Spaces:
Running
Running
Upload 5 files
Browse files- .gitattributes +1 -0
- Db_domain_agent.db +0 -0
- domain_index_sec.faiss +3 -0
- mydomain_agent.py +650 -0
- requirements.txt +24 -3
- streamlitapp.py +276 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
domain_index_sec.faiss filter=lfs diff=lfs merge=lfs -text
|
Db_domain_agent.db
ADDED
|
Binary file (90.1 kB). View file
|
|
|
domain_index_sec.faiss
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e5e2bda09d5e81a04ddefa8442ec2ed3e664aab2a570290298ca1867dde66b80
|
| 3 |
+
size 528429
|
mydomain_agent.py
ADDED
|
@@ -0,0 +1,650 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain_core.tools import tool
|
| 2 |
+
from langgraph.graph import StateGraph, START, END
|
| 3 |
+
# from llm_initializer import initialize_llm, generate_prompt_phi4
|
| 4 |
+
from langgraph.graph import MessagesState
|
| 5 |
+
from langchain_core.messages import ToolMessage, HumanMessage, SystemMessage
|
| 6 |
+
from typing_extensions import Literal, TypedDict
|
| 7 |
+
from IPython.display import Image, display
|
| 8 |
+
from pydantic import BaseModel, Field
|
| 9 |
+
from pydantic import BaseModel, Field, validator
|
| 10 |
+
from typing import List, Optional, Dict, Any, TypedDict,Generic, TypeVar
|
| 11 |
+
from abc import ABC
|
| 12 |
+
import uuid
|
| 13 |
+
import io
|
| 14 |
+
import os
|
| 15 |
+
import PyPDF2
|
| 16 |
+
import re
|
| 17 |
+
import logging
|
| 18 |
+
import time
|
| 19 |
+
from docx import Document as dx
|
| 20 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 21 |
+
from langchain_community.document_loaders import (
|
| 22 |
+
DirectoryLoader,
|
| 23 |
+
PyPDFLoader,
|
| 24 |
+
TextLoader
|
| 25 |
+
)
|
| 26 |
+
import tempfile
|
| 27 |
+
import faiss
|
| 28 |
+
from langchain_community.docstore.in_memory import InMemoryDocstore
|
| 29 |
+
from langchain_community.vectorstores import FAISS
|
| 30 |
+
from langchain_core.prompts import PromptTemplate
|
| 31 |
+
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage
|
| 32 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 33 |
+
from langgraph.checkpoint.memory import MemorySaver
|
| 34 |
+
from langgraph.graph import StateGraph, END
|
| 35 |
+
from sqlalchemy import create_engine, Column, String, Integer, DateTime, ForeignKey, Text
|
| 36 |
+
from sqlalchemy.dialects.sqlite import JSON as SQLiteJSON
|
| 37 |
+
# from sqlalchemy.ext.declarative import declarative_base
|
| 38 |
+
from sqlalchemy.orm import sessionmaker, relationship
|
| 39 |
+
from sentence_transformers import SentenceTransformer
|
| 40 |
+
from huggingface_hub import login
|
| 41 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 42 |
+
import datetime
|
| 43 |
+
from enum import Enum as PyEnum
|
| 44 |
+
from sqlalchemy.orm import DeclarativeBase
|
| 45 |
+
# from config import Config
|
| 46 |
+
from functools import lru_cache
|
| 47 |
+
from dotenv import load_dotenv
|
| 48 |
+
|
| 49 |
+
load_dotenv()
|
| 50 |
+
hf_token = os.getenv("hf_user_token")
|
| 51 |
+
login(hf_token)
|
| 52 |
+
|
| 53 |
+
T = TypeVar("T")
|
| 54 |
+
# --- 1. Database Setup ---
|
| 55 |
+
DATABASE_URL = "sqlite:///Db_domain_agent.db"
|
| 56 |
+
engine = create_engine(DATABASE_URL)
|
| 57 |
+
SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
|
| 58 |
+
|
| 59 |
+
class Base(DeclarativeBase):
|
| 60 |
+
pass
|
| 61 |
+
|
| 62 |
+
class FeedbackScore(PyEnum):
|
| 63 |
+
POSITIVE = 1
|
| 64 |
+
NEGATIVE = -1
|
| 65 |
+
|
| 66 |
+
class Telemetry(Base):
|
| 67 |
+
__tablename__ = "telemetry_table"
|
| 68 |
+
transaction_id = Column(String, primary_key=True)
|
| 69 |
+
session_id = Column(String)
|
| 70 |
+
user_question = Column(Text)
|
| 71 |
+
response = Column(Text)
|
| 72 |
+
context = Column(Text)
|
| 73 |
+
model_name = Column(String)
|
| 74 |
+
input_tokens = Column(Integer)
|
| 75 |
+
output_tokens = Column(Integer)
|
| 76 |
+
total_tokens = Column(Integer)
|
| 77 |
+
latency = Column(Integer)
|
| 78 |
+
dtcreatedon = Column(DateTime)
|
| 79 |
+
|
| 80 |
+
feedback = relationship("Feedback", back_populates="telemetry_entry", uselist=False)
|
| 81 |
+
|
| 82 |
+
class Feedback(Base):
|
| 83 |
+
__tablename__ = "feedback_table"
|
| 84 |
+
id = Column(Integer, primary_key=True, autoincrement=True)
|
| 85 |
+
telemetry_entry_id = Column(String, ForeignKey("telemetry_table.transaction_id"), nullable=False, unique=True)
|
| 86 |
+
feedback_score = Column(Integer, nullable=False)
|
| 87 |
+
feedback_text = Column(Text, nullable=True)
|
| 88 |
+
user_query = Column(Text, nullable=False)
|
| 89 |
+
llm_response = Column(Text, nullable=False)
|
| 90 |
+
timestamp = Column(DateTime, default=datetime.datetime.now)
|
| 91 |
+
|
| 92 |
+
telemetry_entry = relationship("Telemetry", back_populates="feedback")
|
| 93 |
+
|
| 94 |
+
class ConversationHistory(Base):
|
| 95 |
+
__tablename__ = "conversation_history"
|
| 96 |
+
session_id = Column(String, primary_key=True)
|
| 97 |
+
messages = Column(SQLiteJSON, nullable=False)
|
| 98 |
+
last_updated = Column(DateTime, default=datetime.datetime.now)
|
| 99 |
+
|
| 100 |
+
Base.metadata.create_all(bind=engine)
|
| 101 |
+
# --- 2. Initialize LLM and Embeddings ---
|
| 102 |
+
gak = os.getenv("Gapi_key")
|
| 103 |
+
llm = ChatGoogleGenerativeAI(model="gemini-2.5-flash-lite",google_api_key=gak)
|
| 104 |
+
# embedding_model = SentenceTransformer("ibm-granite/granite-embedding-english-r2")
|
| 105 |
+
