Spaces:
Sleeping
Sleeping
File size: 33,126 Bytes
9949cc9 7cd757f 9949cc9 954d97c b80450d 9949cc9 b80450d 9949cc9 7cd757f 6acd2cc 7cd757f b80450d 62c9ed8 b80450d 05188c4 62c9ed8 b80450d 05188c4 6acd2cc 60a93e1 b80450d 60a93e1 6acd2cc 60a93e1 b80450d 6acd2cc 7cd757f 6acd2cc 7cd757f b80450d 6acd2cc b80450d 7cd757f 6acd2cc b80450d 9949cc9 b80450d 6acd2cc 7cd757f 60a93e1 6acd2cc 9949cc9 6acd2cc 7cd757f 6acd2cc 7cd757f 6acd2cc 9949cc9 6acd2cc 9949cc9 6acd2cc 9949cc9 6acd2cc 9949cc9 6acd2cc db991b8 6acd2cc db991b8 6acd2cc db991b8 6acd2cc db991b8 6acd2cc db991b8 7cd757f 6acd2cc b80450d 6acd2cc b80450d 7cd757f 6acd2cc cecfb15 62c9ed8 0344eed b80450d 0344eed 7cd757f 0344eed 6acd2cc e372e2c 6acd2cc b80450d e372e2c 6acd2cc 05188c4 e372e2c 6acd2cc f066995 7cd757f 954d97c b80450d db991b8 60a93e1 db991b8 7cd757f db991b8 05188c4 b80450d 7cd757f b80450d db991b8 6acd2cc b80450d 6acd2cc 7cd757f 6acd2cc 7cd757f 6acd2cc db991b8 6acd2cc 7cd757f 6acd2cc 7cd757f 6acd2cc 7cd757f d9e2f11 6acd2cc db991b8 6acd2cc db991b8 954d97c db991b8 954d97c db991b8 6acd2cc 9949cc9 6acd2cc 7cd757f db991b8 6acd2cc db991b8 7cd757f 954d97c 6acd2cc 7cd757f 6acd2cc db991b8 7cd757f 954d97c 6acd2cc 954d97c 7cd757f 6acd2cc db991b8 7cd757f 6acd2cc 7cd757f 954d97c 6acd2cc db991b8 6acd2cc db991b8 6acd2cc 7cd757f 6acd2cc 7cd757f 6acd2cc 7cd757f 6acd2cc db991b8 6acd2cc b80450d 6acd2cc b80450d 954d97c b80450d 6acd2cc b80450d 6acd2cc db991b8 6acd2cc db991b8 6acd2cc 954d97c db991b8 954d97c 7cd757f 6acd2cc 7cd757f 6acd2cc 7cd757f 6acd2cc db991b8 954d97c 6acd2cc db991b8 6acd2cc db991b8 6acd2cc 9949cc9 b80450d 7cd757f db991b8 6acd2cc db991b8 7cd757f 6acd2cc 9949cc9 6acd2cc db991b8 9949cc9 6acd2cc 9949cc9 db991b8 6acd2cc db991b8 6acd2cc 9949cc9 6acd2cc 7cd757f 6acd2cc 7cd757f 9949cc9 6acd2cc 9949cc9 6acd2cc db991b8 6acd2cc 7cd757f 6acd2cc 9949cc9 6acd2cc 7cd757f 6acd2cc 9949cc9 6acd2cc 954d97c 6acd2cc db991b8 6acd2cc 9949cc9 6acd2cc 954d97c 6acd2cc 954d97c 6acd2cc 7cd757f db991b8 954d97c db991b8 954d97c db991b8 954d97c db991b8 954d97c 9949cc9 db991b8 954d97c db991b8 954d97c 6acd2cc 954d97c 6acd2cc 954d97c 6acd2cc 954d97c 6acd2cc 954d97c 6acd2cc 954d97c 6acd2cc db991b8 954d97c 6acd2cc e372e2c 954d97c 6acd2cc 954d97c 6acd2cc db991b8 954d97c 6acd2cc 954d97c 6acd2cc 954d97c 6acd2cc 954d97c 6acd2cc 9949cc9 954d97c 6acd2cc db991b8 9949cc9 6acd2cc 62c9ed8 6acd2cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 |
# app.py
import os
import re
import io
import json
import time
import zipfile
from pathlib import Path
from typing import List, Dict, Any, Tuple, Optional
import numpy as np
import pandas as pd
import gradio as gr
import torch
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
BitsAndBytesConfig,
GenerationConfig,
)
# =========================
# Global config
# =========================
SPACE_CACHE = Path.home() / ".cache" / "huggingface"
SPACE_CACHE.mkdir(parents=True, exist_ok=True)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
GEN_CONFIG = GenerationConfig(
temperature=0.2,
top_p=0.9,
do_sample=False,
max_new_tokens=256,
)
# Official UBS label set (strict)
OFFICIAL_LABELS = [
"plan_contact",
"schedule_meeting",
"update_contact_info_non_postal",
"update_contact_info_postal_address",
"update_kyc_activity",
"update_kyc_origin_of_assets",
"update_kyc_purpose_of_businessrelation",
"update_kyc_total_assets",
]
OFFICIAL_LABELS_TEXT = "\n".join(OFFICIAL_LABELS)
# Per-label keyword cues (static prompt context to improve recall)
LABEL_KEYWORDS: Dict[str, List[str]] = {
"plan_contact": [
"call back", "follow up", "reach out", "contact later", "check-in",
"email them", "touch base", "remind", "send a note"
],
"schedule_meeting": [
"book a meeting", "set up a meeting", "schedule a call",
"appointment", "calendar", "meeting next week", "meet on", "time slot"
],
"update_contact_info_non_postal": [
