File size: 33,126 Bytes
9949cc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cd757f
9949cc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
954d97c
b80450d
9949cc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b80450d
9949cc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cd757f
6acd2cc
 
 
7cd757f
 
 
b80450d
 
62c9ed8
b80450d
05188c4
62c9ed8
b80450d
 
 
05188c4
6acd2cc
60a93e1
b80450d
60a93e1
6acd2cc
 
 
 
 
 
60a93e1
b80450d
 
 
6acd2cc
 
7cd757f
6acd2cc
7cd757f
 
b80450d
6acd2cc
b80450d
7cd757f
 
 
6acd2cc
b80450d
9949cc9
b80450d
6acd2cc
7cd757f
 
60a93e1
 
6acd2cc
9949cc9
6acd2cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cd757f
6acd2cc
 
7cd757f
6acd2cc
9949cc9
6acd2cc
 
 
 
 
 
 
9949cc9
6acd2cc
 
9949cc9
6acd2cc
 
9949cc9
6acd2cc
 
 
 
db991b8
 
 
6acd2cc
db991b8
6acd2cc
db991b8
6acd2cc
db991b8
 
 
6acd2cc
db991b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cd757f
6acd2cc
 
 
 
 
b80450d
6acd2cc
 
 
b80450d
7cd757f
 
 
 
6acd2cc
 
cecfb15
62c9ed8
0344eed
b80450d
0344eed
7cd757f
 
0344eed
 
 
6acd2cc
 
 
e372e2c
6acd2cc
 
 
 
b80450d
 
e372e2c
6acd2cc
05188c4
e372e2c
6acd2cc
 
f066995
 
7cd757f
954d97c
b80450d
db991b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60a93e1
db991b8
 
 
 
 
 
7cd757f
 
 
 
db991b8
 
 
05188c4
b80450d
 
7cd757f
b80450d
 
db991b8
 
6acd2cc
b80450d
 
6acd2cc
 
 
7cd757f
6acd2cc
7cd757f
6acd2cc
 
 
 
 
 
 
 
 
 
 
 
db991b8
 
6acd2cc
7cd757f
6acd2cc
 
7cd757f
6acd2cc
7cd757f
 
d9e2f11
6acd2cc
 
 
 
 
 
 
 
db991b8
 
6acd2cc
 
 
 
 
db991b8
 
 
 
 
 
 
 
 
 
954d97c
 
db991b8
954d97c
 
db991b8
 
 
 
 
 
 
 
 
 
6acd2cc
 
 
 
 
 
 
9949cc9
6acd2cc
7cd757f
 
 
db991b8
 
 
6acd2cc
db991b8
7cd757f
 
 
 
 
954d97c
6acd2cc
7cd757f
6acd2cc
db991b8
 
 
 
 
7cd757f
954d97c
6acd2cc
 
 
954d97c
7cd757f
6acd2cc
 
db991b8
7cd757f
6acd2cc
7cd757f
954d97c
6acd2cc
db991b8
6acd2cc
 
db991b8
6acd2cc
 
7cd757f
6acd2cc
7cd757f
6acd2cc
7cd757f
6acd2cc
db991b8
6acd2cc
b80450d
6acd2cc
b80450d
954d97c
b80450d
6acd2cc
 
b80450d
6acd2cc
db991b8
 
 
 
 
 
 
6acd2cc
 
 
 
db991b8
6acd2cc
 
 
 
 
954d97c
 
 
 
 
 
 
 
db991b8
954d97c
7cd757f
 
6acd2cc
7cd757f
6acd2cc
 
 
 
7cd757f
6acd2cc
db991b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
954d97c
6acd2cc
 
 
 
db991b8
6acd2cc
db991b8
 
 
6acd2cc
9949cc9
b80450d
7cd757f
db991b8
6acd2cc
db991b8
7cd757f
 
 
 
6acd2cc
9949cc9
6acd2cc
db991b8
9949cc9
6acd2cc
 
 
9949cc9
db991b8
 
 
 
6acd2cc
 
db991b8
6acd2cc
 
 
 
 
 
 
 
 
 
 
 
 
9949cc9
6acd2cc
7cd757f
6acd2cc
7cd757f
9949cc9
6acd2cc
9949cc9
6acd2cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db991b8
 
 
 
 
 
6acd2cc
 
 
 
 
7cd757f
6acd2cc
9949cc9
6acd2cc
7cd757f
6acd2cc
 
 
9949cc9
6acd2cc
 
 
 
 
 
954d97c
6acd2cc
 
 
 
 
 
 
 
 
 
 
 
 
 
db991b8
6acd2cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9949cc9
 
 
 
6acd2cc
 
 
 
 
 
 
 
 
 
954d97c
 
 
 
 
 
 
 
 
 
 
 
 
 
6acd2cc
 
 
 
954d97c
6acd2cc
 
 
 
7cd757f
db991b8
954d97c
db991b8
954d97c
db991b8
 
 
 
 
954d97c
 
db991b8
954d97c
9949cc9
 
 
 
db991b8
 
 
 