|
| 106 |
+
# my_model_name = "gemma3:1b-it-qat"
|
| 107 |
+
# llm = ChatOllama(model=my_model_name)
|
| 108 |
+
embedding_model = HuggingFaceEmbeddings(
|
| 109 |
+
model_name="ibm-granite/granite-embedding-english-r2",
|
| 110 |
+
model_kwargs={'device': 'cpu'},
|
| 111 |
+
encode_kwargs={'normalize_embeddings': False}
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
# --- 3. LangGraph State and Workflow ---
|
| 115 |
+
class GraphState(TypedDict):
|
| 116 |
+
chat_history: List[Dict[str, Any]]
|
| 117 |
+
retrieved_documents: List[str]
|
| 118 |
+
user_question: str
|
| 119 |
+
decision:str
|
| 120 |
+
session_id: str
|
| 121 |
+
telemetry_id: Optional[str] = None
|
| 122 |
+
|
| 123 |
+
class Route(BaseModel):
|
| 124 |
+
step: Literal['HR Agent','Finance Agent','Legal Compliance Agent'] = Field(
|
| 125 |
+
None, description="The next step in routing process"
|
| 126 |
+
)
|
| 127 |
+
router = llm.with_structured_output(Route)
|
| 128 |
+
|
| 129 |
+
# class State(TypedDict):
|
| 130 |
+
# input:str
|
| 131 |
+
# decision:str
|
| 132 |
+
# output:str
|
| 133 |
+
|
| 134 |
+
chathistory = {}
|
| 135 |
+
|
| 136 |
+
def retrieve_documents(state: GraphState):
|
| 137 |
+
# global vectorstore_retriever
|
| 138 |
+
# upload_documents()
|
| 139 |
+
saved_vectorstore_index = FAISS.load_local('domain_index', embedding_model,allow_dangerous_deserialization=True)
|
| 140 |
+
user_question = state["user_question"]
|
| 141 |
+
# meta_filter = {'Domain':'HR'}
|
| 142 |
+
if saved_vectorstore_index is None:
|
| 143 |
+
raise ValueError("Knowledge base not loaded.")
|
| 144 |
+
retrieved_docs = saved_vectorstore_index.as_retriever(search_type="mmr", search_kwargs={"k": 5})
|
| 145 |
+
top_docs = retrieved_docs.invoke(user_question)
|
| 146 |
+
print("Top Docs: ", top_docs)
|
| 147 |
+
retrieved_docs_content = [doc.page_content if doc.page_content else doc for doc in top_docs]
|
| 148 |
+
print("retrieved_documents List: ", retrieved_docs_content)
|
| 149 |
+
return {"retrieved_documents": retrieved_docs_content}
|
| 150 |
+
|
| 151 |
+
def generate_response(user_question, retrieved_documents):
|
| 152 |
+
print("Inside generate_response--------------")
|
| 153 |
+
global llm
|
| 154 |
+
global chathistory
|
| 155 |
+
global agent_name
|
| 156 |
+
# user_question = state["user_question"]
|
| 157 |
+
# retrieved_documents = state["retrieved_documents"]
|
| 158 |
+
|
| 159 |
+
formatted_chat_history = []
|
| 160 |
+
for msg in chathistory["chat_history"]:
|
| 161 |
+
if msg['role'] == 'user':
|
| 162 |
+
formatted_chat_history.append(HumanMessage(content=msg['content']))
|
| 163 |
+
elif msg['role'] == 'assistant':
|
| 164 |
+
formatted_chat_history.append(AIMessage(content=msg['content']))
|
| 165 |
+
|
| 166 |
+
if not retrieved_documents:
|
| 167 |
+
response_content = "I couldn't find any relevant information in the uploaded documents for your question. Can you please rephrase or provide more context?"
|
| 168 |
+
response_obj = AIMessage(content=response_content)
|
| 169 |
+
else:
|
| 170 |
+
context = "\n\n".join(retrieved_documents)
|
| 171 |
+
template = """
|
| 172 |
+
You are a helpful AI assistant. Answer the user's question based on the provided context {context} and the conversation history {chat_history}.
|
| 173 |
+
If the answer is not in the context, state that you don't have enough information.
|
| 174 |
+
Do not make up answers. Only use the given context and chat_history.
|
| 175 |
+
Remove unwanted words like 'Response:' or 'Answer:' from answers.
|
| 176 |
+
\n\nHere is the Question:\n{user_question}
|
| 177 |
+
"""
|
| 178 |
+
rag_prompt = PromptTemplate(
|
| 179 |
+
input_variables=["context", "chat_history", "user_question"],
|
| 180 |
+
template=template
|
| 181 |
+
)
|
| 182 |
+
rag_chain = rag_prompt | llm
|
| 183 |
+
time.sleep(3)
|
| 184 |
+
response_obj = rag_chain.invoke({
|
| 185 |
+
"context": [SystemMessage(content=context)],
|
| 186 |
+
"chat_history": formatted_chat_history,
|
| 187 |
+
"user_question": [HumanMessage(content=user_question)]
|
| 188 |
+
})
|
| 189 |
+
|
| 190 |
+
telemetry_data = response_obj.model_dump()
|
| 191 |
+
input_tokens = telemetry_data.get('usage_metadata', {}).get('input_tokens', 0)
|
| 192 |
+
output_tokens = telemetry_data.get('usage_metadata', {}).get('output_tokens', 0)
|
| 193 |
+
total_tokens = telemetry_data.get('usage_metadata', {}).get('total_tokens', 0)
|
| 194 |
+
model_name = telemetry_data.get('response_metadata', {}).get('model', 'unknown')
|
| 195 |
+
total_duration = telemetry_data.get('response_metadata', {}).get('total_duration', 0)
|
| 196 |
+
|
| 197 |
+
db = SessionLocal()
|
| 198 |
+
transaction_id = str(uuid.uuid4())
|
| 199 |
+
try:
|
| 200 |
+
telemetry_record = Telemetry(
|
| 201 |
+
transaction_id=transaction_id,
|
| 202 |
+
session_id=chathistory.get("session_id"),
|
| 203 |
+
user_question=user_question,
|
| 204 |
+
response=response_obj.content,
|
| 205 |
+
context="\n\n".join(retrieved_documents) if retrieved_documents else "No documents retrieved",
|
| 206 |
+
model_name=model_name,
|
| 207 |
+
input_tokens=input_tokens,
|
| 208 |
+
output_tokens=output_tokens,
|
| 209 |
+
total_tokens=total_tokens,
|
| 210 |
+
latency=total_duration,
|
| 211 |
+
dtcreatedon=datetime.datetime.now()
|
| 212 |
+
)
|
| 213 |
+
db.add(telemetry_record)
|
| 214 |
+
|
| 215 |
+
new_messages = chathistory["chat_history"] + [
|
| 216 |
+