"phone change", "new phone", "email change", "new email",
"update contact details", "update mobile", "alternate phone"
],
"update_contact_info_postal_address": [
"moved to", "new address", "postal address", "mailing address",
"change of address", "residential address"
],
"update_kyc_activity": [
"activity update", "economic activity", "employment status",
"occupation", "job change", "business activity"
],
"update_kyc_origin_of_assets": [
"source of funds", "origin of assets", "where money comes from",
"inheritance", "salary", "business income", "asset origin"
],
"update_kyc_purpose_of_businessrelation": [
"purpose of relationship", "why the account", "reason for banking",
"investment purpose", "relationship purpose"
],
"update_kyc_total_assets": [
"total assets", "net worth", "assets under ownership",
"portfolio size", "how much you own"
],
}
# =========================
# Instructions (string-safe; concatenated)
# =========================
SYSTEM_PROMPT = (
"You are a precise banking assistant that extracts ACTIONABLE TASKS from "
"client–advisor transcripts. Be conservative with hallucinations but "
"prioritise RECALL: if unsure and the transcript plausibly implies an "
"action, include the label and explain briefly.\n\n"
"Output STRICT JSON only:\n\n"
"{\n"
' "labels": ["<Label1>", "..."],\n'
' "tasks": [\n'
' {"label": "<Label1>", "explanation": "<why>", "evidence": "<quoted text/snippet>"}\n'
" ]\n"
"}\n\n"
"Rules:\n"
"- Use ONLY allowed labels supplied to you. Case-insensitive during reasoning, "
" but output the canonical label text exactly.\n"
"- If none truly apply, return empty lists.\n"
"- Keep explanations concise; put the minimal evidence snippet that justifies the task.\n"
)
USER_PROMPT_TEMPLATE = (
"Transcript (cleaned):\n"
"```\n{transcript}\n```\n\n"
"Allowed Labels (canonical; use only these):\n"
"{allowed_labels_list}\n\n"
"Context cues (keywords/phrases that often indicate each label):\n"
"{keyword_context}\n\n"
"Instructions:\n"
"- Identify EVERY concrete task implied by the conversation.\n"
"- Choose ONE label from Allowed Labels for each task (or none if truly inapplicable).\n"
"- Return STRICT JSON only in the exact schema described by the system prompt.\n"
)
# =========================
# Utilities
# =========================
def _now_ms() -> int:
return int(time.time() * 1000)
def normalize_labels(labels: List[str]) -> List[str]:
return list(dict.fromkeys([l.strip() for l in labels if isinstance(l, str) and l.strip()]))
def canonicalize_map(allowed: List[str]) -> Dict[str, str]:
return {lab.lower(): lab for lab in allowed}
def robust_json_extract(text: str) -> Dict[str, Any]:
if not text:
return {"labels": [], "tasks": []}
start, end = text.find("{"), text.rfind("}")
candidate = text[start:end+1] if (start != -1 and end != -1 and end > start) else text
try:
return json.loads(candidate)
except Exception:
candidate = re.sub(r",\s*}", "}", candidate)
candidate = re.sub(r",\s*]", "]", candidate)
try:
return json.loads(candidate)
except Exception:
return {"labels": [], "tasks": []}
def restrict_to_allowed(pred: Dict[str, Any], allowed: List[str]) -> Dict[str, Any]:
out = {"labels": [], "tasks": []}
allowed_map = canonicalize_map(allowed)
# labels
filt_labels = []
for l in pred.get("labels", []) or []:
k = str(l).strip().lower()
if k in allowed_map:
filt_labels.append(allowed_map[k])
filt_labels = normalize_labels(filt_labels)
# tasks
filt_tasks = []
for t in pred.get("tasks", []) or []:
if not isinstance(t, dict):
continue
k = str(t.get("label", "")).strip().lower()
if k in allowed_map:
new_t = dict(t); new_t["label"] = allowed_map[k]
filt_tasks.append(new_t)
merged = normalize_labels(list(set(filt_labels) | {tt["label"] for tt in filt_tasks}))
out["labels"] = merged
out["tasks"] = filt_tasks
return out
