RoyYang0714's picture
feat: Try to build everything locally.
9b33fca
"""3D-MOOD data config."""
from __future__ import annotations
from collections.abc import Sequence
from ml_collections import ConfigDict
from vis4d.config import class_config
from vis4d.config.typing import DataConfig
from vis4d.data.data_pipe import DataPipe
from vis4d.data.transforms.base import compose
from vis4d.data.transforms.to_tensor import ToTensor
from vis4d.zoo.base import (
get_inference_dataloaders_cfg,
get_train_dataloader_cfg,
)
def get_data_cfg(
train_datasets: ConfigDict | Sequence[ConfigDict],
test_datasets: ConfigDict | Sequence[ConfigDict],
samples_per_gpu: int = 2,
workers_per_gpu: int = 2,
) -> DataConfig:
"""Get the default config for COCO detection."""
data = DataConfig()
# Train
train_batchprocess_cfg = class_config(
compose, transforms=[class_config(ToTensor)]
)
data.train_dataloader = get_train_dataloader_cfg(
datasets_cfg=train_datasets,
batchprocess_cfg=train_batchprocess_cfg,
samples_per_gpu=samples_per_gpu,
workers_per_gpu=workers_per_gpu,
)
# Test
test_batchprocess_cfg = class_config(
compose, transforms=[class_config(ToTensor)]
)
if isinstance(test_datasets, list):
test_datasets_cfg = class_config(DataPipe, datasets=test_datasets)
else:
test_datasets_cfg = test_datasets
data.test_dataloader = get_inference_dataloaders_cfg(
datasets_cfg=test_datasets_cfg,
samples_per_gpu=1,
workers_per_gpu=workers_per_gpu,
batchprocess_cfg=test_batchprocess_cfg,
)
return data