{"role": "user", "content": user_question},
|
| 217 |
+
{"role": "assistant", "content": response_obj.content, "telemetry_id": transaction_id}
|
| 218 |
+
]
|
| 219 |
+
|
| 220 |
+
# --- FIX: Refactored Database Save Logic ---
|
| 221 |
+
print(f"Saving conversation for session_id: {chathistory.get('session_id')}")
|
| 222 |
+
conversation_entry = db.query(ConversationHistory).filter_by(session_id=chathistory.get("session_id")).first()
|
| 223 |
+
if conversation_entry:
|
| 224 |
+
print(f"Updating existing conversation for session_id: {chathistory.get('session_id')}")
|
| 225 |
+
conversation_entry.messages = new_messages
|
| 226 |
+
conversation_entry.last_updated = datetime.datetime.now()
|
| 227 |
+
else:
|
| 228 |
+
print(f"Creating new conversation for session_id: {chathistory.get('session_id')}")
|
| 229 |
+
new_conversation_entry = ConversationHistory(
|
| 230 |
+
session_id=chathistory.get("session_id"),
|
| 231 |
+
messages=new_messages,
|
| 232 |
+
last_updated=datetime.datetime.now()
|
| 233 |
+
)
|
| 234 |
+
db.add(new_conversation_entry)
|
| 235 |
+
|
| 236 |
+
db.commit()
|
| 237 |
+
print(f"Successfully saved conversation for session_id: {chathistory.get('session_id')}")
|
| 238 |
+
|
| 239 |
+
except Exception as e:
|
| 240 |
+
db.rollback()
|
| 241 |
+
print(f"***CRITICAL ERROR***: Failed to save data to database. Error: {e}")
|
| 242 |
+
finally:
|
| 243 |
+
db.close()
|
| 244 |
+
|
| 245 |
+
return {
|
| 246 |
+
"chat_history": new_messages,
|
| 247 |
+
"telemetry_id": transaction_id,
|
| 248 |
+
"agent_name": agent_name
|
| 249 |
+
}
|
| 250 |
+
|
| 251 |
+
agent_name = ""
|
| 252 |
+
def hr_agent(state:GraphState):
|
| 253 |
+
"""Answer the user question based on Human Resource(HR)"""
|
| 254 |
+
global agent_name
|
| 255 |
+
user_question = state["user_question"]
|
| 256 |
+
retrieved_documents = state["retrieved_documents"]
|
| 257 |
+
print("HR Agent")
|
| 258 |
+
agent_name = "HR Agent"
|
| 259 |
+
result = generate_response(user_question,retrieved_documents)
|
| 260 |
+
# return {"output":result}
|
| 261 |
+
return result
|
| 262 |
+
|
| 263 |
+
def finance_agent(state:GraphState):
|
| 264 |
+
"""Answer the user question based on Finance and Bank"""
|
| 265 |
+
global agent_name
|
| 266 |
+
user_question = state["user_question"]
|
| 267 |
+
retrieved_documents = state["retrieved_documents"]
|
| 268 |
+
print("Finance Agent")
|
| 269 |
+
agent_name = "Finance Agent"
|
| 270 |
+
result = generate_response(user_question,retrieved_documents)
|
| 271 |
+
return result
|
| 272 |
+
|
| 273 |
+
def legals_agent(state:GraphState):
|
| 274 |
+
"""Answer the user question based on Legal Compliance"""
|
| 275 |
+
global agent_name
|
| 276 |
+
user_question = state["user_question"]
|
| 277 |
+
retrieved_documents = state["retrieved_documents"]
|
| 278 |
+
print("LC agent")
|
| 279 |
+
agent_name = "Legal Compliance Agent"
|
| 280 |
+
result = generate_response(user_question,retrieved_documents)
|
| 281 |
+
# return {"output":result}
|
| 282 |
+
return result
|
| 283 |
+
|
| 284 |
+
def llm_call_router(state:GraphState):
|
| 285 |
+
decision = router.invoke(
|
| 286 |
+
[
|
| 287 |
+
SystemMessage(
|
| 288 |
+
content="Route the user_question to HR Agent, Finance Agent, Legal Compliance Agent based on the user's request"
|
| 289 |
+
),
|
| 290 |
+
HumanMessage(
|
| 291 |
+
content=state['user_question']
|
| 292 |
+
),
|
| 293 |
+
]
|
| 294 |
+
)
|
| 295 |
+
return {"decision":decision.step}
|
| 296 |
+
|
| 297 |
+
def route_decision(state:GraphState):
|
| 298 |
+
|
| 299 |
+
if state['decision'] == 'HR Agent':
|
| 300 |
+
return "hr_agent"
|
| 301 |
+
elif state['decision'] == 'Finance Agent':
|
| 302 |
+
return "finance_agent"
|
| 303 |
+
elif state['decision'] == 'Legal Compliance Agent':
|
| 304 |
+
return "legals_agent"
|
| 305 |
+
|
| 306 |
+
router_builder = StateGraph(GraphState)
|
| 307 |
+
|
| 308 |
+
router_builder.add_node("retrieve", retrieve_documents)
|
| 309 |
+
router_builder.add_node("hr_agent", hr_agent)
|
| 310 |
+
router_builder.add_node("finance_agent", finance_agent)
|
| 311 |
+
router_builder.add_node("legals_agent", legals_agent)
|
| 312 |
+
router_builder.add_node("llm_call_router", llm_call_router)
|
| 313 |
+
|
| 314 |
+
# router_builder.add_node("generate", generate_response)
|
| 315 |
+
# router_builder.set_entry_point("retrieve")
|
| 316 |
+
# router_builder.add_edge("retrieve", "generate")
|
| 317 |
+
# router_builder.add_edge("generate", END)
|
| 318 |
+
# compiled_app = workflow.compile(checkpointer=memory)
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
router_builder.add_edge(START, "llm_call_router")
|
| 322 |
+
router_builder.add_conditional_edges(
|
| 323 |
+
"llm_call_router",
|
| 324 |
+
route_decision,
|
| 325 |
+
{
|
| 326 |
+
"hr_agent":"hr_agent",
|
| 327 |
+
"finance_agent":"finance_agent",
|
| 328 |
+
"legals_agent":"legals_agent",
|
| 329 |
+
},
|
| 330 |
+
)
|
| 331 |
+
router_builder.set_entry_point("retrieve")
|
| 332 |
+
router_builder.add_edge("retrieve","llm_call_router")
|
| 333 |
+
router_builder.add_edge("hr_agent",END)
|
| 334 |
+
router_builder.add_edge("finance_agent",END)
|
| 335 |
+
router_builder.add_edge("legals_agent",END)
|
| 336 |
+
|
| 337 |
+
route_workflow = router_builder.compile()
|
| 338 |
+
|
| 339 |
+
# state = route_workflow.invoke({'input': "Write a poem about a wicked cat"})
|
| 340 |
+
