Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,873 +1,440 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
-
import pandas as pd
|
| 7 |
-
import torch
|
| 8 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 9 |
|
| 10 |
-
#
|
| 11 |
try:
|
| 12 |
-
import
|
| 13 |
except Exception:
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
return
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
#
|
| 28 |
-
if
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
# ========= Labels & metrics =========
|
| 36 |
-
ALLOWED_LABELS = [
|
| 37 |
-
"plan_contact",
|
| 38 |
-
"schedule_meeting",
|
| 39 |
-
"update_contact_info_non_postal",
|
| 40 |
-
"update_contact_info_postal_address",
|
| 41 |
-
"update_kyc_activity",
|
| 42 |
-
"update_kyc_origin_of_assets",
|
| 43 |
-
"update_kyc_purpose_of_businessrelation",
|
| 44 |
-
"update_kyc_total_assets",
|
| 45 |
-
]
|
| 46 |
-
LABEL_TO_IDX = {l: i for i, l in enumerate(ALLOWED_LABELS)}
|
| 47 |
-
FN_PENALTY = 2.0
|
| 48 |
-
FP_PENALTY = 1.0
|
| 49 |
-
|
| 50 |
-
def safe_json_load(s: str):
|
| 51 |
-
try:
|
| 52 |
-
return json.loads(s)
|
| 53 |
-
except Exception:
|
| 54 |
-
pass
|
| 55 |
-
m = re.search(r"\{.*\}", s, re.S)
|
| 56 |
-
if m:
|
| 57 |
-
try:
|
| 58 |
-
return json.loads(m.group(0))
|
| 59 |
-
except Exception:
|
| 60 |
-
pass
|
| 61 |
-
return {"labels": [], "notes": "WARN: model output not valid JSON; fallback used"}
|
| 62 |
-
|
| 63 |
-
def _coerce_labels_list(x):
|
| 64 |
-
if isinstance(x, list):
|
| 65 |
-
out = []
|
| 66 |
-
for it in x:
|
| 67 |
-
if isinstance(it, str): out.append(it)
|
| 68 |
-
elif isinstance(it, dict):
|
| 69 |
-
for k in ("label", "value", "task", "category", "name"):
|
| 70 |
-
v = it.get(k)
|
| 71 |
-
if isinstance(v, str):
|
| 72 |
-
out.append(v); break
|
| 73 |
-
else:
|
| 74 |
-
if isinstance(it.get("labels"), list):
|
| 75 |
-
out += [s for s in it["labels"] if isinstance(s, str)]
|
| 76 |
-
# dedupe keep order
|
| 77 |
-
seen = set(); norm = []
|
| 78 |
-
for s in out:
|
| 79 |
-
if s not in seen:
|
| 80 |
-
norm.append(s); seen.add(s)
|
| 81 |
-
return norm
|
| 82 |
-
if isinstance(x, dict):
|
| 83 |
-
for k in ("expected_labels", "labels", "targets", "y_true"):
|
| 84 |
-
if k in x: return _coerce_labels_list(x[k])
|
| 85 |
-
if "one_hot" in x and isinstance(x["one_hot"], dict):
|
| 86 |
-
return [k for k, v in x["one_hot"].items() if v]
|
| 87 |
-
return []
|
| 88 |
-
|
| 89 |
-
def classic_metrics(pred_labels, exp_labels):
|
| 90 |
-
pred = set([str(x) for x in (pred_labels or []) if isinstance(x, (str,int,float,bool))])
|
| 91 |
-
gold = set([str(x) for x in (exp_labels or []) if isinstance(x, (str,int,float,bool))])
|
| 92 |
-
if not pred and not gold:
|
| 93 |
-
return True, 1.0, 1.0, 1.0, 1.0
|
| 94 |
-
inter = pred & gold; union = pred | gold
|
| 95 |
-
exact = (sorted(pred) == sorted(gold))
|
| 96 |
-
precision = (len(inter) / (len(pred) if pred else 1e-9))
|
| 97 |
-
recall = (len(inter) / (len(gold) if gold else 1e-9))
|
| 98 |
-
f1 = 0.0 if len(inter) == 0 else 2*len(inter) / (len(pred)+len(gold)+1e-9)
|
| 99 |
-
hamming = (len(inter) / (len(union) if union else 1e-9))
|
| 100 |
-
return exact, precision, recall, f1, hamming
|
| 101 |
-
|
| 102 |
-
def ubs_score_one(true_labels, pred_labels) -> float:
|
| 103 |
-
tset = [l for l in (true_labels or []) if l in LABEL_TO_IDX]
|
| 104 |
-
pset = [l for l in (pred_labels or []) if l in LABEL_TO_IDX]
|
| 105 |
-
n_labels = len(ALLOWED_LABELS)
|
| 106 |
-
tpos = set(tset); ppos = set(pset)
|
| 107 |
-
fn = sum(1 for l in ALLOWED_LABELS if (l in tpos and l not in ppos))
|
| 108 |
-
fp = sum(1 for l in ALLOWED_LABELS if (l not in tpos and l in ppos))
|
| 109 |
-
weighted = FN_PENALTY*fn + FP_PENALTY*fp
|
| 110 |
-
t_count = len(tpos)
|
| 111 |
-
max_err = FN_PENALTY*t_count + FP_PENALTY*(n_labels - t_count)
|
| 112 |
-
score = 1.0 if max_err == 0 else (1.0 - (weighted / max_err))
|
| 113 |
-
return float(max(0.0, min(1.0, score)))
|
| 114 |
-
|
| 115 |
-
# ========= Lightweight preprocessing =========
|
| 116 |
-
EMAIL_RX = re.compile(r'\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b', re.I)
|
| 117 |
-
TIME_RX = re.compile(r'\b(\d{1,2}:\d{2}\b|\b\d{1,2}\s?(am|pm)\b|\bafternoon\b|\bmorning\b|\bevening\b)', re.I)
|
| 118 |
-
DATE_RX = re.compile(r'\b(jan|feb|mar|apr|may|jun|jul|aug|sep|sept|oct|nov|dec)\b|\b\d{1,2}[/-]\d{1,2}([/-]\d{2,4})?\b|\b20\d{2}\b', re.I)
|
| 119 |
-
MEET_RX = re.compile(r'\b(meet(ing)?|call|appointment|schedule|invite|agenda|online|in[- ]?person|phone|zoom|teams)\b', re.I)
|
| 120 |
-
MODAL_RX = re.compile(r'\b(online|in[- ]?person|phone|zoom|teams)\b', re.I)
|
| 121 |
-
SMALLTALK_RX = re.compile(r'^\s*(user|advisor):\s*(thanks( you)?|thank you|anything else|have a great day|you too)\b', re.I)
|
| 122 |
-
|
| 123 |
-
TYPO_FIXES = [
|
| 124 |
-
(re.compile(r'\bschedulin\s*g\b', re.I), 'scheduling'),
|
| 125 |
-
(re.compile(r'\beeting\b', re.I), 'meeting'),
|
| 126 |
-
(re.compile(r'\bdi?i?gtal\b', re.I), 'digital'),
|
| 127 |
-
(re.compile(r'\bdigi\s+tal\b', re.I), 'digital'),
|
| 128 |
-
(re.compile(r'\bspread\s*sheet\b', re.I), 'spreadsheet'),
|
| 129 |
-
(re.compile(r'\bseats\b', re.I), 'sheets'),
|
| 130 |
-
(re.compile(r'\bver(s|z)ion meters\b', re.I), 'version metrics'),
|
| 131 |
-
]
|
| 132 |
-
|
| 133 |
-
def normalize_text(text: str, fix_typos: bool = True) -> str:
|
| 134 |
-
t = text.replace('\r\n', '\n')
|
| 135 |
-
t = re.sub(r'^\s*Speaker\s*1\s*:\s*', 'USER: ', t, flags=re.I | re.M)
|
| 136 |
-
t = re.sub(r'^\s*Speaker\s*2\s*:\s*', 'ADVISOR: ', t, flags=re.I | re.M)
|
| 137 |
-
t = re.sub(r'[ \t]+', ' ', t)
|
| 138 |
-
t = re.sub(r'\n{3,}', '\n\n', t)
|
| 139 |
-
if fix_typos:
|
| 140 |
-
for rx, rep in TYPO_FIXES:
|
| 141 |
-
t = rx.sub(rep, t)
|
| 142 |
-
return t.strip()
|
| 143 |
-
|
| 144 |
-
def extract_cues(text: str):
|
| 145 |
-
emails = EMAIL_RX.findall(text)
|
| 146 |
-
email_new, email_old = (emails[-1], emails[-2]) if len(emails)>=2 else ((emails[-1], None) if emails else (None, None))
|
| 147 |
-
has_time = bool(TIME_RX.search(text))
|
| 148 |
-
has_date = bool(DATE_RX.search(text))
|
| 149 |
-
has_meet = bool(MEET_RX.search(text))
|
| 150 |
-
modality = None
|
| 151 |
-
m = MODAL_RX.search(text)
|
| 152 |
-
if m:
|
| 153 |
-
modality = m.group(0).upper().replace('IN PERSON','IN_PERSON').replace('IN-PERSON','IN_PERSON')
|
| 154 |
-
meeting_confirmed = (has_meet and (has_time or has_date))
|
| 155 |
-
tm = TIME_RX.search(text)
|
| 156 |
-
norm_tm = tm.group(0) if tm else None
|
| 157 |
-
return {
|
| 158 |
-
"email_new": email_new,
|
| 159 |
-
"email_old": email_old,
|
| 160 |
-
"contact_pref": "EMAIL" if email_new else None,
|
| 161 |
-
"meeting_time_fragment": norm_tm,
|
| 162 |
-
"meeting_modality": modality,
|
| 163 |
-
"meeting_confirmed": meeting_confirmed
|
| 164 |
-
}
|
| 165 |
-
|
| 166 |
-
def build_cues_header(cues: dict) -> str:
|
| 167 |
-
has_any = any([cues.get("email_new"), cues.get("email_old"), cues.get("contact_pref"), cues.get("meeting_confirmed")])
|
| 168 |
-
if not has_any:
|
| 169 |
-
return ""
|
| 170 |
-
lines = ["[DETECTED_CUES]"]
|
| 171 |
-
