File size: 11,897 Bytes
926b19a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import streamlit as st
import uuid
import hashlib
from typing import List, Optional, Dict, Any, TypedDict,Generic, TypeVar
from huggingface_hub import login
import logging
import time
import os
from dotenv import load_dotenv
from mydomain_agent import upload_documents, submit_feedback, get_conversations,get_conversation_history, chat_with_rag

load_dotenv()

# --- 2. Streamlit UI Components and State Management ---
st.set_page_config(page_title="Agentic WorkFlow", layout="wide")
st.title("πŸ’¬ Domain-Aware AI Agent")
st.caption("Your expert assistant across HR, Finance, and Legal Compliance.")

# Initialize session state for conversations, messages, and the current session ID
if "conversations" not in st.session_state:
    st.session_state.conversations = []
if "session_id" not in st.session_state:
    st.session_state.session_id = str(uuid.uuid4())
if "messages" not in st.session_state:
    st.session_state.messages = []
if "retriever_ready" not in st.session_state:
    st.session_state.retriever_ready = False
if "feedback_given" not in st.session_state:
    st.session_state.feedback_given = {}
# New state variable to handle negative feedback comments
if "negative_feedback_for" not in st.session_state:
    st.session_state.negative_feedback_for = None

# Initialize session state for storing uploaded file hashes
if 'uploaded_file_hashes' not in st.session_state:
    st.session_state.uploaded_file_hashes = set()
if 'uploaded_files_info' not in st.session_state:
    st.session_state.uploaded_files_info = []

def get_file_hash(file):
    """Generates a unique hash for a file using its name, size, and content."""
    hasher = hashlib.sha256()
    # Read a small chunk of the file to ensure content-based uniqueness
    # Combine with file name and size for a robust identifier
    file_content = file.getvalue()
    hasher.update(file.name.encode('utf-8'))
    hasher.update(str(file.size).encode('utf-8'))
    hasher.update(file_content[:1024])  # Use first 1KB of content
    return hasher.hexdigest()
# --- 3. Helper Functions for Backend Communication ---
# def send_documents_to_backend(uploaded_files):
#     try:
#         for file in uploaded_files:
#             process_status = upload_documents(file)
#         return process_status
#     except Exception as e:
#         st.error(f"Error processing documents: {e}")
#         return None

def send_chat_message_to_backend(prompt: str, chat_history: List[Dict[str, Any]]):
    """Sends a chat message to the FastAPI backend and handles the response."""
    if not prompt.strip():
        return {"empty":"Invalid Question"}
    history_for_api = [
        {"role": msg.get("role"), "content": msg.get("content")} 
        for msg in chat_history
    ]
    
    payload = {
        "user_question": str(prompt),
        "session_id": st.session_state.session_id,
        "chat_history": history_for_api,
    }
    print(f"Sending payload: {payload}")  # Debug print
    agent_name,response_dict = chat_with_rag(payload)
    try:
        return agent_name,response_dict
    except Exception as e:
        st.error(f"Error communicating with the backend")
        print(f"Error communicating with the backend: {e}")
        return None

def send_feedback_to_backend(telemetry_entry_id: str, feedback_score: int, feedback_text: Optional[str] = None):
    """Sends feedback to the FastAPI backend."""
    payload = {
        "session_id": st.session_state.session_id,
        "telemetry_entry_id": telemetry_entry_id,
        "feedback_score": feedback_score,
        "feedback_text": feedback_text
    }
    try:
        # response = requests.post(f"{API_URL}/feedback", json=payload)
        response = submit_feedback(payload)
        # response.raise_for_status()
        st.toast("Feedback submitted! Thank you.")
    except Exception as e:
        st.error(f"Error submitting feedback: {e}")

def get_conversations_from_backend() -> list:
    """Fetches a list of all conversations from the backend."""
    try:
        # response = requests.get(f"{API_URL}/conversations")
        response = get_conversations()
        # response.raise_for_status()
        return response
    except Exception as e:
        st.sidebar.error(f"Error fetching conversations: {e}")
        return []

def get_conversation_history_from_backend(session_id: str):
    """Fetches the messages for a specific conversation ID."""
    try:
        # response = requests.get(f"{API_URL}/conversations/{session_id}")

        response = get_conversation_history(session_id)
        return response
    except Exception as e:
        st.error(f"Error loading conversation history: {e}")
        return None

def handle_positive_feedback(telemetry_id):
    """Handles positive feedback submission."""
    send_feedback_to_backend(telemetry_id, 1)
    st.session_state.feedback_given[telemetry_id] = True


def handle_negative_feedback_comment_submit(telemetry_id, comment_text):
    """Handles the negative feedback comment submission."""
    send_feedback_to_backend(telemetry_id, -1, comment_text)
    st.session_state.feedback_given[telemetry_id] = True
    st.session_state.negative_feedback_for = None


def refresh_conversations():
    """Refreshes the conversation list in the sidebar."""
    st.session_state.conversations = get_conversations_from_backend()