# print(state['output'])
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
vectorstore_retriever = None
|
| 345 |
+
compiled_app = None
|
| 346 |
+
memory = MemorySaver()
|
| 347 |
+
|
| 348 |
+
# --- 4. LangGraph Nodes ---
|
| 349 |
+
# def load_documents(state:GraphState):
|
| 350 |
+
# global selected_domain
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
# --- 5. API Models ---
|
| 359 |
+
class ChatHistoryEntry(BaseModel):
|
| 360 |
+
role: str
|
| 361 |
+
content: str
|
| 362 |
+
telemetry_id: Optional[str] = None
|
| 363 |
+
|
| 364 |
+
class ChatRequest(BaseModel):
|
| 365 |
+
user_question: str
|
| 366 |
+
session_id: str
|
| 367 |
+
chat_history: Optional[List[ChatHistoryEntry]] = Field(default_factory=list)
|
| 368 |
+
|
| 369 |
+
@validator('user_question')
|
| 370 |
+
def validate_prompt(cls, v):
|
| 371 |
+
v = v.strip()
|
| 372 |
+
if not v:
|
| 373 |
+
raise ValueError('Question cannot be empty')
|
| 374 |
+
return v
|
| 375 |
+
|
| 376 |
+
class ChatResponse(BaseModel):
|
| 377 |
+
ai_response: str
|
| 378 |
+
updated_chat_history: List[ChatHistoryEntry]
|
| 379 |
+
telemetry_entry_id: str
|
| 380 |
+
is_restricted: bool = False
|
| 381 |
+
moderation_reason: Optional[str] = None
|
| 382 |
+
|
| 383 |
+
class FeedbackRequest(BaseModel):
|
| 384 |
+
session_id: str
|
| 385 |
+
telemetry_entry_id: str
|
| 386 |
+
feedback_score: int
|
| 387 |
+
feedback_text: Optional[str] = None
|
| 388 |
+
|
| 389 |
+
class ConversationSummary(BaseModel):
|
| 390 |
+
session_id: str
|
| 391 |
+
title: str
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
@lru_cache(maxsize=5)
|
| 395 |
+
def process_text(file):
|
| 396 |
+
string_data = (file.read()).decode("utf-8")
|
| 397 |
+
return string_data
|
| 398 |
+
|
| 399 |
+
@lru_cache(maxsize=5)
|
| 400 |
+
def process_pdf(file):
|
| 401 |
+
pdf_bytes = io.BytesIO(file.read())
|
| 402 |
+
reader = PyPDF2.PdfReader(pdf_bytes)
|
| 403 |
+
pdf_text = "".join([page.extract_text() + "\n" for page in reader.pages])
|
| 404 |
+
return pdf_text
|
| 405 |
+
|
| 406 |
+
@lru_cache(maxsize=5)
|
| 407 |
+
def process_docx(file):
|
| 408 |
+
docx_bytes = io.BytesIO(file.read())
|
| 409 |
+
docx_docs = dx(docx_bytes)
|
| 410 |
+
docx_content = "\n".join([para.text for para in docx_docs.paragraphs])
|
| 411 |
+
return docx_content
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
# @app.post("/upload-documents")
|
| 415 |
+
# def upload_documents(files):
|
| 416 |
+
def upload_documents():
|
| 417 |
+
global vectorstore_retriever
|
| 418 |
+
# saved_vectorstore_index = FAISS.load_local('domain_index', embedding_model,allow_dangerous_deserialization=True)
|
| 419 |
+
try:
|
| 420 |
+
saved_vectorstore_index = faiss.read_index("domain_index_sec.faiss")
|
| 421 |
+
if saved_vectorstore_index:
|
| 422 |
+
vectorstore_retriever = saved_vectorstore_index
|
| 423 |
+
|
| 424 |
+
msg = f"Successfully loaded the knowledge base."
|
| 425 |
+
return msg, True
|
| 426 |
+
except Exception as e:
|
| 427 |
+
print("unable to find index...", e)
|
| 428 |
+
print("Creating new index.....")
|
| 429 |
+
all_documents = []
|
| 430 |
+
hr_loader = PyPDFLoader("D:\Pdf_data\Developments_in_HR_management_in_QAAs.pdf").load()
|
| 431 |
+
hr_finance = PyPDFLoader("D:\Pdf_data\White Paper_QA Practice.pdf").load()
|
| 432 |
+
hr_legal = PyPDFLoader("D:\Pdf_data\Legal-Aspects-Compliances.pdf").load()
|
| 433 |
+
|
| 434 |
+
for doc in hr_loader:
|
| 435 |
+
doc.metadata['Domain'] = 'HR'
|
| 436 |
+
all_documents.append(doc)
|
| 437 |
+
for doc in hr_finance:
|
| 438 |
+
doc.metadata['Domain'] = 'Finance'
|
| 439 |
+
all_documents.append(doc)
|
| 440 |
+
for doc in hr_legal:
|
| 441 |
+
doc.metadata['Domain'] = 'Legal'
|
| 442 |
+
all_documents.append(doc)
|
| 443 |
+
# for uploaded_file in files:
|
| 444 |
+
# doc_loader = PyPDFLoader(uploaded_file)
|
| 445 |
+
# all_documents.extend(doc_loader.load())
|
| 446 |
+
|
| 447 |
+
if not all_documents:
|
| 448 |
+
raise Exception(status_code=400, detail="No supported documents uploaded.")
|
| 449 |
+
|
| 450 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
| 451 |
+
text_chunks = text_splitter.split_documents(all_documents)
|
| 452 |
+
print("text_chucks: ", text_chunks[:100])
|
| 453 |
+
|
| 454 |
+
# processed_chunks_with_ids = []
|
| 455 |
+
# for i, chunk in enumerate(text_chunks):
|
| 456 |
+
# # Generate a unique ID for each chunk
|
| 457 |
+
# # Option 1 (Recommended): Using UUID for global uniqueness
|
| 458 |
+
# # chunk_id = str(uuid.uuid4())
|
| 459 |
+
|
| 460 |
+
# # Option 2 (Alternative): Combining source file path with chunk index
|
| 461 |
+
# # This is good if you want IDs to be deterministic based on file/chunk.
|
| 462 |
+
# # You might need to make the file path more robust (e.g., hash it or normalize it).
|
| 463 |
+
# file_source = chunk.metadata.get('source', 'unknown_source')
|
| 464 |
+
# chunk_id = f"{file_source.replace('.','_')}_chunk_{i}"
|
| 465 |
+
|
| 466 |
+
# # Add the unique ID to the chunk's metadata
|
| 467 |
+
# # It's good practice to keep original metadata and just add your custom ID.
|
| 468 |
+
# chunk.metadata['doc_id'] = chunk_id
|
| 469 |
+
|
| 470 |
+
|
| 471 |
+
# processed_chunks_with_ids.append(chunk)
|
| 472 |
+
# embeddings = [embedding_model.encode(doc_chunks.page_content, convert_to_numpy=True) for doc_chunks in processed_chunks_with_ids]
|
| 473 |
+
|
| 474 |
+
print(f"Split {len(text_chunks)} chunks.")