954d97c
db991b8
954d97c
6acd2cc
954d97c
 
6acd2cc
 
954d97c
 
 
6acd2cc
954d97c
6acd2cc
 
 
 
 
954d97c
 
 
 
 
 
 
 
6acd2cc
 
954d97c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6acd2cc
 
 
db991b8
 
 
 
954d97c
6acd2cc
e372e2c
954d97c
 
 
 
6acd2cc
 
 
954d97c
6acd2cc
 
db991b8
954d97c
6acd2cc
954d97c
6acd2cc
 
 
 
 
 
954d97c
6acd2cc
 
954d97c
6acd2cc
9949cc9
954d97c
 
 
6acd2cc
 
 
db991b8
9949cc9
6acd2cc
62c9ed8
 
6acd2cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
# app.py
import os
import re
import io
import json
import time
import zipfile
from pathlib import Path
from typing import List, Dict, Any, Tuple, Optional

import numpy as np
import pandas as pd
import gradio as gr

import torch
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    BitsAndBytesConfig,
    GenerationConfig,
)

# =========================
# Global config
# =========================
SPACE_CACHE = Path.home() / ".cache" / "huggingface"
SPACE_CACHE.mkdir(parents=True, exist_ok=True)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

GEN_CONFIG = GenerationConfig(
    temperature=0.2,
    top_p=0.9,
    do_sample=False,
    max_new_tokens=256,
)

# Official UBS label set (strict)
OFFICIAL_LABELS = [
    "plan_contact",
    "schedule_meeting",
    "update_contact_info_non_postal",
    "update_contact_info_postal_address",
    "update_kyc_activity",
    "update_kyc_origin_of_assets",
    "update_kyc_purpose_of_businessrelation",
    "update_kyc_total_assets",
]
OFFICIAL_LABELS_TEXT = "\n".join(OFFICIAL_LABELS)

# Per-label keyword cues (static prompt context to improve recall)
LABEL_KEYWORDS: Dict[str, List[str]] = {
    "plan_contact": [
        "call back", "follow up", "reach out", "contact later", "check-in",
        "email them", "touch base", "remind", "send a note"
    ],
    "schedule_meeting": [
        "book a meeting", "set up a meeting", "schedule a call",
        "appointment", "calendar", "meeting next week", "meet on", "time slot"
    ],
    "update_contact_info_non_postal": [
        "phone change", "new phone", "email change", "new email",
        "update contact details", "update mobile", "alternate phone"
    ],
    "update_contact_info_postal_address": [
        "moved to", "new address", "postal address", "mailing address",
        "change of address", "residential address"
    ],
    "update_kyc_activity": [
        "activity update", "economic activity", "employment status",
        "occupation", "job change", "business activity"
    ],
    "update_kyc_origin_of_assets": [
        "source of funds", "origin of assets", "where money comes from",
        "inheritance", "salary", "business income", "asset origin"
    ],
    "update_kyc_purpose_of_businessrelation": [
        "purpose of relationship", "why the account", "reason for banking",
        "investment purpose", "relationship purpose"
    ],
    "update_kyc_total_assets": [
        "total assets", "net worth", "assets under ownership",
        "portfolio size", "how much you own"
    ],
}

# =========================
# Instructions (string-safe; concatenated)
# =========================
SYSTEM_PROMPT = (
    "You are a precise banking assistant that extracts ACTIONABLE TASKS from "
    "client–advisor transcripts. Be conservative with hallucinations but "
    "prioritise RECALL: if unsure and the transcript plausibly implies an "
    "action, include the label and explain briefly.\n\n"
    "Output STRICT JSON only:\n\n"
    "{\n"
    '  "labels": ["<Label1>", "..."],\n'
    '  "tasks": [\n'
    '    {"label": "<Label1>", "explanation": "<why>", "evidence": "<quoted text/snippet>"}\n'
    "  ]\n"
    "}\n\n"
    "Rules:\n"
    "- Use ONLY allowed labels supplied to you. Case-insensitive during reasoning, "
    "  but output the canonical label text exactly.\n"
    "- If none truly apply, return empty lists.\n"
    "- Keep explanations concise; put the minimal evidence snippet that justifies the task.\n"
)

USER_PROMPT_TEMPLATE = (
    "Transcript (cleaned):\n"
    "```\n{transcript}\n```\n\n"
    "Allowed Labels (canonical; use only these):\n"
    "{allowed_labels_list}\n\n"
    "Context cues (keywords/phrases that often indicate each label):\n"
    "{keyword_context}\n\n"
    "Instructions:\n"
    "- Identify EVERY concrete task implied by the conversation.\n"
    "- Choose ONE label from Allowed Labels for each task (or none if truly inapplicable).\n"
    "- Return STRICT JSON only in the exact schema described by the system prompt.\n"
)