if cues.get("email_new"): lines.append(f"EMAIL_NEW: {cues['email_new']}")
|
| 172 |
-
if cues.get("email_old"): lines.append(f"EMAIL_OLD: {cues['email_old']}")
|
| 173 |
-
if cues.get("contact_pref"): lines.append(f"CONTACT_PREF: {cues['contact_pref']}")
|
| 174 |
-
if cues.get("meeting_confirmed"):
|
| 175 |
-
mod = cues.get("meeting_modality") or ""
|
| 176 |
-
tm = cues.get("meeting_time_fragment") or ""
|
| 177 |
-
lines.append(f"MEETING: {(tm + ' ' + mod).strip()} CONFIRMED")
|
| 178 |
-
lines.append("[/DETECTED_CUES]")
|
| 179 |
-
return "\n".join(lines)
|
| 180 |
-
|
| 181 |
-
def find_cue_lines(lines):
|
| 182 |
-
idx = set()
|
| 183 |
-
for i, ln in enumerate(lines):
|
| 184 |
-
if EMAIL_RX.search(ln) or (MEET_RX.search(ln) and (TIME_RX.search(ln) or DATE_RX.search(ln))):
|
| 185 |
-
idx.add(i)
|
| 186 |
-
return sorted(idx)
|
| 187 |
-
|
| 188 |
-
def prune_by_window(lines, cue_idx, window=3, strip_smalltalk=False):
|
| 189 |
-
n = len(lines); keep = set()
|
| 190 |
-
for k in cue_idx:
|
| 191 |
-
lo, hi = max(0, k-window), min(n-1, k+window)
|
| 192 |
-
keep.update(range(lo,hi+1))
|
| 193 |
-
out=[]
|
| 194 |
-
for i, ln in enumerate(lines):
|
| 195 |
-
if i in keep:
|
| 196 |
-
if strip_smalltalk and SMALLTALK_RX.search(ln): continue
|
| 197 |
-
out.append(ln)
|
| 198 |
-
return out
|
| 199 |
-
|
| 200 |
-
def shrink_to_token_cap_by_lines(text: str, soft_cap_tokens: int, tokenizer,
|
| 201 |
-
min_lines_keep: int = 30,
|
| 202 |
-
apply_only_if_ratio: float = 1.15) -> str:
|
| 203 |
-
ids = tokenizer(text, return_tensors=None, add_special_tokens=False).input_ids
|
| 204 |
-
est = len(ids)
|
| 205 |
-
threshold = int(soft_cap_tokens * apply_only_if_ratio)
|
| 206 |
-
if est <= threshold: return text
|
| 207 |
-
parts = text.splitlines()
|
| 208 |
-
if len(parts) <= min_lines_keep: return text
|
| 209 |
-
|
| 210 |
-
keep_flags=[]
|
| 211 |
-
for ln in parts:
|
| 212 |
-
is_header = ln.startswith("[DETECTED_CUES]") or ln.startswith("[/DETECTED_CUES]") \
|
| 213 |
-
or ln.startswith("EMAIL_") or ln.startswith("CONTACT_") or ln.startswith("MEETING:")
|
| 214 |
-
is_cue = bool(EMAIL_RX.search(ln) or MEET_RX.search(ln) or DATE_RX.search(ln) or TIME_RX.search(ln))
|
| 215 |
-
keep_flags.append(is_header or is_cue)
|
| 216 |
-
|
| 217 |
-
pruned = [ln for ln, keep in zip(parts, keep_flags) if keep]
|
| 218 |
-
if len(pruned) < min_lines_keep:
|
| 219 |
-
pad_needed = min_lines_keep - len(pruned)
|
| 220 |
-
non_cue_lines = [ln for ln, keep in zip(parts, keep_flags) if not keep]
|
| 221 |
-
pruned = pruned + non_cue_lines[:pad_needed]
|
| 222 |
-
|
| 223 |
-
candidate = "\n".join(pruned)
|
| 224 |
-
cand_tokens = len(tokenizer(candidate, return_tensors=None, add_special_tokens=False).input_ids)
|
| 225 |
-
if cand_tokens > threshold:
|
| 226 |
-
mid = len(parts)//2
|
| 227 |
-
half = max(min_lines_keep//2, 50)
|
| 228 |
-
slice_parts = parts[max(0, mid-half): min(len(parts), mid+half)]
|
| 229 |
-
candidate2 = "\n".join(slice_parts)
|
| 230 |
-
candidate2_tokens = len(tokenizer(candidate2, return_tensors=None, add_special_tokens=False).input_ids)
|
| 231 |
-
candidate = candidate if cand_tokens <= candidate2_tokens else candidate2
|
| 232 |
-
|
| 233 |
-
if len(candidate.splitlines()) < min_lines_keep: return text
|
| 234 |
-
return candidate
|
| 235 |
-
|
| 236 |
-
def enforce_rules(labels, transcript_text):
|
| 237 |
-
labels = set(labels or [])
|
| 238 |
-
if (TIME_RX.search(transcript_text) or DATE_RX.search(transcript_text)) and MEET_RX.search(transcript_text):
|
| 239 |
-
labels.add("schedule_meeting"); labels.discard("plan_contact")
|
| 240 |
-
if EMAIL_RX.search(transcript_text) and re.search(r'\b(update|new|set|change|confirm(ed)?|for all communication)\b', transcript_text, re.I):
|
| 241 |
-
labels.add("update_contact_info_non_postal")
|
| 242 |
-
kyc_rx = re.compile(r'\b(kyc|aml|compliance|employer|occupation|purpose of (relationship|account)|source of (wealth|funds)|net worth|total assets)\b', re.I)
|
| 243 |
-
if "update_kyc_activity" in labels and not kyc_rx.search(transcript_text):
|
| 244 |
-
labels.discard("update_kyc_activity")
|
| 245 |
-
return sorted(labels)
|
| 246 |
-
|
| 247 |
-
# ========= HF model wrapper =========
|
| 248 |
class HFModel:
|
| 249 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
self.repo_id = repo_id
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 252 |
-
|
|
|
|
|
|
|
|
|
|
| 253 |
)
|
| 254 |
-
torch_dtype = {"bfloat16": torch.bfloat16, "float16": torch.float16, "float32": torch.float32}.get(dtype, torch.bfloat16)
|
| 255 |
|
|
|
|
| 256 |
self.model = None
|
| 257 |
-
if load_4bit:
|
| 258 |
try:
|
| 259 |
-
|
| 260 |
-
load_in_4bit=True,
|
| 261 |
-
|
|
|
|
|
|
|
| 262 |
)
|
| 263 |
self.model = AutoModelForCausalLM.from_pretrained(
|
| 264 |
-
|
| 265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
)
|
| 267 |
except Exception as e:
|
| 268 |
-
print(f"[WARN] 4-bit load failed for {repo_id}: {e}\
|
|
|
|
|
|
|
| 269 |
if self.model is None:
|
| 270 |
self.model = AutoModelForCausalLM.from_pretrained(
|
| 271 |
-
|
| 272 |
-
|
|
|
|
|
|
|
|
|
|
| 273 |
)
|
| 274 |
|
|
|
|
| 275 |
self.max_context = getattr(self.model.config, "max_position_embeddings", None) \
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
def
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
|
| 287 |
@torch.inference_mode()
|
| 288 |
-
def generate_json(self,
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
)
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
#
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
return lat, txt, prmpt, token_seen
|
| 316 |
-
|
| 317 |
-
@spaces.GPU(duration=15, secrets=["HF_TOKEN"])
|
| 318 |
-
def gpu_check_token():
|
| 319 |
-
return bool(os.getenv("HF_TOKEN"))
|
| 320 |
-
|
| 321 |
-
# ========= ZIP helpers =========
|
| 322 |
-
def _read_zip_bytes(dataset_zip: Union[bytes, str, dict, None]) -> bytes:
|
| 323 |
-
if dataset_zip is None: raise ValueError("No ZIP provided")
|
| 324 |
-
if isinstance(dataset_zip, bytes): return dataset_zip
|
| 325 |
-
if isinstance(dataset_zip, str):
|
| 326 |
-
with open(dataset_zip, "rb") as f: return f.read()
|
| 327 |
-
if isinstance(dataset_zip, dict) and "path" in dataset_zip:
|
| 328 |
-
with open(dataset_zip["path"], "rb") as f: return f.read()
|
| 329 |
-
path = getattr(dataset_zip, "name", None)
|
| 330 |
-
if path and os.path.exists(path):
|
| 331 |
-
with open(path, "rb") as f: return f.read()
|
| 332 |
-
raise ValueError("Unsupported file object from Gradio")
|
| 333 |
-
|
| 334 |
-
def parse_zip(zip_bytes: bytes) -> Dict[str, Tuple[str, List[str]]]:
|
| 335 |
-
zf = zipfile.ZipFile(io.BytesIO(zip_bytes))
|
| 336 |
-
samples = {}
|
| 337 |
-
for n in zf.namelist():
|
| 338 |
-
p = Path(n)
|
| 339 |
-
if p.suffix.lower() == ".txt":
|
| 340 |
-
samples.setdefault(p.stem, ["", []])[0] = zf.read(n).decode("utf-8", "replace")
|
| 341 |
-
elif p.suffix.lower() == ".json":
|
| 342 |
try:
|
| 343 |
-
|
| 344 |
except Exception:
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
"Use only from this set: " + json.dumps(ALLOWED_LABELS) + ". "
|
| 354 |
-
"Return JSON only."
