Spaces:
Sleeping
Sleeping
File size: 43,455 Bytes
9949cc9 55c81fd 9949cc9 55c81fd c99502f 55c81fd 9949cc9 c99502f 55c81fd b80450d 9949cc9 55c81fd c99502f 55c81fd 7a1eb70 55c81fd 7a1eb70 55c81fd 5f0642c 55c81fd c99502f 55c81fd c99502f 9949cc9 55c81fd c99502f 55c81fd 7cd757f 5f0642c 55c81fd 41b65ed 55c81fd 60a93e1 6acd2cc 55c81fd 6acd2cc 55c81fd 41b65ed 55c81fd 41b65ed c99502f 55c81fd c99502f 55c81fd db991b8 55c81fd db991b8 55c81fd db991b8 7cd757f 55c81fd 6acd2cc 55c81fd 7a1eb70 55c81fd 5f0642c 55c81fd 5f0642c 55c81fd 7a1eb70 5f0642c 7a1eb70 55c81fd 7a1eb70 55c81fd 7a1eb70 55c81fd 7a1eb70 55c81fd 7a1eb70 55c81fd c99502f 7a1eb70 55c81fd 7a1eb70 55c81fd 7a1eb70 55c81fd c99502f 55c81fd 5f0642c 55c81fd 5f0642c 55c81fd db991b8 6acd2cc 55c81fd c99502f 55c81fd c99502f 55c81fd c99502f 55c81fd c99502f 55c81fd c99502f 5f0642c 6acd2cc 55c81fd 5f0642c 55c81fd 5f0642c 55c81fd 5f0642c 55c81fd 2c209e6 7cd757f 5f0642c 7cd757f 55c81fd 7cd757f 6acd2cc 55c81fd b80450d 55c81fd b80450d 55c81fd c99502f 41b65ed 55c81fd 5f0642c 55c81fd 6acd2cc 55c81fd c99502f 55c81fd 5f0642c 55c81fd c99502f 55c81fd 5f0642c c99502f 55c81fd c99502f 55c81fd 6acd2cc 55c81fd 5f0642c 55c81fd 7a1eb70 55c81fd 954d97c 55c81fd 5f0642c c99502f 55c81fd 6acd2cc 55c81fd 7cd757f 55c81fd db991b8 55c81fd 5f0642c 55c81fd 7a1eb70 55c81fd 6acd2cc 55c81fd 5f0642c 55c81fd 5f0642c 55c81fd 5f0642c 55c81fd 7a1eb70 55c81fd e372e2c 55c81fd 5f0642c 55c81fd 6acd2cc 55c81fd 5f0642c 55c81fd 62c9ed8 5f0642c 6acd2cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 |
import os
import re
import io
import json
import time
import zipfile
from pathlib import Path
from typing import List, Dict, Any, Tuple, Optional
import numpy as np
import pandas as pd
import gradio as gr
import torch
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
BitsAndBytesConfig,
GenerationConfig,
)
# =========================
# Global config
# =========================
SPACE_CACHE = Path.home() / ".cache" / "huggingface"
SPACE_CACHE.mkdir(parents=True, exist_ok=True)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Force slow tokenizer path by default; avoids Rust tokenizer.json parsing issues
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
os.environ.setdefault("TOKENIZERS_PREFER_FAST", "false")
GEN_CONFIG = GenerationConfig(
temperature=0.0,
top_p=1.0,
do_sample=False,
max_new_tokens=128, # raise if JSON truncates
)
OFFICIAL_LABELS = [
"plan_contact",
"schedule_meeting",
"update_contact_info_non_postal",
"update_contact_info_postal_address",
"update_kyc_activity",
"update_kyc_origin_of_assets",
"update_kyc_purpose_of_businessrelation",
"update_kyc_total_assets",
]
OFFICIAL_LABELS_TEXT = "\n".join(OFFICIAL_LABELS)
# =========================
# Editable defaults (shown in UI)
# =========================
DEFAULT_SYSTEM_INSTRUCTIONS = (
"You extract ACTIONABLE TASKS from client–advisor transcripts. "
"The transcript may be in German, French, Italian, or English. "
"Prioritize RECALL: if a label plausibly applies, include it. "
"Use ONLY the canonical labels provided. "
"Return STRICT JSON only with keys 'labels' and 'tasks'. "
"Each task must include 'label', a brief 'explanation', and a short 'evidence' quote from the transcript."