# =========================
# Utilities
# =========================
def _now_ms() -> int:
    return int(time.time() * 1000)

def normalize_labels(labels: List[str]) -> List[str]:
    return list(dict.fromkeys([l.strip() for l in labels if isinstance(l, str) and l.strip()]))

def canonicalize_map(allowed: List[str]) -> Dict[str, str]:
    return {lab.lower(): lab for lab in allowed}

def robust_json_extract(text: str) -> Dict[str, Any]:
    if not text:
        return {"labels": [], "tasks": []}
    start, end = text.find("{"), text.rfind("}")
    candidate = text[start:end+1] if (start != -1 and end != -1 and end > start) else text
    try:
        return json.loads(candidate)
    except Exception:
        candidate = re.sub(r",\s*}", "}", candidate)
        candidate = re.sub(r",\s*]", "]", candidate)
        try:
            return json.loads(candidate)
        except Exception:
            return {"labels": [], "tasks": []}

def restrict_to_allowed(pred: Dict[str, Any], allowed: List[str]) -> Dict[str, Any]:
    out = {"labels": [], "tasks": []}
    allowed_map = canonicalize_map(allowed)
    # labels
    filt_labels = []
    for l in pred.get("labels", []) or []:
        k = str(l).strip().lower()
        if k in allowed_map:
            filt_labels.append(allowed_map[k])
    filt_labels = normalize_labels(filt_labels)
    # tasks
    filt_tasks = []
    for t in pred.get("tasks", []) or []:
        if not isinstance(t, dict):
            continue
        k = str(t.get("label", "")).strip().lower()
        if k in allowed_map:
            new_t = dict(t); new_t["label"] = allowed_map[k]
            filt_tasks.append(new_t)
    merged = normalize_labels(list(set(filt_labels) | {tt["label"] for tt in filt_tasks}))
    out["labels"] = merged
    out["tasks"] = filt_tasks
    return out

# =========================
# Default pre-processing (toggleable)
# =========================
_DISCLAIMER_PATTERNS = [
    r"(?is)^\s*(?:disclaimer|legal notice|confidentiality notice).+?(?:\n{2,}|$)",
    r"(?is)^\s*the information contained.+?(?:\n{2,}|$)",
    r"(?is)^\s*this message \(including any attachments\).+?(?:\n{2,}|$)",
]
_FOOTER_PATTERNS = [
    r"(?is)\n+kind regards[^\n]*\n.*$", r"(?is)\n+best regards[^\n]*\n.*$",
    r"(?is)\n+sent from my.*$", r"(?is)\n+ubs ag.*$",
]
_TIMESTAMP_SPEAKER = [
    r"\[\d{1,2}:\d{2}(:\d{2})?\]",     # [00:01] or [00:01:02]
    r"^\s*(advisor|client)\s*:\s*",    # Advisor: / Client:
    r"^\s*(speaker\s*\d+)\s*:\s*",     # Speaker 1:
]

def clean_transcript(text: str) -> str:
    if not text:
        return text
    s = text
    # remove timestamps/speaker prefixes line-wise
    lines = []
    for ln in s.splitlines():
        ln2 = ln
        for pat in _TIMESTAMP_SPEAKER:
            ln2 = re.sub(pat, "", ln2, flags=re.IGNORECASE)
        lines.append(ln2)
    s = "\n".join(lines)
    # remove top disclaimers
    for pat in _DISCLAIMER_PATTERNS:
        s = re.sub(pat, "", s).strip()
    # remove trailing footers
    for pat in _FOOTER_PATTERNS:
        s = re.sub(pat, "", s)
    # collapse whitespace
    s = re.sub(r"[ \t]+", " ", s)
    s = re.sub(r"\n{3,}", "\n\n", s).strip()
    return s

def read_text_file_any(file_input) -> str:
    """Works for gr.File(type='filepath') and raw strings/Path and file-like."""
    if not file_input:
        return ""
    if isinstance(file_input, (str, Path)):
        try:
            return Path(file_input).read_text(encoding="utf-8", errors="ignore")
        except Exception:
            return ""
    try:
        data = file_input.read()
        return data.decode("utf-8", errors="ignore")
    except Exception:
        return ""

def read_json_file_any(file_input) -> Optional[dict]:
    if not file_input:
        return None
    if isinstance(file_input, (str, Path)):
        try:
            return json.loads(Path(file_input).read_text(encoding="utf-8", errors="ignore"))
        except Exception:
            return None
    try:
        return json.loads(file_input.read().decode("utf-8", errors="ignore"))
    except Exception:
        return None

def truncate_tokens(tokenizer, text: str, max_tokens: int) -> str:
    toks = tokenizer(text, add_special_tokens=False)["input_ids"]
    if len(toks) <= max_tokens:
        return text
    return tokenizer.decode(toks[-max_tokens:], skip_special_tokens=True)