|
| 355 |
-
)
|
| 356 |
-
DEFAULT_CONTEXT = (
|
| 357 |
-
"- plan_contact: conversation without a concrete meeting (no date/time)\n"
|
| 358 |
-
"- schedule_meeting: explicit date/time/modality confirmation\n"
|
| 359 |
-
"- update_contact_info_non_postal: changes to email/phone\n"
|
| 360 |
-
"- update_contact_info_postal_address: changes to mailing address\n"
|
| 361 |
-
"- update_kyc_*: KYC updates (activity, purpose, origin of assets, total assets)"
|
| 362 |
-
)
|
| 363 |
-
|
| 364 |
-
# ========= Preprocess + build input =========
|
| 365 |
-
def prepare_input_text(raw_txt: str, soft_cap: int, preprocess: bool, pre_window: int,
|
| 366 |
-
add_cues: bool, strip_smalltalk: bool, tokenizer) -> Tuple[str, int, int]:
|
| 367 |
-
before = len(tokenizer(raw_txt, return_tensors=None, add_special_tokens=False).input_ids)
|
| 368 |
-
proc_text = raw_txt
|
| 369 |
-
if preprocess:
|
| 370 |
-
t_norm = normalize_text(proc_text, fix_typos=True)
|
| 371 |
-
lines = [ln.strip() for ln in t_norm.splitlines() if ln.strip()]
|
| 372 |
-
cue_lines = find_cue_lines(lines)
|
| 373 |
-
if cue_lines:
|
| 374 |
-
kept = prune_by_window(lines, cue_lines, window=pre_window, strip_smalltalk=strip_smalltalk)
|
| 375 |
else:
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 397 |
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
preset_model: str, custom_model: str,
|
| 401 |
-
system_text: str, context_text: str,
|
| 402 |
-
transcript_text: str, transcript_file,
|
| 403 |
-
expected_labels_json,
|
| 404 |
-
soft_cap: int, preprocess: bool, pre_window: int, add_cues: bool, strip_smalltalk: bool,
|
| 405 |
-
load_4bit: bool, dtype: str, trust_remote_code: bool
|
| 406 |
-
):
|
| 407 |
-
repo_id = custom_model.strip() or preset_model.strip()
|
| 408 |
-
if not repo_id:
|
| 409 |
-
return "Please choose a model.", "", "", "", None, None, None, ""
|
| 410 |
-
|
| 411 |
-
txt = (transcript_text or "").strip()
|
| 412 |
-
if transcript_file and hasattr(transcript_file, "name") and os.path.exists(transcript_file.name):
|
| 413 |
-
with open(transcript_file.name, "r", encoding="utf-8", errors="replace") as f:
|
| 414 |
-
txt = f.read()
|
| 415 |
-
if not txt:
|
| 416 |
-
return "Please paste a transcript or upload a .txt file.", "", "", "", None, None, None, ""
|
| 417 |
-
|
| 418 |
-
exp = []
|
| 419 |
-
if expected_labels_json and hasattr(expected_labels_json, "name") and os.path.exists(expected_labels_json.name):
|
| 420 |
-
try:
|
| 421 |
-
with open(expected_labels_json.name, "r", encoding="utf-8", errors="replace") as f:
|
| 422 |
-
exp = _coerce_labels_list(json.load(f))
|
| 423 |
-
except Exception:
|
| 424 |
-
exp = []
|
| 425 |
-
|
| 426 |
-
# tokenizer for preprocessing
|
| 427 |
-
try:
|
| 428 |
-
dummy_tok = AutoTokenizer.from_pretrained(repo_id, use_fast=True, trust_remote_code=trust_remote_code, token=HF_TOKEN)
|
| 429 |
-
except Exception as e:
|
| 430 |
-
msg = (f"Failed to load tokenizer for `{repo_id}`. "
|
| 431 |
-
"If gated, accept license and set HF_TOKEN in Space → Settings → Secrets.\n\nError: " + str(e))
|
| 432 |
-
return msg, "", "", "", None, None, None, banner_text()
|
| 433 |
-
|
| 434 |
-
proc_text, tok_before, tok_after = prepare_input_text(
|
| 435 |
-
txt, soft_cap, preprocess, pre_window, add_cues, strip_smalltalk, dummy_tok
|
| 436 |
-
)
|
| 437 |
-
system = (system_text or DEFAULT_SYSTEM).strip()
|
| 438 |
-
user = (context_text or DEFAULT_CONTEXT).strip() + "\n\nTRANSCRIPT\n" + proc_text.strip()
|
| 439 |
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
)
|
| 444 |
-
except Exception as e:
|
| 445 |
-
msg = (f"Failed to run `{repo_id}`. If gated, accept license and set HF_TOKEN.\n\nError: {e}")
|
| 446 |
-
return msg, "", "", "", None, None, None, banner_text()
|
| 447 |
-
|
| 448 |
-
out = safe_json_load(raw_text)
|
| 449 |
-
pred_labels = enforce_rules(out.get("labels", []), proc_text)
|
| 450 |
-
exact, prec, rec, f1, ham = classic_metrics(pred_labels, exp)
|
| 451 |
-
ubs = ubs_score_one(exp, pred_labels) if exp else None
|
| 452 |
-
|
| 453 |
-
kpi1 = f"**F1**\n\n{f1:.3f}" if exp else "**F1**\n\n—"
|
| 454 |
-
kpi2 = f"**UBS score**\n\n{ubs:.3f}" if ubs is not None else "**UBS score**\n\n—"
|
| 455 |
-
kpi3 = f"**Latency (ms)**\n\n{latency_ms}"
|
| 456 |
-
|
| 457 |
-
zbuf = io.BytesIO()
|
| 458 |
-
with zipfile.ZipFile(zbuf, "w", zipfile.ZIP_DEFLATED) as zout:
|
| 459 |
-
zout.writestr("PREPROCESSED.txt", proc_text)
|
| 460 |
-
zout.writestr("MODEL_OUTPUT.raw.txt", raw_text)
|
| 461 |
-
final_json = {
|
| 462 |
-
"labels": pred_labels,
|
| 463 |
-
"diagnostics": {
|
| 464 |
-
"model_name": repo_id,
|
| 465 |
-
"latency_ms": latency_ms,
|
| 466 |
-
"token_in_est_before": tok_before,
|
| 467 |
-
"token_in_est_after": tok_after,
|
| 468 |
-
"preprocess": preprocess,
|
| 469 |
-
"pre_window": pre_window,
|
| 470 |
-
"pre_add_cues_header": add_cues if preprocess else False,
|
| 471 |
-
"pre_strip_smalltalk": strip_smalltalk if preprocess else False,
|
| 472 |
-
"pre_soft_token_cap": soft_cap if preprocess else None,
|
| 473 |
-
"model_calls": 1
|
| 474 |
-
},
|
| 475 |
-
"evaluation": None if not exp else {
|
| 476 |
-
"exact_match": exact, "precision": prec, "recall": rec,
|
| 477 |
-
"f1": f1, "hamming": ham, "ubs_score": ubs
|
| 478 |
-
}
|
| 479 |
-
}
|
| 480 |
-
zout.writestr("FINAL.json", json.dumps(final_json, ensure_ascii=False, indent=2))
|
| 481 |
-
zbuf.seek(0); zbuf.name = "artifacts_single.zip"
|
| 482 |
-
|
| 483 |
-
row = pd.DataFrame([{
|
| 484 |
-
"model": repo_id,
|
| 485 |
-
"latency_ms": latency_ms,
|
| 486 |
-
"token_before": tok_before,
|
| 487 |
-
"token_after": tok_after,
|
| 488 |
-
"model_calls": 1,
|
| 489 |
-
"pred_labels": json.dumps(pred_labels, ensure_ascii=False),
|
| 490 |
-
"exp_labels": json.dumps(exp, ensure_ascii=False),
|
| 491 |
-
"exact_match": exact if exp else None,
|
| 492 |
-
"precision": round(prec,6) if exp else None,
|
| 493 |
-
"recall": round(rec,6) if exp else None,
|
| 494 |
-
"f1": round(f1,6) if exp else None,
|
| 495 |
-
"hamming": round(ham,6) if exp else None,
|
| 496 |
-
"ubs_score": round(ubs,6) if ubs is not None else None
|
| 497 |
-
}])
|
| 498 |
-
|
| 499 |
-
csv_buf = io.BytesIO(row.to_csv(index=False).encode("utf-8")); csv_buf.name = "results_single.csv"
|
| 500 |
-
|
| 501 |
-
return (
|
| 502 |
-
"Done.",
|
| 503 |
-
kpi1, kpi2, kpi3,
|
| 504 |
-
row, csv_buf, zbuf,
|
| 505 |
-
banner_text(gpu_token_seen)
|
| 506 |
-
)
|
| 507 |
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
soft_cap, preprocess, pre_window, add_cues, strip_smalltalk,
|
| 511 |
-
repeats, max_total_runs, load_4bit, dtype, trust_remote_code):
|
| 512 |
|
| 513 |
-
models = [m for m in (models_list or [])]
|
| 514 |
-
models += [m.strip() for m in (custom_models_str or "").split(",") if m.strip()]