|
| 475 |
+
print(f"Assigned unique 'doc_id' to each chunk in metadata.")
|
| 476 |
+
# dimension = 768
|
| 477 |
+
# # hnsw_m = 32
|
| 478 |
+
# # index = faiss.IndexHNSWFlat(dimension, hnsw_m, faiss.METRIC_INNER_PRODUCT)
|
| 479 |
+
# index = faiss.IndexFlatL2(dimension)
|
| 480 |
+
# vector_store = FAISS(
|
| 481 |
+
# embedding_function=embedding_model.embed_query,
|
| 482 |
+
# index=index,
|
| 483 |
+
# docstore= InMemoryDocstore(),
|
| 484 |
+
# index_to_docstore_id={}
|
| 485 |
+
# )
|
| 486 |
+
vectorstore = FAISS.from_documents(documents=text_chunks, embedding=embedding_model)
|
| 487 |
+
# vectorstore.add_documents(text_chunks, ids = [cid.metadata['doc_id'] for cid in text_chunks])
|
| 488 |
+
vectorstore.add_documents(text_chunks)
|
| 489 |
+
# vectorstore_retriever = vectorstore.as_retriever(search_kwargs={'k': 5})
|
| 490 |
+
faiss.write_index(vectorstore.index, "domain_index_sec.faiss")
|
| 491 |
+
# vectorstore.save_local("domain_index")
|
| 492 |
+
vectorstore_retriever = vectorstore
|
| 493 |
+
if vectorstore:
|
| 494 |
+
msg = f"Successfully loaded the knowledge base."
|
| 495 |
+
return msg, True
|
| 496 |
+
else:
|
| 497 |
+
msg = f"Failed to process documents."
|
| 498 |
+
return msg, False
|
| 499 |
+
|
| 500 |
+
# @app.post("/chat", response_model=ChatResponse)
|
| 501 |
+
def chat_with_rag(chatdata):
|
| 502 |
+
global compiled_app
|
| 503 |
+
global vectorstore_retriever
|
| 504 |
+
global chathistory
|
| 505 |
+
if vectorstore_retriever is None:
|
| 506 |
+
raise Exception(status_code=400, detail="Knowledge base not loaded. Please upload documents first.")
|
| 507 |
+
print(f"Received request: {chatdata}")
|
| 508 |
+
# moderation_result = moderator.moderate_content(request.user_question)
|
| 509 |
+
# if moderation_result["is_restricted"]:
|
| 510 |
+
# # Get appropriate response based on restriction type
|
| 511 |
+
# response_type = moderation_result.get("response_type", "general")
|
| 512 |
+
# response_text = Config.RESTRICTED_RESPONSES.get(
|
| 513 |
+
# response_type,
|
| 514 |
+
# Config.RESTRICTED_RESPONSES["general"]
|
| 515 |
+
# )
|
| 516 |
+
|
| 517 |
+
# logger.warning(
|
| 518 |
+
# f"Restricted query: {request.prompt[:100]}... "
|
| 519 |
+
# f"Reason: {moderation_result['reason']}"
|
| 520 |
+
# )
|
| 521 |
+
|
| 522 |
+
# return ChatResponse(
|
| 523 |
+
# ai_response=response_text,
|
| 524 |
+
# updated_chat_history=[],
|
| 525 |
+
# telemetry_entry_id=request.session_id,
|
| 526 |
+
# is_restricted=True,
|
| 527 |
+
# moderation_reason=moderation_result["reason"],
|
| 528 |
+
# )
|
| 529 |
+
print("β
Question passed the RAI check.........")
|
| 530 |
+
print("Received data from UI: ", chatdata)
|
| 531 |
+
chathistory = chatdata
|
| 532 |
+
initial_state = {
|
| 533 |
+
# "chat_history": [msg.model_dump() for msg in chatdata.get('chat_history')],
|
| 534 |
+
"chat_history": [msg for msg in chatdata.get('chat_history')],
|
| 535 |
+
"retrieved_documents": [],
|
| 536 |
+
"user_question": chatdata.get('user_question'),
|
| 537 |
+
"session_id": chatdata.get('session_id')
|
| 538 |
+
}
|
| 539 |
+
|
| 540 |
+
try:
|
| 541 |
+
config = {"configurable": {"thread_id": chatdata.get('session_id')}}
|
| 542 |
+
final_state = route_workflow.invoke(initial_state, config=config)
|
| 543 |
+
|
| 544 |
+
# chathistory = final_state
|
| 545 |
+
print("chathistory inside chat_with_rag-----------------")
|
| 546 |
+
print("Final State--- : ", final_state)
|
| 547 |
+
|
| 548 |
+
ai_response_message = final_state["chat_history"][-1]["content"]
|
| 549 |
+
updated_chat_history_dicts = final_state["chat_history"]
|
| 550 |
+
agent_name = final_state.get("decision","No Agent")
|
| 551 |
+
|
| 552 |
+
response_chat = ChatResponse(
|
| 553 |
+
ai_response=ai_response_message,
|
| 554 |
+
updated_chat_history=updated_chat_history_dicts,
|
| 555 |
+
telemetry_entry_id=final_state.get("telemetry_id"),
|
| 556 |
+
is_restricted=False,
|
| 557 |
+
)
|
| 558 |
+
|
| 559 |
+
return agent_name,response_chat.dict()
|
| 560 |
+
except Exception as e:
|
| 561 |
+
print(f"Internal Server Error: {e}")
|
| 562 |
+
raise Exception(status_code=500, detail=f"An error occurred during chat processing: {e}")
|
| 563 |
+
|
| 564 |
+
|
| 565 |
+
def submit_feedback(feedbackdata):
|
| 566 |
+
db = SessionLocal()
|
| 567 |
+
try:
|
| 568 |
+
telemetry_record = db.query(Telemetry).filter(
|
| 569 |
+
Telemetry.transaction_id == feedbackdata['telemetry_entry_id'],
|
| 570 |
+
Telemetry.session_id == feedbackdata['session_id']
|
| 571 |
+
).first()
|
| 572 |
+
|
| 573 |
+
if not telemetry_record:
|
| 574 |
+
raise Exception(status_code=404, detail="Telemetry entry not found or session ID mismatch.")