# =========================
# Default pre-processing (toggleable)
# =========================
_DISCLAIMER_PATTERNS = [
r"(?is)^\s*(?:disclaimer|legal notice|confidentiality notice).+?(?:\n{2,}|$)",
r"(?is)^\s*the information contained.+?(?:\n{2,}|$)",
r"(?is)^\s*this message \(including any attachments\).+?(?:\n{2,}|$)",
]
_FOOTER_PATTERNS = [
r"(?is)\n+kind regards[^\n]*\n.*$", r"(?is)\n+best regards[^\n]*\n.*$",
r"(?is)\n+sent from my.*$", r"(?is)\n+ubs ag.*$",
]
_TIMESTAMP_SPEAKER = [
r"\[\d{1,2}:\d{2}(:\d{2})?\]", # [00:01] or [00:01:02]
r"^\s*(advisor|client)\s*:\s*", # Advisor: / Client:
r"^\s*(speaker\s*\d+)\s*:\s*", # Speaker 1:
]
def clean_transcript(text: str) -> str:
if not text:
return text
s = text
# remove timestamps/speaker prefixes line-wise
lines = []
for ln in s.splitlines():
ln2 = ln
for pat in _TIMESTAMP_SPEAKER:
ln2 = re.sub(pat, "", ln2, flags=re.IGNORECASE)
lines.append(ln2)
s = "\n".join(lines)
# remove top disclaimers
for pat in _DISCLAIMER_PATTERNS:
s = re.sub(pat, "", s).strip()
# remove trailing footers
for pat in _FOOTER_PATTERNS:
s = re.sub(pat, "", s)
# collapse whitespace
s = re.sub(r"[ \t]+", " ", s)
s = re.sub(r"\n{3,}", "\n\n", s).strip()
return s
def read_text_file_any(file_input) -> str:
"""Works for gr.File(type='filepath') and raw strings/Path and file-like."""
if not file_input:
return ""
if isinstance(file_input, (str, Path)):
try:
return Path(file_input).read_text(encoding="utf-8", errors="ignore")
except Exception:
return ""
try:
data = file_input.read()
return data.decode("utf-8", errors="ignore")
except Exception:
return ""
def read_json_file_any(file_input) -> Optional[dict]:
if not file_input:
return None
if isinstance(file_input, (str, Path)):
try:
return json.loads(Path(file_input).read_text(encoding="utf-8", errors="ignore"))
except Exception:
return None
try:
return json.loads(file_input.read().decode("utf-8", errors="ignore"))
except Exception:
return None
def truncate_tokens(tokenizer, text: str, max_tokens: int) -> str:
toks = tokenizer(text, add_special_tokens=False)["input_ids"]
if len(toks) <= max_tokens:
return text
return tokenizer.decode(toks[-max_tokens:], skip_special_tokens=True)
# =========================
# HF model wrapper
# =========================
class ModelWrapper:
def __init__(self, repo_id: str, hf_token: Optional[str], load_in_4bit: bool):
self.repo_id = repo_id
self.hf_token = hf_token
self.load_in_4bit = load_in_4bit
self.tokenizer = None
self.model = None
def load(self):
qcfg = None
if self.load_in_4bit and DEVICE == "cuda":
qcfg = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
)
tok = AutoTokenizer.from_pretrained(
self.repo_id, token=self.hf_token, cache_dir=str(SPACE_CACHE),
trust_remote_code=True, use_fast=True,
)
if tok.pad_token is None and tok.eos_token:
tok.pad_token = tok.eos_token
model = AutoModelForCausalLM.from_pretrained(
self.repo_id, token=self.hf_token, cache_dir=str(SPACE_CACHE),
trust_remote_code=True,
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
device_map="auto" if DEVICE == "cuda" else None,
low_cpu_mem_usage=True, quantization_config=qcfg,
attn_implementation="sdpa",
)
self.tokenizer = tok
self.model = model
@torch.inference_mode()
def generate(self, system_prompt: str, user_prompt: str) -> str:
# Build inputs as input_ids=... (avoid **tensor bug from earlier)
if hasattr(self.tokenizer, "apply_chat_template"):
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
]
input_ids = self.tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
)
input_ids = input_ids.to(self.model.device)
gen_kwargs = dict(
input_ids=input_ids,
generation_config=GEN_CONFIG,
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=self.tokenizer.pad_token_id,
)
else:
enc = self.tokenizer(
f"<s>[SYSTEM]\n{system_prompt}\n[/SYSTEM]\n[USER]\n{user_prompt}\n[/USER]\n",