|
| 515 |
-
if not models:
|
| 516 |
-
return pd.DataFrame(), None, None, "Please pick at least one model.", banner_text()
|
| 517 |
|
| 518 |
-
|
| 519 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 520 |
|
|
|
|
| 521 |
try:
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
"median_latency_ms": None,
|
| 550 |
-
"latency_ms": None,
|
| 551 |
-
"token_before": None,
|
| 552 |
-
"token_after": None,
|
| 553 |
-
"model_calls": None,
|
| 554 |
-
"pred_labels": "[]",
|
| 555 |
-
"exp_labels": "[]",
|
| 556 |
-
"exact_match": None,
|
| 557 |
-
"precision": None,
|
| 558 |
-
"recall": None,
|
| 559 |
-
"f1": None,
|
| 560 |
-
"hamming": None,
|
| 561 |
-
"ubs_score": None,
|
| 562 |
-
})
|
| 563 |
-
continue
|
| 564 |
-
|
| 565 |
-
for sample_id, (transcript_text, exp_labels) in samples.items():
|
| 566 |
-
if not transcript_text.strip(): continue
|
| 567 |
-
latencies = []; last_pred = None
|
| 568 |
-
for r in range(1, repeats+1):
|
| 569 |
-
if total_runs >= max_total_runs: break
|
| 570 |
-
proc_text, before_tok, after_tok = prepare_input_text(
|
| 571 |
-
transcript_text, soft_cap, preprocess, pre_window, add_cues, strip_smalltalk, dummy_tok
|
| 572 |
)
|
| 573 |
-
|
| 574 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 575 |
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
total_runs += 1
|
| 585 |
-
continue
|
| 586 |
-
|
| 587 |
-
out = safe_json_load(raw_text)
|
| 588 |
-
pred_labels = enforce_rules(out.get("labels", []), proc_text)
|
| 589 |
-
|
| 590 |
-
exact, prec, rec, f1, ham = classic_metrics(pred_labels, exp_labels)
|
| 591 |
-
ubs = ubs_score_one(exp_labels, pred_labels)
|
| 592 |
-
|
| 593 |
-
rows.append({
|
| 594 |
-
"timestamp": pd.Timestamp.now().isoformat(timespec="seconds"),
|
| 595 |
-
"sample_id": sample_id,
|
| 596 |
-
"model": repo_id,
|
| 597 |
-
"is_summary": False,
|
| 598 |
-
"run_index": r,
|
| 599 |
-
"preprocess": preprocess,
|
| 600 |
-
"pre_window": pre_window,
|
| 601 |
-
"add_cues_header": add_cues,
|
| 602 |
-
"strip_smalltalk": strip_smalltalk,
|
| 603 |
-
"soft_cap": soft_cap,
|
| 604 |
-
"latency_ms": latency_ms,
|
| 605 |
-
"token_before": before_tok,
|
| 606 |
-
"token_after": after_tok,
|
| 607 |
-
"model_calls": 1,
|
| 608 |
-
"pred_labels": json.dumps(pred_labels, ensure_ascii=False),
|
| 609 |
-
"exp_labels": json.dumps(exp_labels, ensure_ascii=False),
|
| 610 |
-
"exact_match": exact,
|
| 611 |
-
"precision": round(prec, 6),
|
| 612 |
-
"recall": round(rec, 6),
|
| 613 |
-
"f1": round(f1, 6),
|
| 614 |
-
"hamming": round(ham, 6),
|
| 615 |
-
"ubs_score": round(ubs, 6),
|
| 616 |
-
})
|
| 617 |
-
|
| 618 |
-
base = f"{repo_id.replace('/','_')}/{sample_id}/pre{int(preprocess)}_win{pre_window}_cues{int(add_cues)}_small{int(strip_smalltalk)}_cap{soft_cap}_r{r}"
|
| 619 |
-
zout.writestr(base + "/PREPROCESSED.txt", proc_text)
|
| 620 |
-
zout.writestr(base + "/MODEL_OUTPUT.raw.txt", raw_text)
|
| 621 |
-
final_json = {
|
| 622 |
-
"labels": pred_labels,
|
| 623 |
-
"diagnostics": {
|
| 624 |
-
"model_name": repo_id,
|
| 625 |
-
"latency_ms": latency_ms,
|
| 626 |
-
"token_in_est_before": before_tok,
|
| 627 |
-
"token_in_est_after": after_tok,
|
| 628 |
-
"preprocess": preprocess,
|
| 629 |
-
"pre_window": pre_window,
|
| 630 |
-
"pre_add_cues_header": add_cues if preprocess else False,
|
| 631 |
-
"pre_strip_smalltalk": strip_smalltalk if preprocess else False,
|
| 632 |
-
"pre_soft_token_cap": soft_cap if preprocess else None,
|
| 633 |
-
"model_calls": 1
|
| 634 |
-
}
|
| 635 |
-
}
|
| 636 |
-
zout.writestr(base + "/FINAL.json", json.dumps(final_json, ensure_ascii=False, indent=2))
|
| 637 |
-
|
| 638 |
-
latencies.append(latency_ms)
|
| 639 |
-
last_pred = pred_labels
|
| 640 |
-
total_runs += 1
|
| 641 |
-
|
| 642 |
-
if latencies:
|
| 643 |
-
med = int(statistics.median(latencies))
|
| 644 |
-
exact, prec, rec, f1, ham = classic_metrics(last_pred, exp_labels) if last_pred is not None else (None,)*5
|
| 645 |
-
ubs = ubs_score_one(exp_labels, last_pred) if last_pred is not None else None
|
| 646 |
-
rows.append({
|
| 647 |
-
"timestamp": pd.Timestamp.now().isoformat(timespec="seconds"),
|
| 648 |
-
"sample_id": sample_id,
|
| 649 |
-
"model": repo_id,
|
| 650 |
-
"is_summary": True,
|
| 651 |
-
"run_index": None,
|
| 652 |
-
"preprocess": preprocess,
|
| 653 |
-
"pre_window": pre_window,
|
| 654 |
-
"add_cues_header": add_cues,
|
| 655 |
-
"strip_smalltalk": strip_smalltalk,
|
| 656 |
-
"soft_cap": soft_cap,
|
| 657 |
-
"median_latency_ms": med,
|
| 658 |
-
"latency_ms": None,
|
| 659 |
-
"token_before": None,
|
| 660 |
-
"token_after": None,
|
| 661 |
-
"model_calls": None,
|
| 662 |
-
"pred_labels": json.dumps(last_pred or [], ensure_ascii=False),
|
| 663 |
-
"exp_labels": json.dumps(exp_labels or [], ensure_ascii=False),
|
| 664 |
-
"exact_match": exact,
|
| 665 |
-
"precision": round(prec, 6) if prec is not None else None,
|
| 666 |
-
"recall": round(rec, 6) if rec is not None else None,
|
| 667 |
-
"f1": round(f1, 6) if f1 is not None else None,
|
| 668 |
-
"hamming": round(ham, 6) if ham is not None else None,
|
| 669 |
-
"ubs_score": round(ubs, 6) if ubs is not None else None,
|
| 670 |
-
})
|
| 671 |
-
|
| 672 |
-
if total_runs >= max_total_runs:
|
| 673 |
-
break
|
| 674 |
-
|
| 675 |
-
zout.close()
|
| 676 |
-
df = pd.DataFrame(rows)
|
| 677 |
-
if df.empty:
|
| 678 |
-
return pd.DataFrame(), None, None, "No runs executed (empty dataset / exceeded cap / gated models).", banner_text(last_gpu_token_seen)
|
| 679 |
-
|
| 680 |
-
csv_pair = ("results.csv", df.to_csv(index=False).encode("utf-8"))
|
| 681 |
-
zip_pair = ("artifacts.zip", all_artifacts.getvalue())
|
| 682 |
-
return df, csv_pair, zip_pair, "Done.", banner_text(last_gpu_token_seen)
|
| 683 |
-
|
| 684 |
-
# ========= UI helpers =========
|
| 685 |
-
OPEN_MODEL_PRESETS = [
|
| 686 |
-
"mistralai/Mistral-7B-Instruct-v0.2",
|
| 687 |
-
"Qwen/Qwen2.5-7B-Instruct",
|
| 688 |
-
"HuggingFaceH4/zephyr-7b-beta",
|
| 689 |
-
"tiiuae/falcon-7b-instruct",
|
| 690 |
-
]
|
| 691 |
-
|
| 692 |
-
def banner_text(gpu_token_seen: bool | None = None) -> str:
|
| 693 |
-
app_seen = bool(HF_TOKEN)
|
| 694 |
-
lines = []
|
| 695 |
-
if not app_seen:
|
| 696 |
-
lines.append("🟡 **HF_TOKEN not detected in App** — gated models will fail unless you set it in **Settings → Variables and secrets**.")
|
| 697 |
-
else:
|
| 698 |
-
lines.append("🟢 **HF_TOKEN detected in App**.")
|
| 699 |
-
if gpu_token_seen is None:
|
| 700 |
-
lines.append("ℹ️ ZeroGPU token status: click **Run** or **Check ZeroGPU token** to verify.")
|
| 701 |
-
else:
|
| 702 |
-
lines.append("🟢 **HF_TOKEN detected inside ZeroGPU job.**" if gpu_token_seen else "🔴 **HF_TOKEN missing inside ZeroGPU job** (add `secrets=[\"HF_TOKEN\"]` to @spaces.GPU).")