# =========================
# HF model wrapper
# =========================
class ModelWrapper:
    def __init__(self, repo_id: str, hf_token: Optional[str], load_in_4bit: bool):
        self.repo_id = repo_id
        self.hf_token = hf_token
        self.load_in_4bit = load_in_4bit
        self.tokenizer = None
        self.model = None

    def load(self):
        qcfg = None
        if self.load_in_4bit and DEVICE == "cuda":
            qcfg = BitsAndBytesConfig(
                load_in_4bit=True,
                bnb_4bit_quant_type="nf4",
                bnb_4bit_compute_dtype=torch.float16,
                bnb_4bit_use_double_quant=True,
            )
        tok = AutoTokenizer.from_pretrained(
            self.repo_id, token=self.hf_token, cache_dir=str(SPACE_CACHE),
            trust_remote_code=True, use_fast=True,
        )
        if tok.pad_token is None and tok.eos_token:
            tok.pad_token = tok.eos_token
        model = AutoModelForCausalLM.from_pretrained(
            self.repo_id, token=self.hf_token, cache_dir=str(SPACE_CACHE),
            trust_remote_code=True,
            torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
            device_map="auto" if DEVICE == "cuda" else None,
            low_cpu_mem_usage=True, quantization_config=qcfg,
            attn_implementation="sdpa",
        )
        self.tokenizer = tok
        self.model = model

    @torch.inference_mode()
    def generate(self, system_prompt: str, user_prompt: str) -> str:
        # Build inputs as input_ids=... (avoid **tensor bug from earlier)
        if hasattr(self.tokenizer, "apply_chat_template"):
            messages = [
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": user_prompt},
            ]
            input_ids = self.tokenizer.apply_chat_template(
                messages,
                tokenize=True,
                add_generation_prompt=True,
                return_tensors="pt",
            )
            input_ids = input_ids.to(self.model.device)
            gen_kwargs = dict(
                input_ids=input_ids,
                generation_config=GEN_CONFIG,
                eos_token_id=self.tokenizer.eos_token_id,
                pad_token_id=self.tokenizer.pad_token_id,
            )
        else:
            enc = self.tokenizer(
                f"<s>[SYSTEM]\n{system_prompt}\n[/SYSTEM]\n[USER]\n{user_prompt}\n[/USER]\n",
                return_tensors="pt"
            ).to(self.model.device)
            gen_kwargs = dict(
                **enc,
                generation_config=GEN_CONFIG,
                eos_token_id=self.tokenizer.eos_token_id,
                pad_token_id=self.tokenizer.pad_token_id,
            )

        with torch.cuda.amp.autocast(enabled=(DEVICE == "cuda")):
            out_ids = self.model.generate(**gen_kwargs)
        return self.tokenizer.decode(out_ids[0], skip_special_tokens=True)

_MODEL_CACHE: Dict[str, ModelWrapper] = {}
def get_model(repo_id: str, hf_token: Optional[str], load_in_4bit: bool) -> ModelWrapper:
    key = f"{repo_id}::{'4bit' if (load_in_4bit and DEVICE=='cuda') else 'full'}"
    if key not in _MODEL_CACHE:
        m = ModelWrapper(repo_id, hf_token, load_in_4bit)
        m.load()
        _MODEL_CACHE[key] = m
    return _MODEL_CACHE[key]

# =========================
# Official evaluation (from README)
# =========================
def evaluate_predictions(y_true: List[List[str]], y_pred: List[List[str]]) -> float:
    ALLOWED_LABELS = OFFICIAL_LABELS
    LABEL_TO_IDX = {label: idx for idx, label in enumerate(ALLOWED_LABELS)}

    def _process_sample_labels(sample_labels: List[str], sample_name: str) -> List[str]:
        if not isinstance(sample_labels, list):
            raise ValueError(f"{sample_name} must be a list of strings, got {type(sample_labels)}")
        seen, uniq = set(), []
        for label in sample_labels:
            if not isinstance(label, str):
                raise ValueError(f"{sample_name} contains non-string: {label} (type: {type(label)})")
            if label in seen:
                raise ValueError(f"{sample_name} contains duplicate label: '{label}'")
            if label not in ALLOWED_LABELS:
                raise ValueError(f"{sample_name} contains invalid label: '{label}'. Allowed: {ALLOWED_LABELS}")
            seen.add(label); uniq.append(label)
        return uniq

    if len(y_true) != len(y_pred):
        raise ValueError(f"y_true and y_pred must have same length. Got {len(y_true)} vs {len(y_pred)}")

    n_samples = len(y_true)
    n_labels = len(OFFICIAL_LABELS)
    y_true_binary = np.zeros((n_samples, n_labels), dtype=int)
    y_pred_binary = np.zeros((n_samples, n_labels), dtype=int)

    for i, sample_labels in enumerate(y_true):
        for label in _process_sample_labels(sample_labels, f"y_true[{i}]"):
            y_true_binary[i, LABEL_TO_IDX[label]] = 1

    for i, sample_labels in enumerate(y_pred):
        for label in _process_sample_labels(sample_labels, f"y_pred[{i}]"):
            y_pred_binary[i, LABEL_TO_IDX[label]] = 1

    fn = np.sum((y_true_binary == 1) & (y_pred_binary == 0), axis=1)  # penalty 2x
    fp = np.sum((y_true_binary == 0) & (y_pred_binary == 1), axis=1)  # penalty 1x
    weighted = 2.0 * fn + 1.0 * fp
    max_err = 2.0 * np.sum(y_true_binary, axis=1) + 1.0 * (n_labels - np.sum(y_true_binary, axis=1))
    per_sample = np.where(max_err > 0, 1.0 - (weighted / max_err), 1.0)
    return float(max(0.0, min(1.0, np.mean(per_sample))))