return_tensors="pt"
).to(self.model.device)
gen_kwargs = dict(
**enc,
generation_config=GEN_CONFIG,
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=self.tokenizer.pad_token_id,
)
with torch.cuda.amp.autocast(enabled=(DEVICE == "cuda")):
out_ids = self.model.generate(**gen_kwargs)
return self.tokenizer.decode(out_ids[0], skip_special_tokens=True)
_MODEL_CACHE: Dict[str, ModelWrapper] = {}
def get_model(repo_id: str, hf_token: Optional[str], load_in_4bit: bool) -> ModelWrapper:
key = f"{repo_id}::{'4bit' if (load_in_4bit and DEVICE=='cuda') else 'full'}"
if key not in _MODEL_CACHE:
m = ModelWrapper(repo_id, hf_token, load_in_4bit)
m.load()
_MODEL_CACHE[key] = m
return _MODEL_CACHE[key]
# =========================
# Official evaluation (from README)
# =========================
def evaluate_predictions(y_true: List[List[str]], y_pred: List[List[str]]) -> float:
ALLOWED_LABELS = OFFICIAL_LABELS
LABEL_TO_IDX = {label: idx for idx, label in enumerate(ALLOWED_LABELS)}
def _process_sample_labels(sample_labels: List[str], sample_name: str) -> List[str]:
if not isinstance(sample_labels, list):
raise ValueError(f"{sample_name} must be a list of strings, got {type(sample_labels)}")
seen, uniq = set(), []
for label in sample_labels:
if not isinstance(label, str):
raise ValueError(f"{sample_name} contains non-string: {label} (type: {type(label)})")
if label in seen:
raise ValueError(f"{sample_name} contains duplicate label: '{label}'")
if label not in ALLOWED_LABELS:
raise ValueError(f"{sample_name} contains invalid label: '{label}'. Allowed: {ALLOWED_LABELS}")
seen.add(label); uniq.append(label)
return uniq
if len(y_true) != len(y_pred):
raise ValueError(f"y_true and y_pred must have same length. Got {len(y_true)} vs {len(y_pred)}")
n_samples = len(y_true)
n_labels = len(OFFICIAL_LABELS)
y_true_binary = np.zeros((n_samples, n_labels), dtype=int)
y_pred_binary = np.zeros((n_samples, n_labels), dtype=int)
for i, sample_labels in enumerate(y_true):
for label in _process_sample_labels(sample_labels, f"y_true[{i}]"):
y_true_binary[i, LABEL_TO_IDX[label]] = 1
for i, sample_labels in enumerate(y_pred):
for label in _process_sample_labels(sample_labels, f"y_pred[{i}]"):
y_pred_binary[i, LABEL_TO_IDX[label]] = 1
fn = np.sum((y_true_binary == 1) & (y_pred_binary == 0), axis=1) # penalty 2x
fp = np.sum((y_true_binary == 0) & (y_pred_binary == 1), axis=1) # penalty 1x
weighted = 2.0 * fn + 1.0 * fp
max_err = 2.0 * np.sum(y_true_binary, axis=1) + 1.0 * (n_labels - np.sum(y_true_binary, axis=1))
per_sample = np.where(max_err > 0, 1.0 - (weighted / max_err), 1.0)
return float(max(0.0, min(1.0, np.mean(per_sample))))
# =========================
# Fallback: keyword heuristics if model returns empty
# =========================
def keyword_fallback(text: str, allowed: List[str]) -> Dict[str, Any]:
low = text.lower()
labels = []
tasks = []
for lab in allowed:
hits = []
for kw in LABEL_KEYWORDS.get(lab, []):
k = kw.lower()
if k in low:
# capture small evidence window
i = low.find(k)
start = max(0, i - 40); end = min(len(text), i + len(k) + 40)
hits.append(text[start:end].strip())
if hits:
labels.append(lab)
tasks.append({
"label": lab,
"explanation": "Keyword match in transcript.",
"evidence": hits[0]
})
return {"labels": normalize_labels(labels), "tasks": tasks}
# =========================
# Inference helpers
# =========================
def build_keyword_context(allowed: List[str]) -> str:
parts = []
for lab in allowed:
kws = LABEL_KEYWORDS.get(lab, [])
parts.append(f"- {lab}: " + (", ".join(kws) if kws else "(no default cues)"))
return "\n".join(parts)
def run_single(
transcript_text: str,
transcript_file, # filepath or file-like
gt_json_text: str,
gt_json_file, # filepath or file-like
use_cleaning: bool,
use_keyword_fallback: bool,
allowed_labels_text: str,