|
| 703 |
-
lines.append("✅ Tip: use **Open models** (no license gating): " + ", ".join(OPEN_MODEL_PRESETS))
|
| 704 |
-
return "\n\n".join(lines)
|
| 705 |
-
|
| 706 |
-
# ========= UI (dark red) =========
|
| 707 |
-
DARK_RED_CSS = """
|
| 708 |
-
:root, .gradio-container {
|
| 709 |
-
--color-background: #0b0b0d;
|
| 710 |
-
--color-foreground: #e6e6e6;
|
| 711 |
-
--color-primary: #e11d48;
|
| 712 |
-
--color-secondary: #111216;
|
| 713 |
-
--color-border: #1f2024;
|
| 714 |
-
--color-muted: #9ca3af;
|
| 715 |
-
}
|
| 716 |
-
.gradio-container { background: var(--color-background) !important; color: var(--color-foreground) !important; }
|
| 717 |
-
.gr-box, .gr-panel, .gr-group, .gr-form, .wrap.svelte-1ipelgc {
|
| 718 |
-
background: var(--color-secondary) !important;
|
| 719 |
-
border: 1px solid var(--color-border) !important;
|
| 720 |
-
border-radius: 10px !important;
|
| 721 |
-
}
|
| 722 |
-
button, .gr-button {
|
| 723 |
-
border-radius: 10px !important;
|
| 724 |
-
border: 1px solid var(--color-primary) !important;
|
| 725 |
-
background: linear-gradient(180deg, #b91c1c, #7f1d1d) !important;
|
| 726 |
-
color: white !important;
|
| 727 |
-
}
|
| 728 |
-
.kpi {
|
| 729 |
-
border: 1px solid #e11d48; border-radius: 10px; padding: 12px; text-align: center;
|
| 730 |
-
background: #1a0f10; font-size: 18px;
|
| 731 |
-
}
|
| 732 |
-
"""
|
| 733 |
|
| 734 |
-
|
| 735 |
-
gr.Markdown("## 🟥 From Talk to Task — Batch & Single Task Extraction")
|
| 736 |
-
help_md = (
|
| 737 |
-
"This tool extracts **task labels** from transcripts using Hugging Face models. \n"
|
| 738 |
-
"1) Pick a model (or paste a custom repo id). \n"
|
| 739 |
-
"2) Provide **Instructions** and **Context**, then supply a transcript (single) or a ZIP (batch). \n"
|
| 740 |
-
"3) Adjust parameters (soft token cap, preprocessing). \n"
|
| 741 |
-
"4) Run and review **latency**, **precision/recall/F1**, **UBS score**, and download artifacts."
|
| 742 |
-
)
|
| 743 |
-
gr.Markdown(help_md)
|
| 744 |
-
|
| 745 |
-
# Status banner (token presence info)
|
| 746 |
-
banner = gr.Markdown(banner_text())
|
| 747 |
-
|
| 748 |
-
check_btn = gr.Button("Check ZeroGPU token")
|
| 749 |
-
def _check_token():
|
| 750 |
-
try:
|
| 751 |
-
present = gpu_check_token()
|
| 752 |
-
except Exception:
|
| 753 |
-
present = None
|
| 754 |
-
return banner_text(present)
|
| 755 |
-
check_btn.click(_check_token, outputs=banner)
|
| 756 |
-
|
| 757 |
-
with gr.Tabs():
|
| 758 |
-
# Single
|
| 759 |
-
with gr.TabItem("Single Transcript (default)"):
|
| 760 |
-
with gr.Row():
|
| 761 |
-
with gr.Column():
|
| 762 |
-
preset_model = gr.Dropdown(choices=OPEN_MODEL_PRESETS, value=OPEN_MODEL_PRESETS[0],
|
| 763 |
-
label="Model (Open presets — no gating)")
|
| 764 |
-
custom_model = gr.Textbox(label="Custom model repo id (overrides preset)",
|
| 765 |
-
placeholder="e.g. meta-llama/Meta-Llama-3-8B-Instruct")
|
| 766 |
-
instructions = gr.Textbox(label="Instructions (System)", lines=8, value=DEFAULT_SYSTEM)
|
| 767 |
-
context = gr.Textbox(label="Context (User prefix before transcript)", lines=6, value=DEFAULT_CONTEXT)
|
| 768 |
-
with gr.Column():
|
| 769 |
-
transcript_text = gr.Textbox(label="Paste transcript text", lines=14, placeholder="Paste your transcript here...")
|
| 770 |
-
transcript_file = gr.File(label="...or upload a single transcript .txt", file_types=[".txt"], file_count="single", type="filepath")
|
| 771 |
-
expected_labels_json = gr.File(label="(Optional) Expected labels JSON for metrics", file_types=[".json"], file_count="single", type="filepath")
|
| 772 |
-
|
| 773 |
-
with gr.Row():
|
| 774 |
-
with gr.Column():
|
| 775 |
-
soft_cap_s = gr.Slider(1024, 32768, value=8192, step=512, label="Soft token cap")
|
| 776 |
-
preprocess_s = gr.Checkbox(value=True, label="Enable preprocessing")
|
| 777 |
-
pre_window_s = gr.Slider(0, 6, value=3, step=1, label="Window ± lines around cues")
|
| 778 |
-
add_cues_s = gr.Checkbox(value=True, label="Add cues header")
|
| 779 |
-
strip_smalltalk_s = gr.Checkbox(value=False, label="Strip smalltalk")
|
| 780 |
-
gr.Markdown(explain_params_markdown())
|
| 781 |
-
with gr.Column():
|
| 782 |
-
load_4bit_s = gr.Checkbox(value=False, label="Load in 4-bit (GPU only)")
|
| 783 |
-
dtype_s = gr.Dropdown(choices=["bfloat16","float16","float32"], value="bfloat16", label="Compute dtype")
|
| 784 |
-
trust_remote_code_s = gr.Checkbox(value=True, label="Trust remote code")
|
| 785 |
-
|
| 786 |
-
run_single_btn = gr.Button("Run (Single)")
|
| 787 |
-
kpi1 = gr.Markdown(elem_classes=["kpi"]); kpi2 = gr.Markdown(elem_classes=["kpi"]); kpi3 = gr.Markdown(elem_classes=["kpi"])
|
| 788 |
-
single_table = gr.Dataframe(label="Single run — metrics & diagnostics", interactive=False)
|
| 789 |
-
single_csv = gr.File(label="Download CSV", interactive=False)
|
| 790 |
-
single_zip = gr.File(label="Download Artifacts ZIP", interactive=False)
|
| 791 |
-
single_status = gr.Markdown("")
|
| 792 |
-
|
| 793 |
-
def _run_single(*args):
|
| 794 |
-
status, m1, m2, m3, df, csv_buf, zip_buf, btxt = single_mode(*args)
|
| 795 |
-
return m1 or "", m2 or "", m3 or "", (df if isinstance(df, pd.DataFrame) else pd.DataFrame()), csv_buf, zip_buf, (status or ""), (btxt or banner_text())
|
| 796 |
-
|
| 797 |
-
run_single_btn.click(
|
| 798 |
-
_run_single,
|
| 799 |
-
inputs=[preset_model, custom_model, instructions, context,
|
| 800 |
-
transcript_text, transcript_file, expected_labels_json,
|
| 801 |
-
soft_cap_s, preprocess_s, pre_window_s, add_cues_s, strip_smalltalk_s,
|
| 802 |
-
load_4bit_s, dtype_s, trust_remote_code_s],
|
| 803 |
-
outputs=[kpi1, kpi2, kpi3, single_table, single_csv, single_zip, single_status, banner]
|
| 804 |
-
)
|
| 805 |
|
| 806 |
-
# Batch
|
| 807 |
-
with gr.TabItem("Batch (ZIP of many transcripts)"):
|
| 808 |
-
with gr.Row():
|
| 809 |
-
with gr.Column():
|
| 810 |
-
models_list = gr.Checkboxgroup(
|
| 811 |
-
choices=OPEN_MODEL_PRESETS, value=[OPEN_MODEL_PRESETS[0]],
|
| 812 |
-
label="Models (Open presets — select one or more)"
|
| 813 |
-
)
|
| 814 |
-
custom_models = gr.Textbox(label="Custom model repo ids (comma-separated)",
|
| 815 |
-
placeholder="e.g. meta-llama/Meta-Llama-3-8B-Instruct, Qwen/Qwen2.5-7B-Instruct")
|
| 816 |
-
instructions_b = gr.Textbox(label="Instructions (System)", lines=8, value=DEFAULT_SYSTEM)
|
| 817 |
-
context_b = gr.Textbox(label="Context (User prefix before transcript)", lines=6, value=DEFAULT_CONTEXT)
|
| 818 |
-
with gr.Column():
|
| 819 |
-
dataset_zip = gr.File(
|
| 820 |
-
label="Upload ZIP of transcripts (*.txt) + expected (*.json)",
|
| 821 |
-
file_types=[".zip"], file_count="single", type="filepath"
|
| 822 |
-
)
|
| 823 |
-
gr.Markdown("Zip must contain pairs like `ID.txt` and optional `ID.json` with expected labels (same base filename).")