|
| 575 |
+
|
| 576 |
+
existing_feedback = db.query(Feedback).filter(
|
| 577 |
+
Feedback.telemetry_entry_id == feedbackdata['telemetry_entry_id']
|
| 578 |
+
).first()
|
| 579 |
+
|
| 580 |
+
if existing_feedback:
|
| 581 |
+
existing_feedback.feedback_score = feedbackdata['feedback_score']
|
| 582 |
+
existing_feedback.feedback_text = feedbackdata['feedback_text']
|
| 583 |
+
existing_feedback.timestamp = datetime.datetime.now()
|
| 584 |
+
else:
|
| 585 |
+
feedback_record = Feedback(
|
| 586 |
+
telemetry_entry_id=feedbackdata['telemetry_entry_id'],
|
| 587 |
+
feedback_score=feedbackdata['feedback_score'],
|
| 588 |
+
feedback_text=feedbackdata['feedback_text'],
|
| 589 |
+
user_query=telemetry_record.user_question,
|
| 590 |
+
llm_response=telemetry_record.response,
|
| 591 |
+
timestamp=datetime.datetime.now()
|
| 592 |
+
)
|
| 593 |
+
db.add(feedback_record)
|
| 594 |
+
|
| 595 |
+
db.commit()
|
| 596 |
+
|
| 597 |
+
return {"message": "Feedback submitted successfully."}
|
| 598 |
+
|
| 599 |
+
except Exception as e:
|
| 600 |
+
raise e
|
| 601 |
+
except Exception as e:
|
| 602 |
+
db.rollback()
|
| 603 |
+
raise Exception(status_code=500, detail=f"An error occurred: {str(e)}")
|
| 604 |
+
finally:
|
| 605 |
+
db.close()
|
| 606 |
+
|
| 607 |
+
# @app.get("/conversations", response_model=List[ConversationSummary])
|
| 608 |
+
def get_conversations():
|
| 609 |
+
db = SessionLocal()
|
| 610 |
+
try:
|
| 611 |
+
conversations = db.query(ConversationHistory).order_by(ConversationHistory.last_updated.desc()).all()
|
| 612 |
+
summaries = []
|
| 613 |
+
for conv in conversations:
|
| 614 |
+
for msg in conv.messages:
|
| 615 |
+
print(msg)
|
| 616 |
+
first_user_message = next((msg for msg in conv.messages if msg["role"] == "user"), None)
|
| 617 |
+
title = first_user_message.get("content") if first_user_message else "New Conversation"
|
| 618 |
+
summaries.append({"session_id":conv.session_id, "title":title[:30] + "..." if len(title) > 30 else title})
|
| 619 |
+
return summaries
|
| 620 |
+
finally:
|
| 621 |
+
db.close()
|
| 622 |
+
|
| 623 |
+
# @app.get("/conversations/{session_id}", response_model=List[ChatHistoryEntry])
|
| 624 |
+
def get_conversation_history(session_id: str):
|
| 625 |
+
db = SessionLocal()
|
| 626 |
+
try:
|
| 627 |
+
conversation = db.query(ConversationHistory).filter(ConversationHistory.session_id == session_id).first()
|
| 628 |
+
if not conversation:
|
| 629 |
+
raise Exception(status_code=404, detail="Conversation not found.")
|
| 630 |
+
return conversation.messages
|
| 631 |
+
finally:
|
| 632 |
+
db.close()
|
| 633 |
+
|
| 634 |
+
|
| 635 |
+
|
| 636 |
+
|
| 637 |
+
# if 'selected_model' not in st.session_state:
|
| 638 |
+
# st.session_state.selected_model = ""
|
| 639 |
+
# @st.dialog("Choose a domain")
|
| 640 |
+
# def domain_modal():
|
| 641 |
+
# domain = st.selectbox("Select a domain",["HR","Finance","Legal"])
|
| 642 |
+
# st.session_state.selected_model = domain
|
| 643 |
+
# if st.button("submit"):
|
| 644 |
+
# st.rerun()
|
| 645 |
+
|
| 646 |
+
# domain_modal()
|
| 647 |
+
# print("Selected Domain: ",st.session_state['selected_model'])
|
| 648 |
+
|
| 649 |
+
# llm = initialize_llm()
|
| 650 |
+
|
requirements.txt
CHANGED
|
@@ -1,3 +1,24 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
streamlit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
torch
|
| 3 |
+
streamlit
|
| 4 |
+
requests
|
| 5 |
+
SQLAlchemy
|
| 6 |
+
sentence-transformers
|
| 7 |
+
python-docx
|
| 8 |
+
requests
|
| 9 |
+
PyMuPDF
|
| 10 |
+
pypdf
|
| 11 |
+
PyPDF2
|
| 12 |
+
langgraph
|
| 13 |
+
langchain-unstructured
|
| 14 |
+
faiss-cpu
|
| 15 |
+
huggingface-hub
|
| 16 |
+
langchain
|
| 17 |
+
langchain-community
|
| 18 |
+
langchain-core
|
| 19 |
+
langchain-huggingface
|
| 20 |
+
langchain-openai
|
| 21 |
+
langchain-text-splitters
|
| 22 |
+
langchain-google-genai
|
| 23 |
+
pandas
|
| 24 |
+
python-multipart
|
streamlitapp.py
ADDED
|
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import uuid
|
| 3 |
+
import hashlib
|
| 4 |
+
from typing import List, Optional, Dict, Any, TypedDict,Generic, TypeVar
|
| 5 |
+
from huggingface_hub import login
|
| 6 |
+
import logging
|
| 7 |
+
import time
|
| 8 |
+
import os
|
| 9 |
+
from dotenv import load_dotenv
|
| 10 |
+
from mydomain_agent import upload_documents, submit_feedback, get_conversations,get_conversation_history, chat_with_rag
|
| 11 |
+
|
| 12 |
+
load_dotenv()
|
| 13 |
+
|
| 14 |
+
# --- 2. Streamlit UI Components and State Management ---
|
| 15 |
+
st.set_page_config(page_title="Agentic WorkFlow", layout="wide")
|
| 16 |
+
st.title("π¬ Domain-Aware AI Agent")
|
| 17 |
+
st.caption("Your expert assistant across HR, Finance, and Legal Compliance.")
|
| 18 |
+
|
| 19 |
+
# Initialize session state for conversations, messages, and the current session ID
|
| 20 |
+
if "conversations" not in st.session_state:
|
| 21 |
+
st.session_state.conversations = []
|
| 22 |
+
if "session_id" not in st.session_state:
|
| 23 |
+
st.session_state.session_id = str(uuid.uuid4())
|
| 24 |
+
if "messages" not in st.session_state:
|
| 25 |
+
st.session_state.messages = []
|
| 26 |
+
if "retriever_ready" not in st.session_state:
|
| 27 |
+
st.session_state.retriever_ready = False
|
| 28 |
+
if "feedback_given" not in st.session_state:
|
| 29 |
+
st.session_state.feedback_given = {}
|
| 30 |
+
# New state variable to handle negative feedback comments
|
| 31 |
+
if "negative_feedback_for" not in st.session_state:
|
| 32 |
+
st.session_state.negative_feedback_for = None
|
| 33 |
+
|
| 34 |
+
# Initialize session state for storing uploaded file hashes
|
| 35 |
+
if 'uploaded_file_hashes' not in st.session_state:
|
| 36 |
+
st.session_state.uploaded_file_hashes = set()
|
| 37 |
+
if 'uploaded_files_info' not in st.session_state:
|
| 38 |
+
st.session_state.uploaded_files_info = []
|
| 39 |
+
|
| 40 |
+
def get_file_hash(file):
|
| 41 |
+
"""Generates a unique hash for a file using its name, size, and content."""