# =========================
# Fallback: keyword heuristics if model returns empty
# =========================
def keyword_fallback(text: str, allowed: List[str]) -> Dict[str, Any]:
    low = text.lower()
    labels = []
    tasks = []
    for lab in allowed:
        hits = []
        for kw in LABEL_KEYWORDS.get(lab, []):
            k = kw.lower()
            if k in low:
                # capture small evidence window
                i = low.find(k)
                start = max(0, i - 40); end = min(len(text), i + len(k) + 40)
                hits.append(text[start:end].strip())
        if hits:
            labels.append(lab)
            tasks.append({
                "label": lab,
                "explanation": "Keyword match in transcript.",
                "evidence": hits[0]
            })
    return {"labels": normalize_labels(labels), "tasks": tasks}

# =========================
# Inference helpers
# =========================
def build_keyword_context(allowed: List[str]) -> str:
    parts = []
    for lab in allowed:
        kws = LABEL_KEYWORDS.get(lab, [])
        parts.append(f"- {lab}: " + (", ".join(kws) if kws else "(no default cues)"))
    return "\n".join(parts)

def run_single(
    transcript_text: str,
    transcript_file,            # filepath or file-like
    gt_json_text: str,
    gt_json_file,               # filepath or file-like
    use_cleaning: bool,
    use_keyword_fallback: bool,
    allowed_labels_text: str,
    model_repo: str,
    use_4bit: bool,
    max_input_tokens: int,
    hf_token: str,
) -> Tuple[str, str, str, str, str, str, str]:

    t0 = _now_ms()

    # Transcript
    raw_text = ""
    if transcript_file:
        raw_text = read_text_file_any(transcript_file)
    raw_text = (raw_text or transcript_text or "").strip()
    if not raw_text:
        return "", "", "No transcript provided.", "", "", "", ""

    text = clean_transcript(raw_text) if use_cleaning else raw_text

    # Allowed labels (pre-filled defaults)
    user_allowed = [ln.strip() for ln in (allowed_labels_text or "").splitlines() if ln.strip()]
    allowed = normalize_labels(user_allowed or OFFICIAL_LABELS)

    # Model
    try:
        model = get_model(model_repo, (hf_token or "").strip() or None, use_4bit)
    except Exception as e:
        return "", "", f"Model load failed: {e}", "", "", "", ""

    # Truncate
    trunc = truncate_tokens(model.tokenizer, text, max_input_tokens)

    # Build prompt
    allowed_list_str = "\n".join(f"- {l}" for l in allowed)
    keyword_ctx = build_keyword_context(allowed)
    user_prompt = USER_PROMPT_TEMPLATE.format(
        transcript=trunc,
        allowed_labels_list=allowed_list_str,
        keyword_context=keyword_ctx,
    )

    # Generate
    t1 = _now_ms()
    try:
        out = model.generate(SYSTEM_PROMPT, user_prompt)
    except Exception as e:
        return "", "", f"Generation error: {e}", "", "", "", ""
    t2 = _now_ms()

    parsed = robust_json_extract(out)
    filtered = restrict_to_allowed(parsed, allowed)

    # Fallback if empty
    if use_keyword_fallback and not filtered.get("labels"):
        fb = keyword_fallback(trunc, allowed)
        if fb["labels"]:
            filtered = fb

    # Diagnostics
    diag = "\n".join([
        f"Device: {DEVICE} (4-bit: {'Yes' if (use_4bit and DEVICE=='cuda') else 'No'})",
        f"Model: {model_repo}",
        f"Input cleaned: {'Yes' if use_cleaning else 'No'}",
        f"Keyword fallback: {'Yes' if use_keyword_fallback else 'No'}",
        f"Tokens (input, approx): ≤ {max_input_tokens}",
        f"Latency: prep {t1-t0} ms, gen {t2-t1} ms, total {t2-t0} ms",
        f"Allowed labels: {', '.join(allowed)}",
    ])

    # Context & instructions preview shown in UI
    context_preview = (
        "### Allowed Labels\n"
        + "\n".join(f"- {l}" for l in allowed)
        + "\n\n### Keyword cues per label\n"
        + keyword_ctx
    )
    instructions_preview = "```\n" + SYSTEM_PROMPT + "\n```"

    # Summary & JSON
    labs = filtered.get("labels", [])
    tasks = filtered.get("tasks", [])
    summary = "Detected labels:\n" + ("\n".join(f"- {l}" for l in labs) if labs else "(none)")
    if tasks:
        summary += "\n\nTasks:\n" + "\n".join(
            f"• [{t['label']}] {t.get('explanation','')} | ev: {t.get('evidence','')[:140]}{'…' if len(t.get('evidence',''))>140 else ''}"
            for t in tasks
        )
    else:
        summary += "\n\nTasks: (none)"
    json_out = json.dumps(filtered, indent=2, ensure_ascii=False)