)
DEFAULT_LABEL_GLOSSARY = {
"plan_contact": "Commitment to contact later (advisor/client will reach out, follow-up promised).",
"schedule_meeting": "Scheduling or confirming a meeting/call/appointment (time/date/slot/virtual).",
"update_contact_info_non_postal": "Change or confirmation of phone/email (non-postal contact details).",
"update_contact_info_postal_address": "Change or confirmation of postal/residential/mailing address.",
"update_kyc_activity": "Change/confirmation of occupation, employment status, or economic activity.",
"update_kyc_origin_of_assets": "Discussion/confirmation of source of funds / origin of assets.",
"update_kyc_purpose_of_businessrelation": "Purpose of the banking relationship/account usage.",
"update_kyc_total_assets": "Discussion/confirmation of total assets/net worth.",
}
# Tiny multilingual fallback rules (optional) to avoid empty outputs
DEFAULT_FALLBACK_CUES = {
"plan_contact": [
r"\b(get|got|will|we'?ll|i'?ll)\s+back to you\b", r"\bfollow\s*up\b", r"\breach out\b", r"\btouch base\b",
r"\bcontact (you|me|us)\b",
r"\bin verbindung setzen\b", r"\brückmeldung\b", r"\bich\s+melde\b|\bwir\s+melden\b", r"\bnachfassen\b",
r"\bje vous recontacte\b|\bnous vous recontacterons\b", r"\bprendre contact\b|\breprendre contact\b",
r"\bla ricontatter[oò]\b|\bci metteremo in contatto\b", r"\btenersi in contatto\b",
],
"schedule_meeting": [
r"\b(let'?s\s+)?meet(ing|s)?\b", r"\bschedule( a)? (call|meeting|appointment)\b",
r"\bbook( a)? (slot|time|meeting)\b", r"\b(next week|tomorrow|this (afternoon|morning|evening))\b",
r"\bconfirm( the)? (time|meeting|appointment)\b",
r"\btermin(e|s)?\b|\bvereinbaren\b|\bansetzen\b|\babstimmen\b|\bbesprechung(en)?\b|\bvirtuell(e|en)?\b",
r"\bnächste(n|r)? woche\b|\b(dienstag|montag|mittwoch|donnerstag|freitag)\b|\bnachmittag|vormittag|morgen\b",
r"\brendez[- ]?vous\b|\bréunion\b|\bfixer\b|\bplanifier\b|\bse rencontrer\b|\bse voir\b",
r"\bla semaine prochaine\b|\bdemain\b|\bcet (après-midi|apres-midi|après midi|apres midi|matin|soir)\b",
r"\bappuntamento\b|\briunione\b|\borganizzare\b|\bprogrammare\b|\bincontrarci\b|\bcalendario\b",
r"\bla prossima settimana\b|\bdomani\b|\b(questo|questa)\s*(pomeriggio|mattina|sera)\b",
],
"update_kyc_origin_of_assets": [
r"\bsource of funds\b|\borigin of assets\b|\bproof of (funds|assets)\b",
r"\bvermögensursprung(e|s)?\b|\bherkunft der mittel\b|\bnachweis\b",
r"\borigine des fonds\b|\borigine du patrimoine\b|\bjustificatif(s)?\b",
r"\borigine dei fondi\b|\borigine del patrimonio\b|\bprova dei fondi\b|\bgiustificativo\b",
],
"update_kyc_activity": [
r"\bemployment status\b|\boccupation\b|\bjob change\b|\bsalary history\b",
r"\bbeschäftigungsstatus\b|\bberuf\b|\bjobwechsel\b|\bgehaltshistorie\b|\btätigkeit\b",
r"\bstatut professionnel\b|\bprofession\b|\bchangement d'emploi\b|\bhistorique salarial\b|\bactivité\b",
r"\bstato occupazionale\b|\bprofessione\b|\bcambio di lavoro\b|\bstoria salariale\b|\battivit[aà]\b",
],
}
# =========================
# Prompt template
# =========================
USER_PROMPT_TEMPLATE = (
"Transcript (may be DE/FR/IT/EN):\n"
"```\n{transcript}\n```\n\n"
"Allowed Labels (canonical; use only these):\n"
"{allowed_labels_list}\n\n"
"Label Glossary (concise semantics):\n"
"{glossary}\n\n"
"Return STRICT JSON ONLY in this exact schema:\n"
'{\n "labels": ["<Label1>", "..."],\n'
' "tasks": [{"label": "<Label1>", "explanation": "<why>", "evidence": "<quote>"}]\n}\n'
)
# =========================
# Utilities
# =========================
def _now_ms() -> int:
return int(time.time() * 1000)
def normalize_labels(labels: List[str]) -> List[str]:
return list(dict.fromkeys([l.strip() for l in labels if isinstance(l, str) and l.strip()]))
def canonicalize_map(allowed: List[str]) -> Dict[str, str]:
return {lab.lower(): lab for lab in allowed}
def robust_json_extract(text: str) -> Dict[str, Any]:
if not text:
return {"labels": [], "tasks": []}