|
| 42 |
+
hasher = hashlib.sha256()
|
| 43 |
+
# Read a small chunk of the file to ensure content-based uniqueness
|
| 44 |
+
# Combine with file name and size for a robust identifier
|
| 45 |
+
file_content = file.getvalue()
|
| 46 |
+
hasher.update(file.name.encode('utf-8'))
|
| 47 |
+
hasher.update(str(file.size).encode('utf-8'))
|
| 48 |
+
hasher.update(file_content[:1024]) # Use first 1KB of content
|
| 49 |
+
return hasher.hexdigest()
|
| 50 |
+
# --- 3. Helper Functions for Backend Communication ---
|
| 51 |
+
# def send_documents_to_backend(uploaded_files):
|
| 52 |
+
# try:
|
| 53 |
+
# for file in uploaded_files:
|
| 54 |
+
# process_status = upload_documents(file)
|
| 55 |
+
# return process_status
|
| 56 |
+
# except Exception as e:
|
| 57 |
+
# st.error(f"Error processing documents: {e}")
|
| 58 |
+
# return None
|
| 59 |
+
|
| 60 |
+
def send_chat_message_to_backend(prompt: str, chat_history: List[Dict[str, Any]]):
|
| 61 |
+
"""Sends a chat message to the FastAPI backend and handles the response."""
|
| 62 |
+
if not prompt.strip():
|
| 63 |
+
return {"empty":"Invalid Question"}
|
| 64 |
+
history_for_api = [
|
| 65 |
+
{"role": msg.get("role"), "content": msg.get("content")}
|
| 66 |
+
for msg in chat_history
|
| 67 |
+
]
|
| 68 |
+
|
| 69 |
+
payload = {
|
| 70 |
+
"user_question": str(prompt),
|
| 71 |
+
"session_id": st.session_state.session_id,
|
| 72 |
+
"chat_history": history_for_api,
|
| 73 |
+
}
|
| 74 |
+
print(f"Sending payload: {payload}") # Debug print
|
| 75 |
+
agent_name,response_dict = chat_with_rag(payload)
|
| 76 |
+
try:
|
| 77 |
+
return agent_name,response_dict
|
| 78 |
+
except Exception as e:
|
| 79 |
+
st.error(f"Error communicating with the backend")
|
| 80 |
+
print(f"Error communicating with the backend: {e}")
|
| 81 |
+
return None
|
| 82 |
+
|
| 83 |
+
def send_feedback_to_backend(telemetry_entry_id: str, feedback_score: int, feedback_text: Optional[str] = None):
|
| 84 |
+
"""Sends feedback to the FastAPI backend."""
|
| 85 |
+
payload = {
|
| 86 |
+
"session_id": st.session_state.session_id,
|
| 87 |
+
"telemetry_entry_id": telemetry_entry_id,
|
| 88 |
+
"feedback_score": feedback_score,
|
| 89 |
+
"feedback_text": feedback_text
|
| 90 |
+
}
|
| 91 |
+
try:
|
| 92 |
+
# response = requests.post(f"{API_URL}/feedback", json=payload)
|
| 93 |
+
response = submit_feedback(payload)
|
| 94 |
+
# response.raise_for_status()
|
| 95 |
+
st.toast("Feedback submitted! Thank you.")
|
| 96 |
+
except Exception as e:
|
| 97 |
+
st.error(f"Error submitting feedback: {e}")
|
| 98 |
+
|
| 99 |
+
def get_conversations_from_backend() -> list:
|
| 100 |
+
"""Fetches a list of all conversations from the backend."""
|
| 101 |
+
try:
|
| 102 |
+
# response = requests.get(f"{API_URL}/conversations")
|
| 103 |
+
response = get_conversations()
|
| 104 |
+
# response.raise_for_status()
|
| 105 |
+
return response
|
| 106 |
+
except Exception as e:
|
| 107 |
+
st.sidebar.error(f"Error fetching conversations: {e}")
|
| 108 |
+
return []
|
| 109 |
+
|
| 110 |
+
def get_conversation_history_from_backend(session_id: str):
|
| 111 |
+
"""Fetches the messages for a specific conversation ID."""
|
| 112 |
+
try:
|
| 113 |
+
# response = requests.get(f"{API_URL}/conversations/{session_id}")
|
| 114 |
+
|
| 115 |
+
response = get_conversation_history(session_id)
|
| 116 |
+
return response
|
| 117 |
+
except Exception as e:
|
| 118 |
+
st.error(f"Error loading conversation history: {e}")
|
| 119 |
+
return None
|
| 120 |
+
|
| 121 |
+
def handle_positive_feedback(telemetry_id):
|
| 122 |
+
"""Handles positive feedback submission."""
|
| 123 |
+
send_feedback_to_backend(telemetry_id, 1)
|
| 124 |
+
st.session_state.feedback_given[telemetry_id] = True
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def handle_negative_feedback_comment_submit(telemetry_id, comment_text):
|
| 128 |
+
"""Handles the negative feedback comment submission."""
|
| 129 |
+
send_feedback_to_backend(telemetry_id, -1, comment_text)
|
| 130 |
+
st.session_state.feedback_given[telemetry_id] = True
|
| 131 |
+
st.session_state.negative_feedback_for = None
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
def refresh_conversations():
|
| 135 |
+
"""Refreshes the conversation list in the sidebar."""
|
| 136 |
+
st.session_state.conversations = get_conversations_from_backend()
|
| 137 |
+
|
| 138 |
+
# --- 4. Sidebar for Document Upload and Conversation History ---
|
| 139 |
+
with st.sidebar:
|
| 140 |
+
st.header("Load Documents")
|
| 141 |
+
if st.button("Process Documents", key="process_docs_button"):
|
| 142 |
+
newmsg, status = upload_documents()
|
| 143 |
+
if status:
|
| 144 |
+
st.session_state.retriever_ready = True
|
| 145 |
+
# st.success(response_data.get("message", "Documents processed and knowledge base ready!"))
|
| 146 |
+
st.success(newmsg)
|
| 147 |
+
st.session_state.messages = []
|
| 148 |
+
refresh_conversations() # sql query need to be added here
|
| 149 |
+
else:
|
| 150 |
+
st.session_state.retriever_ready = False
|
| 151 |
+
st.error(newmsg)
|
| 152 |
+
else:
|
| 153 |
+
st.warning("Please Load Document.")