model_repo: str,
use_4bit: bool,
max_input_tokens: int,
hf_token: str,
) -> Tuple[str, str, str, str, str, str, str]:
t0 = _now_ms()
# Transcript
raw_text = ""
if transcript_file:
raw_text = read_text_file_any(transcript_file)
raw_text = (raw_text or transcript_text or "").strip()
if not raw_text:
return "", "", "No transcript provided.", "", "", "", ""
text = clean_transcript(raw_text) if use_cleaning else raw_text
# Allowed labels (pre-filled defaults)
user_allowed = [ln.strip() for ln in (allowed_labels_text or "").splitlines() if ln.strip()]
allowed = normalize_labels(user_allowed or OFFICIAL_LABELS)
# Model
try:
model = get_model(model_repo, (hf_token or "").strip() or None, use_4bit)
except Exception as e:
return "", "", f"Model load failed: {e}", "", "", "", ""
# Truncate
trunc = truncate_tokens(model.tokenizer, text, max_input_tokens)
# Build prompt
allowed_list_str = "\n".join(f"- {l}" for l in allowed)
keyword_ctx = build_keyword_context(allowed)
user_prompt = USER_PROMPT_TEMPLATE.format(
transcript=trunc,
allowed_labels_list=allowed_list_str,
keyword_context=keyword_ctx,
)
# Generate
t1 = _now_ms()
try:
out = model.generate(SYSTEM_PROMPT, user_prompt)
except Exception as e:
return "", "", f"Generation error: {e}", "", "", "", ""
t2 = _now_ms()
parsed = robust_json_extract(out)
filtered = restrict_to_allowed(parsed, allowed)
# Fallback if empty
if use_keyword_fallback and not filtered.get("labels"):
fb = keyword_fallback(trunc, allowed)
if fb["labels"]:
filtered = fb
# Diagnostics
diag = "\n".join([
f"Device: {DEVICE} (4-bit: {'Yes' if (use_4bit and DEVICE=='cuda') else 'No'})",
f"Model: {model_repo}",
f"Input cleaned: {'Yes' if use_cleaning else 'No'}",
f"Keyword fallback: {'Yes' if use_keyword_fallback else 'No'}",
f"Tokens (input, approx): ≤ {max_input_tokens}",
f"Latency: prep {t1-t0} ms, gen {t2-t1} ms, total {t2-t0} ms",
f"Allowed labels: {', '.join(allowed)}",
])
# Context & instructions preview shown in UI
context_preview = (
"### Allowed Labels\n"
+ "\n".join(f"- {l}" for l in allowed)
+ "\n\n### Keyword cues per label\n"
+ keyword_ctx
)
instructions_preview = "```\n" + SYSTEM_PROMPT + "\n```"
# Summary & JSON
labs = filtered.get("labels", [])
tasks = filtered.get("tasks", [])
summary = "Detected labels:\n" + ("\n".join(f"- {l}" for l in labs) if labs else "(none)")
if tasks:
summary += "\n\nTasks:\n" + "\n".join(
f"• [{t['label']}] {t.get('explanation','')} | ev: {t.get('evidence','')[:140]}{'…' if len(t.get('evidence',''))>140 else ''}"
for t in tasks
)
else:
summary += "\n\nTasks: (none)"
json_out = json.dumps(filtered, indent=2, ensure_ascii=False)
# Optional single-file scoring if GT provided
metrics = ""
true_labels = None
if gt_json_file or (gt_json_text and gt_json_text.strip()):
truth_obj = None
if gt_json_file:
truth_obj = read_json_file_any(gt_json_file)
if (not truth_obj) and gt_json_text:
try:
truth_obj = json.loads(gt_json_text)
except Exception:
pass
if isinstance(truth_obj, dict) and isinstance(truth_obj.get("labels"), list):
true_labels = [x for x in truth_obj["labels"] if x in OFFICIAL_LABELS]
pred_labels = labs
try:
score = evaluate_predictions([true_labels], [pred_labels])
tp = len(set(true_labels) & set(pred_labels))
fp = len(set(pred_labels) - set(true_labels))
fn = len(set(true_labels) - set(pred_labels))
recall = tp / (tp + fn) if (tp + fn) else 1.0
precision = tp / (tp + fp) if (tp + fp) else 1.0
f1 = (2 * precision * recall / (precision + recall)) if (precision + recall) else 1.0
metrics = (
f"Weighted score: {score:.3f}\n"
f"Recall: {recall:.3f} | Precision: {precision:.3f} | F1: {f1:.3f}\n"
f"TP={tp} FP={fp} FN={fn}\n"
f"Truth: {', '.join(true_labels)}"
)
except Exception as e:
metrics = f"Scoring error: {e}"
else:
metrics = "Ground truth JSON missing or invalid; expected {'labels': [...]}."