    # Optional single-file scoring if GT provided
    metrics = ""
    true_labels = None
    if gt_json_file or (gt_json_text and gt_json_text.strip()):
        truth_obj = None
        if gt_json_file:
            truth_obj = read_json_file_any(gt_json_file)
        if (not truth_obj) and gt_json_text:
            try:
                truth_obj = json.loads(gt_json_text)
            except Exception:
                pass
        if isinstance(truth_obj, dict) and isinstance(truth_obj.get("labels"), list):
            true_labels = [x for x in truth_obj["labels"] if x in OFFICIAL_LABELS]
            pred_labels = labs
            try:
                score = evaluate_predictions([true_labels], [pred_labels])
                tp = len(set(true_labels) & set(pred_labels))
                fp = len(set(pred_labels) - set(true_labels))
                fn = len(set(true_labels) - set(pred_labels))
                recall = tp / (tp + fn) if (tp + fn) else 1.0
                precision = tp / (tp + fp) if (tp + fp) else 1.0
                f1 = (2 * precision * recall / (precision + recall)) if (precision + recall) else 1.0
                metrics = (
                    f"Weighted score: {score:.3f}\n"
                    f"Recall: {recall:.3f} | Precision: {precision:.3f} | F1: {f1:.3f}\n"
                    f"TP={tp} FP={fp} FN={fn}\n"
                    f"Truth: {', '.join(true_labels)}"
                )
            except Exception as e:
                metrics = f"Scoring error: {e}"
        else:
            metrics = "Ground truth JSON missing or invalid; expected {'labels': [...]}."

    return summary, json_out, diag, out.strip(), context_preview, instructions_preview, metrics

# =========================
# Batch mode (ZIP with transcripts + truths)
# =========================
def read_zip_from_path(path: str, exdir: Path) -> List[Path]:
    exdir.mkdir(parents=True, exist_ok=True)
    with open(path, "rb") as f:
        data = f.read()
    with zipfile.ZipFile(io.BytesIO(data)) as zf:
        zf.extractall(exdir)
    return [p for p in exdir.rglob("*") if p.is_file()]

def run_batch(
    zip_path,                # filepath string
    use_cleaning: bool,
    use_keyword_fallback: bool,
    model_repo: str,
    use_4bit: bool,
    max_input_tokens: int,
    hf_token: str,
    limit_files: int,
) -> Tuple[str, str, pd.DataFrame, str]:

    if not zip_path:
        return ("No ZIP provided.", "", pd.DataFrame(), "")

    work = Path("/tmp/batch")
    if work.exists():
        for p in sorted(work.rglob("*"), reverse=True):
            try: p.unlink()
            except Exception: pass
        try: work.rmdir()
        except Exception: pass
    work.mkdir(parents=True, exist_ok=True)

    files = read_zip_from_path(zip_path, work)

    txts: Dict[str, Path] = {}
    gts: Dict[str, Path] = {}
    for p in files:
        if p.suffix.lower() == ".txt":
            txts[p.stem] = p
        elif p.suffix.lower() == ".json":
            gts[p.stem] = p

    stems = sorted(txts.keys())
    if limit_files > 0:
        stems = stems[:limit_files]
    if not stems:
        return ("No .txt transcripts found in ZIP.", "", pd.DataFrame(), "")

    try:
        model = get_model(model_repo, (hf_token or "").strip() or None, use_4bit)
    except Exception as e:
        return (f"Model load failed: {e}", "", pd.DataFrame(), "")

    allowed = OFFICIAL_LABELS[:]
    allowed_list_str = "\n".join(f"- {l}" for l in allowed)
    keyword_ctx = build_keyword_context(allowed)

    y_true, y_pred = [], []
    rows = []
    t_start = _now_ms()

    for stem in stems:
        raw = txts[stem].read_text(encoding="utf-8", errors="ignore")
        text = clean_transcript(raw) if use_cleaning else raw
        trunc = truncate_tokens(model.tokenizer, text, max_input_tokens)

        user_prompt = USER_PROMPT_TEMPLATE.format(
            transcript=trunc,
            allowed_labels_list=allowed_list_str,
            keyword_context=keyword_ctx,
        )

        t0 = _now_ms()
        out = model.generate(SYSTEM_PROMPT, user_prompt)
        t1 = _now_ms()

        parsed = robust_json_extract(out)
        filtered = restrict_to_allowed(parsed, allowed)

        if use_keyword_fallback and not filtered.get("labels"):
            fb = keyword_fallback(trunc, allowed)
            if fb["labels"]:
                filtered = fb

        pred_labels = filtered.get("labels", [])
        y_pred.append(pred_labels)

        gt_labels = []
        if stem in gts:
            try:
                gt_obj = json.loads(gts[stem].read_text(encoding="utf-8", errors="ignore"))
                if isinstance(gt_obj, dict) and isinstance(gt_obj.get("labels"), list):
                    gt_labels = [x for x in gt_obj["labels"] if x in OFFICIAL_LABELS]
            except Exception:
                pass
        y_true.append(gt_labels)