|
| 154 |
+
|
| 155 |
+
st.markdown("---")
|
| 156 |
+
st.header("Conversations")
|
| 157 |
+
if st.button("β New Chat", key="new_chat_button", use_container_width=True, type="primary"):
|
| 158 |
+
st.session_state.session_id = str(uuid.uuid4())
|
| 159 |
+
st.session_state.messages = []
|
| 160 |
+
st.session_state.feedback_given = {}
|
| 161 |
+
st.session_state.negative_feedback_for = None
|
| 162 |
+
refresh_conversations()
|
| 163 |
+
st.rerun()
|
| 164 |
+
|
| 165 |
+
refresh_conversations()
|
| 166 |
+
|
| 167 |
+
if st.session_state.conversations:
|
| 168 |
+
for conv in st.session_state.conversations:
|
| 169 |
+
if st.button(
|
| 170 |
+
conv["title"],
|
| 171 |
+
key=f"conv_{conv['session_id']}",
|
| 172 |
+
use_container_width=True
|
| 173 |
+
):
|
| 174 |
+
if st.session_state.session_id != conv["session_id"]:
|
| 175 |
+
st.session_state.session_id = conv["session_id"]
|
| 176 |
+
history = get_conversation_history_from_backend(conv["session_id"])
|
| 177 |
+
if history != [] or history != None:
|
| 178 |
+
st.session_state.messages = history
|
| 179 |
+
st.session_state.feedback_given = {msg.get("telemetry_id"): True for msg in history if msg.get("telemetry_id")}
|
| 180 |
+
else:
|
| 181 |
+
st.session_state.messages = []
|
| 182 |
+
st.session_state.negative_feedback_for = None
|
| 183 |
+
st.rerun()
|
| 184 |
+
|
| 185 |
+
# --- 5. Main Chat Interface ---
|
| 186 |
+
# Display chat messages from history on app rerun
|
| 187 |
+
for message in st.session_state.messages:
|
| 188 |
+
with st.chat_message(message["role"]):
|
| 189 |
+
st.markdown(message["content"])
|
| 190 |
+
|
| 191 |
+
# Display feedback buttons for the last AI response
|
| 192 |
+
if message["role"] == "assistant" and message.get("telemetry_id") and not st.session_state.feedback_given.get(message["telemetry_id"], False):
|
| 193 |
+
col1, col2 = st.columns(2)
|
| 194 |
+
with col1:
|
| 195 |
+
if st.button("π", key=f"positive_{message['telemetry_id']}", on_click=handle_positive_feedback, args=(message['telemetry_id'],)):
|
| 196 |
+
pass
|
| 197 |
+
with col2:
|
| 198 |
+
if st.button("π", key=f"negative_{message['telemetry_id']}"):
|
| 199 |
+
st.session_state.negative_feedback_for = message['telemetry_id']
|
| 200 |
+
st.rerun()
|
| 201 |
+
|
| 202 |
+
# --- NEW LOGIC FOR NEGATIVE FEEDBACK COMMENT ---
|
| 203 |
+
# Only render the comment input if this is the message the user clicked thumbs down on
|
| 204 |
+
if st.session_state.negative_feedback_for == message['telemetry_id']:
|
| 205 |
+
with st.container():
|
| 206 |
+
comment = st.text_area(
|
| 207 |
+
"Please provide some details (optional):",
|
| 208 |
+
key=f"feedback_text_{message['telemetry_id']}"
|
| 209 |
+
)
|
| 210 |
+
if st.button("Submit Comment", key=f"submit_feedback_button_{message['telemetry_id']}"):
|
| 211 |
+
handle_negative_feedback_comment_submit(message['telemetry_id'], comment)
|
| 212 |
+
|
| 213 |
+
# Chat input for new questions
|
| 214 |
+
if st.session_state.retriever_ready:
|
| 215 |
+
if prompt := st.chat_input("Ask me anything about the uploaded documents..."):
|
| 216 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 217 |
+
with st.chat_message("user"):
|
| 218 |
+
st.markdown(prompt)
|
| 219 |
+
|
| 220 |
+
with st.chat_message("assistant"):
|
| 221 |
+
with st.spinner("Thinking..."):
|
| 222 |
+
agent_name,response_data = send_chat_message_to_backend(prompt, st.session_state.messages)
|
| 223 |
+
if response_data:
|
| 224 |
+
if response_data.get("is_restricted"):
|
| 225 |
+
ai_response = response_data.get("ai_response", "Sorry, I couldn't generate a response.")
|
| 226 |
+
reason = response_data.get("moderation_reason")
|
| 227 |
+
st.markdown(ai_response)
|
| 228 |
+
st.markdown(reason)
|
| 229 |
+
elif response_data.get("empty"):
|
| 230 |
+
st.markdown(response_data.get("empty"))
|
| 231 |
+
|
| 232 |
+
ai_response = response_data.get("ai_response", "Sorry, I couldn't generate a response.")
|
| 233 |
+
telemetry_id = response_data.get("telemetry_entry_id")
|
| 234 |
+
|
| 235 |
+
st.markdown(ai_response)
|
| 236 |
+
st.caption(agent_name)
|
| 237 |
+
|
| 238 |
+
st.session_state.messages.append({
|
| 239 |
+
"role": "assistant",
|
| 240 |
+
"content": ai_response,
|
| 241 |
+
"telemetry_id": telemetry_id
|
| 242 |
+
})
|
| 243 |
+
|
| 244 |
+
refresh_conversations()
|
| 245 |
+
|
| 246 |
+
if telemetry_id:
|
| 247 |
+
col1, col2 = st.columns(2)
|
| 248 |
+
with col1:
|
| 249 |
+
if st.button("π", key=f"positive_{telemetry_id}", on_click=handle_positive_feedback, args=(telemetry_id,)):
|
| 250 |
+
pass
|
| 251 |
+
with col2:
|
| 252 |
+
if st.button("π", key=f"negative_{telemetry_id}"):
|
| 253 |
+
st.session_state.negative_feedback_for = telemetry_id
|
| 254 |
+
st.rerun()
|
| 255 |
+
else:
|
| 256 |
+
st.markdown("An error occurred.")
|
| 257 |
+
else:
|
| 258 |
+
st.info("Please upload and process documents to start chatting.")
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
# import streamlit as st
|
| 265 |
+
|
| 266 |
+
# if 'selected_model' not in st.session_state:
|
| 267 |
+
# st.session_state.selected_model = ""
|
| 268 |
+
# @st.dialog("Choose a domain")
|
| 269 |
+
# def domain_modal():
|
| 270 |
+
# domain = st.selectbox("Select a domain",["HR","Finance","Legal"])
|
| 271 |
+
# st.session_state.selected_model = domain
|
| 272 |
+
# if st.button("submit"):
|
| 273 |
+
# st.rerun()
|
| 274 |
+
|
| 275 |
+
# domain_modal()
|
| 276 |
+
# print("Selected Domain: ",st.session_state['selected_model'])
|