return summary, json_out, diag, out.strip(), context_preview, instructions_preview, metrics
# =========================
# Batch mode (ZIP with transcripts + truths)
# =========================
def read_zip_from_path(path: str, exdir: Path) -> List[Path]:
exdir.mkdir(parents=True, exist_ok=True)
with open(path, "rb") as f:
data = f.read()
with zipfile.ZipFile(io.BytesIO(data)) as zf:
zf.extractall(exdir)
return [p for p in exdir.rglob("*") if p.is_file()]
def run_batch(
zip_path, # filepath string
use_cleaning: bool,
use_keyword_fallback: bool,
model_repo: str,
use_4bit: bool,
max_input_tokens: int,
hf_token: str,
limit_files: int,
) -> Tuple[str, str, pd.DataFrame, str]:
if not zip_path:
return ("No ZIP provided.", "", pd.DataFrame(), "")
work = Path("/tmp/batch")
if work.exists():
for p in sorted(work.rglob("*"), reverse=True):
try: p.unlink()
except Exception: pass
try: work.rmdir()
except Exception: pass
work.mkdir(parents=True, exist_ok=True)
files = read_zip_from_path(zip_path, work)
txts: Dict[str, Path] = {}
gts: Dict[str, Path] = {}
for p in files:
if p.suffix.lower() == ".txt":
txts[p.stem] = p
elif p.suffix.lower() == ".json":
gts[p.stem] = p
stems = sorted(txts.keys())
if limit_files > 0:
stems = stems[:limit_files]
if not stems:
return ("No .txt transcripts found in ZIP.", "", pd.DataFrame(), "")
try:
model = get_model(model_repo, (hf_token or "").strip() or None, use_4bit)
except Exception as e:
return (f"Model load failed: {e}", "", pd.DataFrame(), "")
allowed = OFFICIAL_LABELS[:]
allowed_list_str = "\n".join(f"- {l}" for l in allowed)
keyword_ctx = build_keyword_context(allowed)
y_true, y_pred = [], []
rows = []
t_start = _now_ms()
for stem in stems:
raw = txts[stem].read_text(encoding="utf-8", errors="ignore")
text = clean_transcript(raw) if use_cleaning else raw
trunc = truncate_tokens(model.tokenizer, text, max_input_tokens)
user_prompt = USER_PROMPT_TEMPLATE.format(
transcript=trunc,
allowed_labels_list=allowed_list_str,
keyword_context=keyword_ctx,
)
t0 = _now_ms()
out = model.generate(SYSTEM_PROMPT, user_prompt)
t1 = _now_ms()
parsed = robust_json_extract(out)
filtered = restrict_to_allowed(parsed, allowed)
if use_keyword_fallback and not filtered.get("labels"):
fb = keyword_fallback(trunc, allowed)
if fb["labels"]:
filtered = fb
pred_labels = filtered.get("labels", [])
y_pred.append(pred_labels)
gt_labels = []
if stem in gts:
try:
gt_obj = json.loads(gts[stem].read_text(encoding="utf-8", errors="ignore"))
if isinstance(gt_obj, dict) and isinstance(gt_obj.get("labels"), list):
gt_labels = [x for x in gt_obj["labels"] if x in OFFICIAL_LABELS]
except Exception:
pass
y_true.append(gt_labels)
gt_set, pr_set = set(gt_labels), set(pred_labels)
tp = sorted(gt_set & pr_set)
fp = sorted(pr_set - gt_set)
fn = sorted(gt_set - pr_set)
rows.append({
"file": stem,
"true_labels": ", "..join(gt_labels),
"pred_labels": ", ".join(pred_labels),
"TP": len(tp), "FP": len(fp), "FN": len(fn),
"gen_ms": t1 - t0
})
have_truth = any(len(v) > 0 for v in y_true)
score = evaluate_predictions(y_true, y_pred) if have_truth else None
df = pd.DataFrame(rows).sort_values(["FN", "FP", "file"])
diag = [
f"Processed files: {len(stems)}",
f"Device: {DEVICE} (4-bit: {'Yes' if (use_4bit and DEVICE=='cuda') else 'No'})",
f"Model: {model_repo}",
f"Input cleaned: {'Yes' if use_cleaning else 'No'}",
f"Keyword fallback: {'Yes' if use_keyword_fallback else 'No'}",
f"Tokens (input, approx): ≤ {max_input_tokens}",
f"Batch time: {_now_ms()-t_start} ms",
]
if have_truth and score is not None:
total_tp = int(df["TP"].sum())
total_fp = int(df["FP"].sum())
total_fn = int(df["FN"].sum())
recall = total_tp / (total_tp + total_fn) if (total_tp + total_fn) else 1.0
precision = total_tp / (total_tp + total_fp) if (total_tp + total_fp) else 1.0
f1 = (2 * precision * recall / (precision + recall)) if (precision + recall) else 1.0
diag += [
f"Official weighted score (0–1): {score:.3f}",
f"Recall: {recall:.3f} | Precision: {precision:.3f} | F1: {f1:.3f}",
f"Total TP={total_tp} FP={total_fp} FN={total_fn}",
]
diag_str = "\n".join(diag)
# save CSV for download
out_csv = Path("/tmp/batch_results.csv")
df.to_csv(out_csv, index=False, encoding="utf-8")
return ("Batch done.", diag_str, df, str(out_csv))
# =========================
# UI
# =========================
MODEL_CHOICES = [
"swiss-ai/Apertus-8B-Instruct-2509",
"meta-llama/Meta-Llama-3-8B-Instruct",
"mistralai/Mistral-7B-Instruct-v0.3",
]
custom_css = """
:root { --radius: 14px; }
.gradio-container { font-family: Inter, ui-sans-serif, system-ui; }
.card { border: 1px solid rgba(255,255,255,.08); border-radius: var(--radius); padding: 14px 16px; background: rgba(255,255,255,.02); box-shadow: 0 1px 10px rgba(0,0,0,.12) inset; }
.header { font-weight: 700; font-size: 22px; margin-bottom: 4px; }
.subtle { color: rgba(255,255,255,.65); font-size: 14px; margin-bottom: 12px; }
hr.sep { border: none; border-top: 1px solid rgba(255,255,255,.08); margin: 10px 0 16px; }
.accordion-title { font-weight: 600; }
.gr-button { border-radius: 12px !important; }
"""
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css, fill_height=True) as demo:
gr.Markdown("<div class='header'>Talk2Task — Task Extraction (UBS Challenge)</div>")
gr.Markdown("<div class='subtle'>False negatives are penalised 2× more than false positives in the official score. This UI biases for recall, shows the exact instructions & context, and supports single or batch evaluation.</div>")
with gr.Tab("Single transcript"):
with gr.Row():
with gr.Column(scale=3):
gr.Markdown("<div class='card'><div class='header'>Transcript</div>", elem_id="card1")
file = gr.File(
label="Drag & drop transcript (.txt / .md / .json)",
file_types=[".txt", ".md", ".json"],
type="filepath",
)
text = gr.Textbox(label="Or paste transcript", lines=10)
gr.Markdown("<hr class='sep'/>")
gr.Markdown("<div class='header'>Ground truth JSON (optional)</div>", elem_id="card1b")
gt_file = gr.File(
label="Upload ground truth JSON (expects {'labels': [...]})",
file_types=[".json"],
type="filepath",
)
gt_text = gr.Textbox(label="Or paste ground truth JSON", lines=6, placeholder='{\"labels\": [\"schedule_meeting\"]}')
gr.Markdown("</div>") # close card
gr.Markdown("<div class='card'><div class='header'>Preprocessing & heuristics</div>", elem_id="card2")
use_cleaning = gr.Checkbox(
label="Apply default cleaning (remove disclaimers, timestamps, speakers, footers)",
value=True,
)
use_keyword_fallback = gr.Checkbox(
label="Keyword fallback if model returns empty",
value=True,
)
gr.Markdown("</div>")
gr.Markdown("<div class='card'><div class='header'>Allowed labels</div>", elem_id="card3")
labels_text = gr.Textbox(
label="Allowed Labels (one per line)",
value=OFFICIAL_LABELS_TEXT, # prefilled
lines=8,
)
reset_btn = gr.Button("Reset to official labels")
gr.Markdown("</div>")
with gr.Column(scale=2):
gr.Markdown("<div class='card'><div class='header'>Model & run</div>", elem_id="card4")
repo = gr.Dropdown(label="Model", choices=MODEL_CHOICES, value=MODEL_CHOICES[0])