        gt_set, pr_set = set(gt_labels), set(pred_labels)
        tp = sorted(gt_set & pr_set)
        fp = sorted(pr_set - gt_set)
        fn = sorted(gt_set - pr_set)

        rows.append({
            "file": stem,
            "true_labels": ", "..join(gt_labels),
            "pred_labels": ", ".join(pred_labels),
            "TP": len(tp), "FP": len(fp), "FN": len(fn),
            "gen_ms": t1 - t0
        })

    have_truth = any(len(v) > 0 for v in y_true)
    score = evaluate_predictions(y_true, y_pred) if have_truth else None

    df = pd.DataFrame(rows).sort_values(["FN", "FP", "file"])
    diag = [
        f"Processed files: {len(stems)}",
        f"Device: {DEVICE} (4-bit: {'Yes' if (use_4bit and DEVICE=='cuda') else 'No'})",
        f"Model: {model_repo}",
        f"Input cleaned: {'Yes' if use_cleaning else 'No'}",
        f"Keyword fallback: {'Yes' if use_keyword_fallback else 'No'}",
        f"Tokens (input, approx): ≤ {max_input_tokens}",
        f"Batch time: {_now_ms()-t_start} ms",
    ]
    if have_truth and score is not None:
        total_tp = int(df["TP"].sum())
        total_fp = int(df["FP"].sum())
        total_fn = int(df["FN"].sum())
        recall = total_tp / (total_tp + total_fn) if (total_tp + total_fn) else 1.0
        precision = total_tp / (total_tp + total_fp) if (total_tp + total_fp) else 1.0
        f1 = (2 * precision * recall / (precision + recall)) if (precision + recall) else 1.0
        diag += [
            f"Official weighted score (0–1): {score:.3f}",
            f"Recall: {recall:.3f} | Precision: {precision:.3f} | F1: {f1:.3f}",
            f"Total TP={total_tp} FP={total_fp} FN={total_fn}",
        ]
    diag_str = "\n".join(diag)

    # save CSV for download
    out_csv = Path("/tmp/batch_results.csv")
    df.to_csv(out_csv, index=False, encoding="utf-8")
    return ("Batch done.", diag_str, df, str(out_csv))

# =========================
# UI
# =========================
MODEL_CHOICES = [
    "swiss-ai/Apertus-8B-Instruct-2509",
    "meta-llama/Meta-Llama-3-8B-Instruct",
    "mistralai/Mistral-7B-Instruct-v0.3",
]

custom_css = """
:root { --radius: 14px; }
.gradio-container { font-family: Inter, ui-sans-serif, system-ui; }
.card { border: 1px solid rgba(255,255,255,.08); border-radius: var(--radius); padding: 14px 16px; background: rgba(255,255,255,.02); box-shadow: 0 1px 10px rgba(0,0,0,.12) inset; }
.header { font-weight: 700; font-size: 22px; margin-bottom: 4px; }
.subtle { color: rgba(255,255,255,.65); font-size: 14px; margin-bottom: 12px; }
hr.sep { border: none; border-top: 1px solid rgba(255,255,255,.08); margin: 10px 0 16px; }
.accordion-title { font-weight: 600; }
.gr-button { border-radius: 12px !important; }
"""

with gr.Blocks(theme=gr.themes.Soft(), css=custom_css, fill_height=True) as demo:
    gr.Markdown("<div class='header'>Talk2Task — Task Extraction (UBS Challenge)</div>")
    gr.Markdown("<div class='subtle'>False negatives are penalised 2× more than false positives in the official score. This UI biases for recall, shows the exact instructions & context, and supports single or batch evaluation.</div>")

    with gr.Tab("Single transcript"):
        with gr.Row():
            with gr.Column(scale=3):
                gr.Markdown("<div class='card'><div class='header'>Transcript</div>", elem_id="card1")
                file = gr.File(
                    label="Drag & drop transcript (.txt / .md / .json)",
                    file_types=[".txt", ".md", ".json"],
                    type="filepath",
                )
                text = gr.Textbox(label="Or paste transcript", lines=10)
                gr.Markdown("<hr class='sep'/>")

                gr.Markdown("<div class='header'>Ground truth JSON (optional)</div>", elem_id="card1b")
                gt_file = gr.File(
                    label="Upload ground truth JSON (expects {'labels': [...]})",
                    file_types=[".json"],
                    type="filepath",
                )
                gt_text = gr.Textbox(label="Or paste ground truth JSON", lines=6, placeholder='{\"labels\": [\"schedule_meeting\"]}')
                gr.Markdown("</div>")  # close card

                gr.Markdown("<div class='card'><div class='header'>Preprocessing & heuristics</div>", elem_id="card2")
                use_cleaning = gr.Checkbox(
                    label="Apply default cleaning (remove disclaimers, timestamps, speakers, footers)",
                    value=True,
                )
                use_keyword_fallback = gr.Checkbox(
                    label="Keyword fallback if model returns empty",
                    value=True,
                )
                gr.Markdown("</div>")

