Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,605 Bytes
9b33fca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
"""3D-MOOD data config."""
from __future__ import annotations
from collections.abc import Sequence
from ml_collections import ConfigDict
from vis4d.config import class_config
from vis4d.config.typing import DataConfig
from vis4d.data.data_pipe import DataPipe
from vis4d.data.transforms.base import compose
from vis4d.data.transforms.to_tensor import ToTensor
from vis4d.zoo.base import (
get_inference_dataloaders_cfg,
get_train_dataloader_cfg,
)
def get_data_cfg(
train_datasets: ConfigDict | Sequence[ConfigDict],
test_datasets: ConfigDict | Sequence[ConfigDict],
samples_per_gpu: int = 2,
workers_per_gpu: int = 2,
) -> DataConfig:
"""Get the default config for COCO detection."""
data = DataConfig()
# Train
train_batchprocess_cfg = class_config(
compose, transforms=[class_config(ToTensor)]
)
data.train_dataloader = get_train_dataloader_cfg(
datasets_cfg=train_datasets,
batchprocess_cfg=train_batchprocess_cfg,
samples_per_gpu=samples_per_gpu,
workers_per_gpu=workers_per_gpu,
)
# Test
test_batchprocess_cfg = class_config(
compose, transforms=[class_config(ToTensor)]
)
if isinstance(test_datasets, list):
test_datasets_cfg = class_config(DataPipe, datasets=test_datasets)
else:
test_datasets_cfg = test_datasets
data.test_dataloader = get_inference_dataloaders_cfg(
datasets_cfg=test_datasets_cfg,
samples_per_gpu=1,
workers_per_gpu=workers_per_gpu,
batchprocess_cfg=test_batchprocess_cfg,
)
return data
|