|
| 824 |
-
|
| 825 |
-
with gr.Row():
|
| 826 |
-
with gr.Column():
|
| 827 |
-
soft_cap = gr.Slider(1024, 32768, value=8192, step=512, label="Soft token cap")
|
| 828 |
-
preprocess = gr.Checkbox(value=True, label="Enable preprocessing")
|
| 829 |
-
pre_window = gr.Slider(0, 6, value=3, step=1, label="Window ± lines around cues")
|
| 830 |
-
add_cues = gr.Checkbox(value=True, label="Add cues header")
|
| 831 |
-
strip_smalltalk = gr.Checkbox(value=False, label="Strip smalltalk")
|
| 832 |
-
gr.Markdown(explain_params_markdown())
|
| 833 |
-
with gr.Column():
|
| 834 |
-
repeats = gr.Slider(1, 6, value=3, step=1, label="Repeats per config")
|
| 835 |
-
max_total_runs = gr.Slider(1, 200, value=40, step=1, label="Max total runs")
|
| 836 |
-
load_4bit = gr.Checkbox(value=False, label="Load in 4-bit (GPU only)")
|
| 837 |
-
dtype = gr.Dropdown(choices=["bfloat16","float16","float32"], value="bfloat16", label="Compute dtype")
|
| 838 |
-
trust_remote_code = gr.Checkbox(value=True, label="Trust remote code")
|
| 839 |
-
|
| 840 |
-
run_btn = gr.Button("Run Batch")
|
| 841 |
-
kpi_b1 = gr.Markdown(elem_classes=["kpi"]); kpi_b2 = gr.Markdown(elem_classes=["kpi"]); kpi_b3 = gr.Markdown(elem_classes=["kpi"])
|
| 842 |
-
table = gr.Dataframe(label="Batch results (per run + summary rows)", interactive=False)
|
| 843 |
-
csv_dl = gr.File(label="Download CSV", interactive=False)
|
| 844 |
-
zip_dl = gr.File(label="Download Artifacts ZIP", interactive=False)
|
| 845 |
-
status = gr.Markdown("")
|
| 846 |
-
|
| 847 |
-
def _run_batch(*args):
|
| 848 |
-
df, csv_pair, zip_pair, msg, btxt = run_batch_ui(*args)
|
| 849 |
-
m1 = m2 = m3 = ""
|
| 850 |
-
if isinstance(df, pd.DataFrame) and not df.empty:
|
| 851 |
-
summaries = df[df["is_summary"] == True]
|
| 852 |
-
if not summaries.empty:
|
| 853 |
-
last = summaries.iloc[-1]
|
| 854 |
-
f1 = last.get("f1"); ubs = last.get("ubs_score"); med = last.get("median_latency_ms")
|
| 855 |
-
m1 = f"**F1 (last summary)**\n\n{f1:.3f}" if pd.notna(f1) else "**F1 (last summary)**\n\n—"
|
| 856 |
-
m2 = f"**UBS (last summary)**\n\n{ubs:.3f}" if pd.notna(ubs) else "**UBS (last summary)**\n\n—"
|
| 857 |
-
m3 = f"**Median latency (ms)**\n\n{int(med) if pd.notna(med) else '—'}"
|
| 858 |
-
csv_buf = zip_buf = None
|
| 859 |
-
if isinstance(csv_pair, tuple):
|
| 860 |
-
name, data = csv_pair; csv_buf = io.BytesIO(data); csv_buf.name = name
|
| 861 |
-
if isinstance(zip_pair, tuple):
|
| 862 |
-
name, data = zip_pair; zip_buf = io.BytesIO(data); zip_buf.name = name
|
| 863 |
-
return m1, m2, m3, (df if isinstance(df, pd.DataFrame) else pd.DataFrame()), csv_buf, zip_buf, (msg or ""), (btxt or banner_text())
|
| 864 |
-
|
| 865 |
-
run_btn.click(
|
| 866 |
-
_run_batch,
|
| 867 |
-
inputs=[models_list, custom_models, instructions_b, context_b, dataset_zip,
|
| 868 |
-
soft_cap, preprocess, pre_window, add_cues, strip_smalltalk,
|
| 869 |
-
repeats, max_total_runs, load_4bit, dtype, trust_remote_code],
|
| 870 |
-
outputs=[kpi_b1, kpi_b2, kpi_b3, table, csv_dl, zip_dl, status, banner]
|
| 871 |
-
)
|
| 872 |
|
| 873 |
-
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
# ---------------------------------------------------------------------------
|
| 3 |
+
# Talk2Task Demo (single-file, Spaces-friendly, robust model loader)
|
| 4 |
+
# - Loads open-source chat/instruct models (default: mistralai/Mistral-7B-Instruct-v0.2)
|
| 5 |
+
# - Pins model files locally via snapshot_download to avoid corrupt/partial shards
|
| 6 |
+
# - Optional 4-bit quant for small GPU / ZeroGPU
|
| 7 |
+
# - Simple "transcript -> actions JSON" generation with guardrails
|
| 8 |
+
# - Compact but well-commented for easy maintenance
|
| 9 |
+
# ---------------------------------------------------------------------------
|
| 10 |
+
|
| 11 |
+
import os
|
| 12 |
+
import sys
|
| 13 |
+
import json
|
| 14 |
+
import time
|
| 15 |
+
import re
|
| 16 |
+
from typing import Dict, Optional, Tuple
|
| 17 |
|
| 18 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
# NOTE: On Spaces, 'spaces' is available. We use the GPU decorator if present.
|
| 21 |
try:
|
| 22 |
+
from spaces import GPU # type: ignore
|
| 23 |
except Exception:
|
| 24 |
+
# Fallback shim if not running on Spaces — decorator becomes a no-op
|
| 25 |
+
def GPU(*args, **kwargs):
|
| 26 |
+
def deco(fn):
|
| 27 |
+
return fn
|
| 28 |
+
return deco
|
| 29 |
+
|
| 30 |
+
import torch
|
| 31 |
+
from transformers import (
|
| 32 |
+
AutoTokenizer,
|
| 33 |
+
AutoModelForCausalLM,
|
| 34 |
+
BitsAndBytesConfig
|
| 35 |
)
|
| 36 |
+
from huggingface_hub import snapshot_download
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
# ------------------------------
|
| 40 |
+
# 1) “Hardcoded revision” strategy
|
| 41 |
+
# ------------------------------
|
| 42 |
+
# We let you "hardcode" a revision per repo in this mapping. If empty/None, we default to "main".
|
| 43 |
+
# Best practice: keep this dict and optionally override via environment variables without editing code.
|
| 44 |
+
# For example, set env var MODEL_REVISION__MISTRALAI_MISTRAL_7B_INSTRUCT_V0_2="<commit-hash>"
|
| 45 |
+
# in the Space's "Variables and secrets".
|
| 46 |
+
PRESET_MODELS: Dict[str, Dict[str, Optional[str]]] = {
|
| 47 |
+
# Key is a human-readable label for the dropdown
|
| 48 |
+
"Mistral 7B Instruct v0.2": {
|
| 49 |
+
"repo_id": "mistralai/Mistral-7B-Instruct-v0.2",
|
| 50 |
+
"revision": None # leave None to use "main" by default (or override via env)
|
| 51 |
+
},
|
| 52 |
+
"Qwen2 7B Instruct": {
|
| 53 |
+
"repo_id": "Qwen/Qwen2-7B-Instruct",
|
| 54 |
+
"revision": None
|
| 55 |
+
},
|
| 56 |
+
"Zephyr 7B Beta": {
|
| 57 |
+
"repo_id": "HuggingFaceH4/zephyr-7b-beta",
|
| 58 |
+
"revision": None
|
| 59 |
+
},
|
| 60 |
+
"Falcon 7B Instruct": {
|
| 61 |
+
"repo_id": "tiiuae/falcon-7b-instruct",
|
| 62 |
+
"revision": None
|
| 63 |
+
},
|
| 64 |
+
}
|
| 65 |
|
| 66 |
+
# You can add/replace presets above. The loader below will:
|
| 67 |
+
# - Look up env var MODEL_REVISION__<REPO_ID_SLUG> if set
|
| 68 |
+
# - Else use the dict's "revision"
|
| 69 |
+
# - Else use "main"
|
| 70 |
+
|
| 71 |
+
def _slug_repo_id(repo_id: str) -> str:
|
| 72 |
+
"""Turn 'org/model-name' into 'ORG_MODEL_NAME' for clean env var keys."""