                gr.Markdown("<div class='card'><div class='header'>Allowed labels</div>", elem_id="card3")
                labels_text = gr.Textbox(
                    label="Allowed Labels (one per line)",
                    value=OFFICIAL_LABELS_TEXT,  # prefilled
                    lines=8,
                )
                reset_btn = gr.Button("Reset to official labels")
                gr.Markdown("</div>")

            with gr.Column(scale=2):
                gr.Markdown("<div class='card'><div class='header'>Model & run</div>", elem_id="card4")
                repo = gr.Dropdown(label="Model", choices=MODEL_CHOICES, value=MODEL_CHOICES[0])
                use_4bit = gr.Checkbox(label="Use 4-bit (GPU only)", value=True)
                max_tokens = gr.Slider(label="Max input tokens", minimum=1024, maximum=8192, step=512, value=4096)
                hf_token = gr.Textbox(label="HF_TOKEN (only for gated models)", type="password", value=os.environ.get("HF_TOKEN",""))
                run_btn = gr.Button("Run Extraction", variant="primary")
                gr.Markdown("</div>")

                gr.Markdown("<div class='card'><div class='header'>Outputs</div>", elem_id="card5")
                summary = gr.Textbox(label="Summary", lines=12)
                json_out = gr.Code(label="Strict JSON Output", language="json")
                diag = gr.Textbox(label="Diagnostics", lines=8)
                raw = gr.Textbox(label="Raw Model Output", lines=8)
                gr.Markdown("</div>")

        with gr.Row():
            with gr.Column():
                with gr.Accordion("Instructions used (system prompt)", open=False):
                    instr_md = gr.Markdown("")
            with gr.Column():
                with gr.Accordion("Context used (allowed labels + keyword cues)", open=True):
                    context_md = gr.Markdown("")

        # reset button behavior
        def _reset_labels():
            return OFFICIAL_LABELS_TEXT
        reset_btn.click(fn=_reset_labels, inputs=None, outputs=labels_text)

        # single run
        def _pack_context_md(allowed: str) -> str:
            allowed_list = [ln.strip() for ln in (allowed or OFFICIAL_LABELS_TEXT).splitlines() if ln.strip()]
            ctx = build_keyword_context(allowed_list)
            return "### Allowed Labels\n" + "\n".join(f"- {l}" for l in allowed_list) + "\n\n### Keyword cues per label\n" + ctx

        run_btn.click(
            fn=run_single,
            inputs=[
                text, file, gt_text, gt_file, use_cleaning, use_keyword_fallback,
                labels_text, repo, use_4bit, max_tokens, hf_token
            ],
            outputs=[summary, json_out, diag, raw, context_md, instr_md, gr.Textbox(visible=False)],
        )

        # also keep instructions visible at initial load
        instr_md.value = "```\n" + SYSTEM_PROMPT + "\n```"
        context_md.value = _pack_context_md(OFFICIAL_LABELS_TEXT)

    with gr.Tab("Batch evaluation"):
        with gr.Row():
            with gr.Column(scale=3):
                gr.Markdown("<div class='card'><div class='header'>ZIP input</div>", elem_id="card6")
                zip_in = gr.File(label="ZIP with transcripts (.txt) and truths (.json)", file_types=[".zip"], type="filepath")
                use_cleaning_b = gr.Checkbox(label="Apply default cleaning", value=True)
                use_keyword_fallback_b = gr.Checkbox(label="Keyword fallback if model returns empty", value=True)
                gr.Markdown("</div>")
            with gr.Column(scale=2):
                gr.Markdown("<div class='card'><div class='header'>Model & run</div>", elem_id="card7")
                repo_b = gr.Dropdown(label="Model", choices=MODEL_CHOICES, value=MODEL_CHOICES[0])
                use_4bit_b = gr.Checkbox(label="Use 4-bit (GPU only)", value=True)
                max_tokens_b = gr.Slider(label="Max input tokens", minimum=1024, maximum=8192, step=512, value=4096)
                hf_token_b = gr.Textbox(label="HF_TOKEN (only for gated models)", type="password", value=os.environ.get("HF_TOKEN",""))
                limit_files = gr.Slider(label="Process at most N files (0 = all)", minimum=0, maximum=2000, step=10, value=0)
                run_batch_btn = gr.Button("Run Batch", variant="primary")
                gr.Markdown("</div>")

        with gr.Row():
            gr.Markdown("<div class='card'><div class='header'>Batch outputs</div>", elem_id="card8")
            status = gr.Textbox(label="Status", lines=1)
            diag_b = gr.Textbox(label="Batch diagnostics & metrics", lines=12)
            df_out = gr.Dataframe(label="Per-file results (TP/FP/FN, latency)", interactive=False)
            csv_out = gr.File(label="Download CSV", interactive=False)
            gr.Markdown("</div>")

        run_batch_btn.click(
            fn=run_batch,
            inputs=[zip_in, use_cleaning_b, use_keyword_fallback_b, repo_b, use_4bit_b, max_tokens_b, hf_token_b, limit_files],
            outputs=[status, diag_b, df_out, csv_out],
        )

if __name__ == "__main__":
    demo.launch()