use_4bit = gr.Checkbox(label="Use 4-bit (GPU only)", value=True)
max_tokens = gr.Slider(label="Max input tokens", minimum=1024, maximum=8192, step=512, value=4096)
hf_token = gr.Textbox(label="HF_TOKEN (only for gated models)", type="password", value=os.environ.get("HF_TOKEN",""))
run_btn = gr.Button("Run Extraction", variant="primary")
gr.Markdown("</div>")
gr.Markdown("<div class='card'><div class='header'>Outputs</div>", elem_id="card5")
summary = gr.Textbox(label="Summary", lines=12)
json_out = gr.Code(label="Strict JSON Output", language="json")
diag = gr.Textbox(label="Diagnostics", lines=8)
raw = gr.Textbox(label="Raw Model Output", lines=8)
gr.Markdown("</div>")
with gr.Row():
with gr.Column():
with gr.Accordion("Instructions used (system prompt)", open=False):
instr_md = gr.Markdown("")
with gr.Column():
with gr.Accordion("Context used (allowed labels + keyword cues)", open=True):
context_md = gr.Markdown("")
# reset button behavior
def _reset_labels():
return OFFICIAL_LABELS_TEXT
reset_btn.click(fn=_reset_labels, inputs=None, outputs=labels_text)
# single run
def _pack_context_md(allowed: str) -> str:
allowed_list = [ln.strip() for ln in (allowed or OFFICIAL_LABELS_TEXT).splitlines() if ln.strip()]
ctx = build_keyword_context(allowed_list)
return "### Allowed Labels\n" + "\n".join(f"- {l}" for l in allowed_list) + "\n\n### Keyword cues per label\n" + ctx
run_btn.click(
fn=run_single,
inputs=[
text, file, gt_text, gt_file, use_cleaning, use_keyword_fallback,
labels_text, repo, use_4bit, max_tokens, hf_token
],
outputs=[summary, json_out, diag, raw, context_md, instr_md, gr.Textbox(visible=False)],
)
# also keep instructions visible at initial load
instr_md.value = "```\n" + SYSTEM_PROMPT + "\n```"
context_md.value = _pack_context_md(OFFICIAL_LABELS_TEXT)
with gr.Tab("Batch evaluation"):
with gr.Row():
with gr.Column(scale=3):
gr.Markdown("<div class='card'><div class='header'>ZIP input</div>", elem_id="card6")
zip_in = gr.File(label="ZIP with transcripts (.txt) and truths (.json)", file_types=[".zip"], type="filepath")
use_cleaning_b = gr.Checkbox(label="Apply default cleaning", value=True)
use_keyword_fallback_b = gr.Checkbox(label="Keyword fallback if model returns empty", value=True)
gr.Markdown("</div>")
with gr.Column(scale=2):
gr.Markdown("<div class='card'><div class='header'>Model & run</div>", elem_id="card7")
repo_b = gr.Dropdown(label="Model", choices=MODEL_CHOICES, value=MODEL_CHOICES[0])
use_4bit_b = gr.Checkbox(label="Use 4-bit (GPU only)", value=True)
max_tokens_b = gr.Slider(label="Max input tokens", minimum=1024, maximum=8192, step=512, value=4096)
hf_token_b = gr.Textbox(label="HF_TOKEN (only for gated models)", type="password", value=os.environ.get("HF_TOKEN",""))
limit_files = gr.Slider(label="Process at most N files (0 = all)", minimum=0, maximum=2000, step=10, value=0)
run_batch_btn = gr.Button("Run Batch", variant="primary")
gr.Markdown("</div>")
with gr.Row():
gr.Markdown("<div class='card'><div class='header'>Batch outputs</div>", elem_id="card8")
status = gr.Textbox(label="Status", lines=1)
diag_b = gr.Textbox(label="Batch diagnostics & metrics", lines=12)
df_out = gr.Dataframe(label="Per-file results (TP/FP/FN, latency)", interactive=False)
csv_out = gr.File(label="Download CSV", interactive=False)
gr.Markdown("</div>")
run_batch_btn.click(
fn=run_batch,
inputs=[zip_in, use_cleaning_b, use_keyword_fallback_b, repo_b, use_4bit_b, max_tokens_b, hf_token_b, limit_files],
outputs=[status, diag_b, df_out, csv_out],
)
if __name__ == "__main__":
demo.launch()
|