|
| 73 |
+
return re.sub(r"[^A-Za-z0-9]", "_", repo_id).upper()
|
| 74 |
+
|
| 75 |
+
def resolve_revision(repo_id: str, default_revision: Optional[str]) -> str:
|
| 76 |
+
"""
|
| 77 |
+
Priority order for revision:
|
| 78 |
+
1) Env var MODEL_REVISION__<ORG_MODEL_SLUG>
|
| 79 |
+
2) Given default_revision
|
| 80 |
+
3) Fallback "main"
|
| 81 |
+
"""
|
| 82 |
+
env_key = f"MODEL_REVISION__{_slug_repo_id(repo_id)}"
|
| 83 |
+
env_rev = os.getenv(env_key, "").strip()
|
| 84 |
+
if env_rev:
|
| 85 |
+
return env_rev
|
| 86 |
+
if default_revision and default_revision.strip():
|
| 87 |
+
return default_revision.strip()
|
| 88 |
+
return "main"
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
# ------------------------------
|
| 92 |
+
# 2) Space/Runtime-safe defaults
|
| 93 |
+
# ------------------------------
|
| 94 |
+
# Use the persistent storage on Spaces so model files survive restarts.
|
| 95 |
+
os.environ.setdefault("HF_HOME", "/data/.cache/huggingface")
|
| 96 |
+
|
| 97 |
+
# Optional token if you plan to use gated/private models in future.
|
| 98 |
+
HF_TOKEN = os.getenv("HF_TOKEN", None)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
# ------------------------------
|
| 102 |
+
# 3) Minimal model wrapper with caching
|
| 103 |
+
# ------------------------------
|
| 104 |
+
MODEL_CACHE: Dict[Tuple[str, bool, str, bool, str], "HFModel"] = {}
|
| 105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
class HFModel:
|
| 107 |
+
"""
|
| 108 |
+
A small helper that:
|
| 109 |
+
- Downloads the full model snapshot at a specific *pinned* revision into the HF cache
|
| 110 |
+
- Loads tokenizer and model (optionally 4-bit)
|
| 111 |
+
- Exposes a simple generate_json() tailored for "Talk2Task" style outputs
|
| 112 |
+
"""
|
| 113 |
+
|
| 114 |
+
def __init__(self,
|
| 115 |
+
repo_id: str,
|
| 116 |
+
revision: str,
|
| 117 |
+
load_4bit: bool = True,
|
| 118 |
+
dtype_str: str = "bfloat16",
|
| 119 |
+
trust_remote_code: bool = True):
|
| 120 |
self.repo_id = repo_id
|
| 121 |
+
self.revision = revision
|
| 122 |
+
self.load_4bit = bool(load_4bit)
|
| 123 |
+
self.trust_remote_code = bool(trust_remote_code)
|
| 124 |
+
|
| 125 |
+
# Map dtype string to torch dtype (default to bfloat16 if unknown)
|
| 126 |
+
self.torch_dtype = {
|
| 127 |
+
"bfloat16": torch.bfloat16,
|
| 128 |
+
"float16": torch.float16,
|
| 129 |
+
"float32": torch.float32
|
| 130 |
+
}.get(dtype_str, torch.bfloat16)
|
| 131 |
+
|
| 132 |
+
# 3a) Materialize a clean local copy of the exact revision (no flaky shard streaming)
|
| 133 |
+
# 'allow_patterns' narrows downloads to typical files we need.
|
| 134 |
+
self.local_dir = snapshot_download(
|
| 135 |
+
repo_id=self.repo_id,
|
| 136 |
+
revision=self.revision,
|
| 137 |
+
allow_patterns=[
|
| 138 |
+
"*.json", "*.safetensors", "*.bin", "*.model",
|
| 139 |
+
"tokenizer.*", "config.json", "generation_config.json", "*.py"
|
| 140 |
+
],
|
| 141 |
+
resume_download=True,
|
| 142 |
+
local_dir=None, # keep in HF cache path
|
| 143 |
+
local_dir_use_symlinks=False,
|
| 144 |
+
token=HF_TOKEN,
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
# 3b) Load tokenizer
|
| 148 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 149 |
+
self.local_dir,
|
| 150 |
+
use_fast=True,
|
| 151 |
+
trust_remote_code=self.trust_remote_code,
|
| 152 |
+
token=HF_TOKEN,
|
| 153 |
)
|
|
|
|
| 154 |
|
| 155 |
+
# 3c) Load model (try 4-bit, fall back to normal if unavailable)
|
| 156 |
self.model = None
|
| 157 |
+
if self.load_4bit:
|
| 158 |
try:
|
| 159 |
+
qconf = BitsAndBytesConfig(
|
| 160 |
+
load_in_4bit=True,
|
| 161 |
+
bnb_4bit_use_double_quant=True,
|
| 162 |
+
bnb_4bit_quant_type="nf4",
|
| 163 |
+
bnb_4bit_compute_dtype=self.torch_dtype,
|
| 164 |
)
|
| 165 |
self.model = AutoModelForCausalLM.from_pretrained(
|
| 166 |
+
self.local_dir,
|
| 167 |
+
device_map="auto",
|
| 168 |
+
trust_remote_code=self.trust_remote_code,
|
| 169 |
+
quantization_config=qconf,
|
| 170 |
+
torch_dtype=self.torch_dtype,
|
| 171 |
+
token=HF_TOKEN,
|
| 172 |
)
|
| 173 |
except Exception as e:
|
| 174 |
+
print(f"[WARN] 4-bit load failed for {self.repo_id}@{self.revision}: {e}\n"
|
| 175 |
+
f"Falling back to standard load...", file=sys.stderr)
|
| 176 |
+
|
| 177 |
if self.model is None:
|
| 178 |
self.model = AutoModelForCausalLM.from_pretrained(
|
| 179 |
+
self.local_dir,
|
| 180 |
+
device_map="auto",
|
| 181 |
+
trust_remote_code=self.trust_remote_code,
|
| 182 |
+
torch_dtype=self.torch_dtype,
|
| 183 |
+
token=HF_TOKEN,
|
| 184 |
)
|
| 185 |
|
| 186 |
+
# Useful to bound inputs for very long transcripts
|
| 187 |
self.max_context = getattr(self.model.config, "max_position_embeddings", None) \
|
| 188 |
+
or getattr(self.model.config, "max_sequence_length", None) or 8192
|
| 189 |
+
|
| 190 |
+
def _chat_prompt(self, system_text: str, user_text: str) -> str:
|
| 191 |
+
"""
|
| 192 |
+
Builds a simple chat-style prompt for instruct models.
|
| 193 |
+
Uses a generic format that works decently across Mistral/Qwen/Zephyr/Falcon.
|
| 194 |
+
"""
|
| 195 |
+
# Keep system concise; we’ll ask for strict JSON to simplify parsing.
|
| 196 |
+
sys_part = (system_text or "").strip()
|
| 197 |
+
usr_part = (user_text or "").strip()
|
| 198 |
+
|
| 199 |
+
# A light structure that improves JSON-likeness across models:
|
| 200 |
+
prompt = (
|
| 201 |
+
f"<s>[SYSTEM]\n{sys_part}\n"
|
| 202 |
+
f"[/SYSTEM]\n"
|
| 203 |
+
f"[USER]\n{usr_part}\n[/USER]\n"
|
| 204 |
+
f"[ASSISTANT]\n"
|
| 205 |
+
)
|
| 206 |
+
return prompt
|
| 207 |
|
| 208 |
@torch.inference_mode()
|
| 209 |
+
def generate_json(self,
|
| 210 |
+
system_text: str,
|
| 211 |
+
user_text: str,
|
| 212 |
+
max_new_tokens: int = 256,
|
| 213 |
+
temperature: float = 0.2,
|
| 214 |
+
top_p: float = 0.9) -> Tuple[float, Dict, str]:
|
| 215 |
+
"""
|
| 216 |
+
Run generation and return (latency_secs, parsed_json, raw_prompt).
|
| 217 |
+
The JSON schema we request is:
|
| 218 |
+
{
|
| 219 |
+
"actions": [{"type": "...","details":"..."}],
|
| 220 |
+
"followups": [{"question":"..."}],
|
| 221 |
+
"implied_actions": [{"hypothesis":"..."}]
|
| 222 |
+
}
|
| 223 |
+
"""
|
| 224 |
+
raw_prompt = self._chat_prompt(system_text, user_text)
|
| 225 |
+
|
| 226 |
+
inputs = self.tokenizer(
|
| 227 |
+
raw_prompt,
|
| 228 |
+
return_tensors="pt",
|
| 229 |
+
truncation=True,
|
| 230 |
+
max_length=min(4096, self.max_context - max_new_tokens - 8),
|
| 231 |
+
).to(self.model.device)
|
| 232 |
+
|
| 233 |
+
t0 = time.time()
|
| 234 |
+
output_ids = self.model.generate(
|
| 235 |
+
**inputs,
|
| 236 |
+
max_new_tokens=max_new_tokens,
|
| 237 |
+
do_sample=(temperature > 0),
|
| 238 |
+
temperature=temperature,
|
| 239 |
+
top_p=top_p,
|
| 240 |
+
pad_token_id=self.tokenizer.eos_token_id or 0,
|
| 241 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
| 242 |
)
|
| 243 |
+
latency = time.time() - t0
|
| 244 |
+
|
| 245 |
+
full_text = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 246 |
+
|
| 247 |
+
# Heuristics to extract JSON from the assistant tail
|
| 248 |
+
# 1) Try last {...} block
|
| 249 |
+
maybe_json = None
|
| 250 |
+
m = re.findall(r"\{(?:[^{}]|(?R))*\}", full_text, flags=re.DOTALL)
|
| 251 |
+
if m:
|
| 252 |
+
maybe_json = m[-1]
|
| 253 |
+
else:
|
| 254 |
+
# 2) Attempt bracket capture if model used markdown code fences
|
| 255 |
+
m2 = re.search(r"```(?:json)?\s*(\{.*?\})\s*```", full_text, flags=re.DOTALL | re.IGNORECASE)
|
| 256 |
+
if m2:
|
| 257 |
+
maybe_json = m2.group(1)
|
| 258 |
+
|
| 259 |
+
parsed = {}
|
| 260 |
+
if maybe_json:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
try:
|
| 262 |
+
parsed = json.loads(maybe_json)
|
| 263 |
except Exception:
|
| 264 |
+
# Light cleanup if trailing commas/comments sneak in
|
| 265 |
+
cleaned = re.sub(r"//.*?$", "", maybe_json, flags=re.MULTILINE)
|
| 266 |
+
cleaned = re.sub(r",\s*}", "}", cleaned)
|
| 267 |
+
cleaned = re.sub(r",\s*]", "]", cleaned)
|
| 268 |
+
try:
|
| 269 |
+
parsed = json.loads(cleaned)
|
| 270 |
+
except Exception:
|
| 271 |
+
parsed = {"_raw": full_text.strip()}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
else:
|
| 273 |
+
parsed = {"_raw": full_text.strip()}
|
| 274 |
+
|
| 275 |
+
return latency, parsed, raw_prompt
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
# ------------------------------
|
| 279 |
+
# 4) High-level helpers
|
| 280 |
+
# ------------------------------
|
| 281 |
+
def get_or_load_model(repo_id: str,
|
| 282 |
+
revision: str,
|
| 283 |
+
load_4bit: bool,
|
| 284 |
+
dtype_str: str,
|
| 285 |
+
trust_remote_code: bool) -> HFModel:
|
| 286 |
+
key = (repo_id, bool(load_4bit), dtype_str, bool(trust_remote_code), revision)
|
| 287 |
+
if key not in MODEL_CACHE:
|
| 288 |
+
MODEL_CACHE[key] = HFModel(
|
| 289 |
+
repo_id=repo_id,
|
| 290 |
+
revision=revision,
|
| 291 |
+
load_4bit=load_4bit,
|
| 292 |
+
dtype_str=dtype_str,
|
| 293 |
+
trust_remote_code=trust_remote_code
|
| 294 |
+
)
|
| 295 |
+
return MODEL_CACHE[key]
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
# ------------------------------
|
| 299 |
+
# 5) “Business” prompt
|
| 300 |
+
# ------------------------------
|
| 301 |
+
SYSTEM_PROMPT = """You are an assistant that extracts structured actions from client transcripts.