# --- 4. Sidebar for Document Upload and Conversation History ---
with st.sidebar:
    st.header("Load Documents")
    if st.button("Process Documents", key="process_docs_button"):
        newmsg, status = upload_documents()
        if status:
            st.session_state.retriever_ready = True
                        # st.success(response_data.get("message", "Documents processed and knowledge base ready!"))
            st.success(newmsg)
            st.session_state.messages = []
            refresh_conversations() # sql query need to be added here
        else:
            st.session_state.retriever_ready = False
            st.error(newmsg)
    else:
        st.warning("Please Load Document.")

    st.markdown("---")
    st.header("Conversations")
    if st.button("βž• New Chat", key="new_chat_button", use_container_width=True, type="primary"):
        st.session_state.session_id = str(uuid.uuid4())
        st.session_state.messages = []
        st.session_state.feedback_given = {}
        st.session_state.negative_feedback_for = None
        refresh_conversations()
        st.rerun()
    
    refresh_conversations()
    
    if st.session_state.conversations:
        for conv in st.session_state.conversations:
            if st.button(
                conv["title"], 
                key=f"conv_{conv['session_id']}",
                use_container_width=True
            ):
                if st.session_state.session_id != conv["session_id"]:
                    st.session_state.session_id = conv["session_id"]
                    history = get_conversation_history_from_backend(conv["session_id"])
                    if history != [] or history != None:
                        st.session_state.messages = history
                        st.session_state.feedback_given = {msg.get("telemetry_id"): True for msg in history if msg.get("telemetry_id")}
                    else:
                        st.session_state.messages = []
                    st.session_state.negative_feedback_for = None
                    st.rerun()

# --- 5. Main Chat Interface ---
# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])
        
    # Display feedback buttons for the last AI response
    if message["role"] == "assistant" and message.get("telemetry_id") and not st.session_state.feedback_given.get(message["telemetry_id"], False):
        col1, col2 = st.columns(2)
        with col1:
            if st.button("πŸ‘", key=f"positive_{message['telemetry_id']}", on_click=handle_positive_feedback, args=(message['telemetry_id'],)):
                pass
        with col2:
            if st.button("πŸ‘Ž", key=f"negative_{message['telemetry_id']}"):
                st.session_state.negative_feedback_for = message['telemetry_id']
                st.rerun()
        
        # --- NEW LOGIC FOR NEGATIVE FEEDBACK COMMENT ---
        # Only render the comment input if this is the message the user clicked thumbs down on
        if st.session_state.negative_feedback_for == message['telemetry_id']:
            with st.container():
                comment = st.text_area(
                    "Please provide some details (optional):", 
                    key=f"feedback_text_{message['telemetry_id']}"
                )
                if st.button("Submit Comment", key=f"submit_feedback_button_{message['telemetry_id']}"):
                    handle_negative_feedback_comment_submit(message['telemetry_id'], comment)

# Chat input for new questions
if st.session_state.retriever_ready:
    if prompt := st.chat_input("Ask me anything about the uploaded documents..."):
        st.session_state.messages.append({"role": "user", "content": prompt})
        with st.chat_message("user"):
            st.markdown(prompt)

        with st.chat_message("assistant"):
            with st.spinner("Thinking..."):
                agent_name,response_data = send_chat_message_to_backend(prompt, st.session_state.messages)
                if response_data:
                    if response_data.get("is_restricted"):
                        ai_response = response_data.get("ai_response", "Sorry, I couldn't generate a response.")
                        reason = response_data.get("moderation_reason")
                        st.markdown(ai_response)
                        st.markdown(reason)
                    elif response_data.get("empty"):
                        st.markdown(response_data.get("empty"))
                        
                    ai_response = response_data.get("ai_response", "Sorry, I couldn't generate a response.")
                    telemetry_id = response_data.get("telemetry_entry_id")

                    st.markdown(ai_response)
                    st.caption(agent_name)
                    
                    st.session_state.messages.append({
                        "role": "assistant",
                        "content": ai_response,
                        "telemetry_id": telemetry_id
                    })
                    
                    refresh_conversations()
                    
                    if telemetry_id:
                        col1, col2 = st.columns(2)
                        with col1:
                            if st.button("πŸ‘", key=f"positive_{telemetry_id}", on_click=handle_positive_feedback, args=(telemetry_id,)):
                                pass
                        with col2:
                            if st.button("πŸ‘Ž", key=f"negative_{telemetry_id}"):
                                st.session_state.negative_feedback_for = telemetry_id
                                st.rerun()
                else:
                    st.markdown("An error occurred.")
else:
    st.info("Please upload and process documents to start chatting.")





# import streamlit as st

# if 'selected_model' not in st.session_state:
#     st.session_state.selected_model = ""
# @st.dialog("Choose a domain")
# def domain_modal():
#     domain = st.selectbox("Select a domain",["HR","Finance","Legal"])
#     st.session_state.selected_model = domain
#     if st.button("submit"):
#         st.rerun()

# domain_modal()
# print("Selected Domain: ",st.session_state['selected_model'])