum(1 for review_meta in metadata_list
1063
- if review_meta.get('pr_status') == 'merged')
1064
-
1065
- # Count rejected PRs (closed without merging)
1066
- rejected_prs = sum(1 for review_meta in metadata_list
1067
- if review_meta.get('pr_status') == 'closed')
1068
-
1069
- # Count pending PRs (still open)
1070
- pending_prs = sum(1 for review_meta in metadata_list
1071
- if review_meta.get('pr_status') == 'open')
1072
-
1073
- # Calculate acceptance rate (exclude pending PRs)
1074
- completed_prs = merged_prs + rejected_prs
1075
- acceptance_rate = (merged_prs / completed_prs * 100) if completed_prs > 0 else 0
1076
-
1077
- return {
1078
- 'total_reviews': total_reviews,
1079
- 'merged_prs': merged_prs,
1080
- 'rejected_prs': rejected_prs,
1081
- 'pending_prs': pending_prs,
1082
- 'acceptance_rate': round(acceptance_rate, 2),
1083
- }
1084
-
1085
-
1086
- def update_all_agents_incremental():
1087
- """
1088
- Memory-efficient incremental update of review statistics for all agents.
1089
-
1090
- Strategy:
1091
- 1. For each agent, load existing data from SWE-Arena/review_metadata
1092
- 2. Identify already-mined dates (based on filename: YYYY.MM.DD.jsonl)
1093
- 3. Only fetch reviews from dates that haven't been mined yet (within last 6 months)
1094
- 4. If no data exists at all, mine everything from scratch
1095
- 5. Store minimal metadata (not full review objects) to avoid storage limits
1096
- 6. Construct leaderboard from ALL stored metadata (last 6 months)
1097
-
1098
- Returns dictionary of all agent data with current stats.
1099
- """
1100
- token = get_github_token()
1101
- current_year = datetime.now().year
1102
-
1103
- # Load agent metadata from HuggingFace
1104
- agents = load_agents_from_hf()
1105
- if not agents:
1106
- print("No agents found in HuggingFace dataset")
1107
- return {}
1108
-
1109
- cache_dict = {}
1110
-
1111
- # Update each agent
1112
- for agent in agents:
1113
- identifier = agent.get('github_identifier')
1114
- agent_name = agent.get('agent_name', 'Unknown')
1115
-
1116
- if not identifier:
1117
- print(f"Warning: Skipping agent without identifier: {agent}")
1118
- continue
1119
-
1120
- try:
1121
- print(f"\n{'='*80}")
1122
- print(f"Processing: {agent_name} ({identifier})")
1123
- print(f"{'='*80}")
1124
-
1125
- # Get already-mined dates for this agent (last 6 months)
1126
- already_mined_dates = get_already_mined_dates(identifier, n_months=6)
1127
-
1128
- if already_mined_dates:
1129
- print(f"📅 Found {len(already_mined_dates)} already-mined dates")
1130
- print(f" Skipping these dates and fetching only new data...")
1131
- # Fetch only reviews from dates not yet mined
1132
- new_metadata = fetch_all_reviews_metadata(
1133
- identifier,
1134
- agent_name,
1135
- token,
1136
- start_from_date=None, # Use full 6-month range
1137
- exclude_dates=already_mined_dates # But exclude already-mined dates
1138
- )
1139
- else:
1140
- print(f"📅 No existing data found. Mining everything from scratch...")
1141
- # Mine everything from scratch (full 6-month range)
1142
- new_metadata = fetch_all_reviews_metadata(
1143
- identifier,
1144
- agent_name,
1145
- token,
1146
- start_from_date=None
1147
- )
1148
-
1149
- if new_metadata:
1150
- # Save new metadata to HuggingFace (organized by agent_identifier/YYYY.MM.DD.jsonl)
1151
- print(f"💾 Saving {len(new_metadata)} new review records...")
1152
- save_review_metadata_to_hf(new_metadata, identifier)
1153
- else:
1154
- print(f" No new reviews to save")
1155
-
1156
- # Load ALL metadata for current year to calculate stats (aggregates entire last 6 months)
1157
- print(f"📊 Calculating statistics from ALL stored metadata (last 6 months)...")
1158
- all_year_metadata = load_review_metadata_for_year(current_year)
1159
-
1160
- # Filter for this specific agent
1161
- agent_metadata = [review for review in all_year_metadata if review.get("agent_identifier") == identifier]
1162
-
1163
- # Calculate stats from metadata
1164
- stats = calculate_review_stats_from_metadata(agent_metadata)
1165
-
1166
- # Merge metadata with stats
1167
- cache_dict[identifier] = {
1168
- 'agent_name': agent_name,
1169
- 'website': agent.get('website', 'N/A'),
1170
- 'github_identifier': identifier,
1171
- **stats
1172
- }
1173
-
1174
- print(f"✓ Updated {identifier}: {stats['total_reviews']} reviews, {stats['acceptance_rate']}% acceptance rate")
1175
-
1176
- except Exception as e:
1177
- print(f"✗ Error updating {identifier}: {str(e)}")
1178
- import traceback
1179
- traceback.print_exc()
1180
- continue
1181
-
1182
- return cache_dict
1183
-
1184
-
1185
- def run_once():
1186
- print("\n🚀 Immediate mining run started")
1187
- cache_dict = update_all_agents_incremental()
1188
- if cache_dict:
1189
- print(f"✓ Updated {len(cache_dict)} agents")
1190
- print("✅ Immediate mining run completed\n")
1191
-
1192
-
1193
- def main():
1194
- if DEBUG_MODE:
1195
- print("\n" + "="*80)
1196
- print("🐛 DEBUG MODE ENABLED 🐛")
1197
- print("="*80)
1198
- print("PR retrieval is limited to 10 PRs per query pattern per agent")
1199
- print("Data will NOT be saved to HuggingFace in debug mode.")
1200
- print("="*80 + "\n")
1201
- else:
1202
- print("\n🚀 Starting in PRODUCTION MODE - full review retrieval enabled")
1203
- print()
1204
-
1205
- if not args.loop:
1206
- run_once()
1207
- return
1208
-
1209
- print(f"🔁 Loop mode enabled. Interval: {args.interval_seconds} seconds")
1210
- try:
1211
- while True:
1212
- start = time.time()
1213
- run_once()
1214
- elapsed = time.time() - start
1215
- sleep_for = max(0, args.interval_seconds - int(elapsed))
1216
- if sleep_for > 0:
1217
- print(f"😴 Sleeping {sleep_for} seconds before next run...")
1218
- time.sleep(sleep_for)
1219
- except KeyboardInterrupt:
1220
- print("\n👋 Loop interrupted by user. Exiting...")
1221
-
1222
-
1223
- if __name__ == "__main__":
1224
- main()