|
| 302 |
+
Return STRICT JSON with keys: "actions", "followups", "implied_actions".
|
| 303 |
+
- "actions": list of { "type": string, "details": string }
|
| 304 |
+
- "followups": list of { "question": string }
|
| 305 |
+
- "implied_actions": list of { "hypothesis": string }
|
| 306 |
+
NO extra commentary. NO markdown fences. Plain JSON ONLY.
|
| 307 |
+
"""
|
| 308 |
|
| 309 |
+
USER_GUIDE_TEMPLATE = """Transcript:
|
| 310 |
+
{transcript}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 311 |
|
| 312 |
+
Extract concrete "actions" (e.g., "Schedule meeting with John on Friday 3pm CET"; "Send portfolio summary"; "Open a ticket").
|
| 313 |
+
Extract clarifying "followups" as questions for the advisor.
|
| 314 |
+
Infer 1–3 "implied_actions" (what the client might want next).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
|
| 316 |
+
Respond as JSON only.
|
| 317 |
+
"""
|
|
|
|
|
|
|
| 318 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
|
| 320 |
+
# ------------------------------
|
| 321 |
+
# 6) Inference functions (Spaces GPU aware)
|
| 322 |
+
# ------------------------------
|
| 323 |
+
@GPU(duration=180, enable_queue=True) # On Spaces with ZeroGPU/GPU; safe no-op elsewhere
|
| 324 |
+
def run_inference(preset_label: str,
|
| 325 |
+
transcript: str,
|
| 326 |
+
max_new_tokens: int,
|
| 327 |
+
temperature: float,
|
| 328 |
+
top_p: float,
|
| 329 |
+
load_4bit: bool,
|
| 330 |
+
dtype_str: str,
|
| 331 |
+
trust_remote_code: bool) -> Tuple[str, str, str]:
|
| 332 |
+
"""
|
| 333 |
+
Main generation entry:
|
| 334 |
+
- Resolves repo_id + revision
|
| 335 |
+
- Loads (or reuses) a cached HFModel
|
| 336 |
+
- Runs generate_json()
|
| 337 |
+
- Returns pretty JSON, latency, and a minimal prompt echo for debugging
|
| 338 |
+
"""
|
| 339 |
+
if not transcript.strip():
|
| 340 |
+
return "{}", "0.00s", "(no prompt)"
|
| 341 |
+
|
| 342 |
+
# Resolve repo + revision from preset
|
| 343 |
+
preset = PRESET_MODELS.get(preset_label)
|
| 344 |
+
if not preset:
|
| 345 |
+
return json.dumps({"error": f"Unknown preset: {preset_label}"}), "0.00s", "(no prompt)"
|
| 346 |
+
|
| 347 |
+
repo_id = preset["repo_id"] # type: ignore
|
| 348 |
+
revision = resolve_revision(repo_id, preset.get("revision")) # type: ignore
|
| 349 |
+
|
| 350 |
+
# Build user prompt
|
| 351 |
+
user_text = USER_GUIDE_TEMPLATE.format(transcript=transcript.strip())
|
| 352 |
+
|
| 353 |
+
# Load model and run
|
| 354 |
+
model = get_or_load_model(
|
| 355 |
+
repo_id=repo_id,
|
| 356 |
+
revision=revision,
|
| 357 |
+
load_4bit=load_4bit,
|
| 358 |
+
dtype_str=dtype_str,
|
| 359 |
+
trust_remote_code=trust_remote_code
|
| 360 |
+
)
|
| 361 |
+
latency, parsed, prompt = model.generate_json(
|
| 362 |
+
system_text=SYSTEM_PROMPT,
|
| 363 |
+
user_text=user_text,
|
| 364 |
+
max_new_tokens=max_new_tokens,
|
| 365 |
+
temperature=temperature,
|
| 366 |
+
top_p=top_p
|
| 367 |
+
)
|
| 368 |
|
| 369 |
+
# Pretty-print JSON for UI
|
| 370 |
try:
|
| 371 |
+
pretty = json.dumps(parsed, indent=2, ensure_ascii=False)
|
| 372 |
+
except Exception:
|
| 373 |
+
pretty = json.dumps({"_raw": str(parsed)}, indent=2, ensure_ascii=False)
|
| 374 |
+
|
| 375 |
+
return pretty, f"{latency:.2f}s", f"repo={repo_id}@{revision} | dtype={dtype_str} | 4bit={load_4bit}"
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
# ------------------------------
|
| 379 |
+
# 7) Gradio UI
|
| 380 |
+
# ------------------------------
|
| 381 |
+
def build_ui() -> gr.Blocks:
|
| 382 |
+
with gr.Blocks(title="Talk2Task Demo", fill_height=True) as demo:
|
| 383 |
+
gr.Markdown(
|
| 384 |
+
"""
|
| 385 |
+
# Talk2Task Demo
|
| 386 |
+
Paste a short client transcript. The model will extract structured **Actions JSON**.
|
| 387 |
+
- **Model** is pinned via snapshot download for reliability on Spaces.
|
| 388 |
+
- Use the advanced options if you want to try different sampling or 4-bit.
|
| 389 |
+
"""
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
with gr.Row():
|
| 393 |
+
with gr.Column(scale=1):
|
| 394 |
+
preset = gr.Dropdown(
|
| 395 |
+
label="Model preset",
|
| 396 |
+
choices=list(PRESET_MODELS.keys()),
|
| 397 |
+
value="Mistral 7B Instruct v0.2"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 398 |
)
|
| 399 |
+
transcript = gr.Textbox(
|
| 400 |
+
label="Transcript",
|
| 401 |
+
lines=10,
|
| 402 |
+
placeholder="Paste a client conversation or notes here…"
|
| 403 |
+
)
|
| 404 |
+
run_btn = gr.Button("Extract Actions", variant="primary")
|
| 405 |
+
|
| 406 |
+
with gr.Accordion("Advanced", open=False):
|
| 407 |
+
max_new = gr.Slider(64, 512, value=256, step=16, label="Max new tokens")
|
| 408 |
+
temperature = gr.Slider(0.0, 1.5, value=0.2, step=0.05, label="Temperature")
|
| 409 |
+
top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p")
|
| 410 |
+
load_4bit = gr.Checkbox(value=True, label="Load in 4-bit (fallback to full if not available)")
|
| 411 |
+
dtype = gr.Radio(choices=["bfloat16", "float16", "float32"], value="bfloat16", label="Torch dtype")
|
| 412 |
+
trust_rc = gr.Checkbox(value=True, label="trust_remote_code (required by some repos)")
|
| 413 |
+
|
| 414 |
+
with gr.Column(scale=1):
|
| 415 |
+
out_json = gr.Code(label="Actions JSON", language="json", interactive=False)
|
| 416 |
+
with gr.Row():
|
| 417 |
+
latency = gr.Textbox(label="Latency", interactive=False)
|
| 418 |
+
meta = gr.Textbox(label="Model info", interactive=False)
|
| 419 |
+
|
| 420 |
+
# Wire up the click
|
| 421 |
+
run_btn.click(
|
| 422 |
+
fn=run_inference,
|
| 423 |
+
inputs=[preset, transcript, max_new, temperature, top_p, load_4bit, dtype, trust_rc],
|
| 424 |
+
outputs=[out_json, latency, meta]
|
| 425 |
+
)
|
| 426 |
|
| 427 |
+
gr.Markdown(
|
| 428 |
+
"""
|
| 429 |
+
**Tips**
|
| 430 |
+
- To pin a *specific* commit without editing code, set an env var in Space settings like:
|
| 431 |
+
`MODEL_REVISION__MISTRALAI_MISTRAL_7B_INSTRUCT_V0_2 = <commit-hash>`
|
| 432 |
+
- If you later add a gated/private model, set a secret **HF_TOKEN** as well.
|
| 433 |
+
"""
|
| 434 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 435 |
|
| 436 |
+
return demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 437 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 438 |
|
| 439 |
+
if __name__ == "__main__":
|
| 440 |
+
build_ui().launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", "7860")))
|