start, end = text.find("{"), text.rfind("}")
candidate = text[start:end+1] if (start != -1 and end != -1 and end > start) else text
try:
return json.loads(candidate)
except Exception:
candidate = re.sub(r",\s*}", "}", candidate)
candidate = re.sub(r",\s*]", "]", candidate)
try:
return json.loads(candidate)
except Exception:
return {"labels": [], "tasks": []}
def restrict_to_allowed(pred: Dict[str, Any], allowed: List[str]) -> Dict[str, Any]:
out = {"labels": [], "tasks": []}
allowed_map = canonicalize_map(allowed)
filt_labels = []
for l in pred.get("labels", []) or []:
k = str(l).strip().lower()
if k in allowed_map:
filt_labels.append(allowed_map[k])
filt_labels = normalize_labels(filt_labels)
filt_tasks = []
for t in pred.get("tasks", []) or []:
if not isinstance(t, dict):
continue
k = str(t.get("label", "")).strip().lower()
if k in allowed_map:
new_t = dict(t); new_t["label"] = allowed_map[k]
new_t = {
"label": new_t["label"],
"explanation": str(new_t.get("explanation", ""))[:300],
"evidence": str(new_t.get("evidence", ""))[:300],
}
filt_tasks.append(new_t)
merged = normalize_labels(list(set(filt_labels) | {tt["label"] for tt in filt_tasks}))
out["labels"] = merged
out["tasks"] = filt_tasks
return out
# =========================
# Pre-processing
# =========================
_DISCLAIMER_PATTERNS = [
r"(?is)^\s*(?:disclaimer|legal notice|confidentiality notice).+?(?:\n{2,}|$)",
r"(?is)^\s*the information contained.+?(?:\n{2,}|$)",
r"(?is)^\s*this message \(including any attachments\).+?(?:\n{2,}|$)",
]
_FOOTER_PATTERNS = [
r"(?is)\n+kind regards[^\n]*\n.*$", r"(?is)\n+best regards[^\n]*\n.*$",
r"(?is)\n+sent from my.*$", r"(?is)\n+ubs ag.*$",
]
_TIMESTAMP_SPEAKER = [
r"\[\d{1,2}:\d{2}(:\d{2})?\]",
r"^\s*(advisor|client|client advisor)\s*:\s*",
r"^\s*(speaker\s*\d+)\s*:\s*",
]
def clean_transcript(text: str) -> str:
if not text:
return text
s = text
# strip speaker/timestamps
lines = []
for ln in s.splitlines():
ln2 = ln
for pat in _TIMESTAMP_SPEAKER:
ln2 = re.sub(pat, "", ln2, flags=re.IGNORECASE)
lines.append(ln2)
s = "\n".join(lines)
# disclaimers (top)
for pat in _DISCLAIMER_PATTERNS:
s = re.sub(pat, "", s).strip()
# footers
for pat in _FOOTER_PATTERNS:
s = re.sub(pat, "", s)
# whitespace tidy
s = re.sub(r"[ \t]+", " ", s)
s = re.sub(r"\n{3,}", "\n\n", s).strip()
return s
def read_text_file_any(file_input) -> str:
if not file_input:
return ""
if isinstance(file_input, (str, Path)):
try:
return Path(file_input).read_text(encoding="utf-8", errors="ignore")
except Exception:
return ""
try:
data = file_input.read()
return data.decode("utf-8", errors="ignore")
except Exception:
return ""
def read_json_file_any(file_input) -> Optional[dict]:
if not file_input:
return None
if isinstance(file_input, (str, Path)):
try:
return json.loads(Path(file_input).read_text(encoding="utf-8", errors="ignore"))
except Exception:
return None
try:
return json.loads(file_input.read().decode("utf-8", errors="ignore"))
except Exception:
return None
def truncate_tokens(tokenizer, text: str, max_tokens: int) -> str:
toks = tokenizer(text, add_special_tokens=False)["input_ids"]
if len(toks) <= max_tokens:
return text
return tokenizer.decode(toks[-max_tokens:], skip_special_tokens=True)
# =========================
# Cache purge for fresh downloads
# =========================
def _purge_repo_from_cache(repo_id: str):
"""Delete cached files of a specific repo to guarantee a fresh download."""
try:
base = SPACE_CACHE
safe = repo_id.replace("/", "--")
for p in base.glob(f"models--{safe}*"):
try:
if p.is_file():
p.unlink()
else:
for sub in sorted(p.rglob("*"), reverse=True):
try:
if sub.is_file() or sub.is_symlink():
sub.unlink()
else:
sub.rmdir()
except Exception:
pass
p.rmdir()
except Exception:
pass
except Exception:
pass
# =========================
# HF model wrapper (robust: slow tokenizer first + load fallbacks)
# =========================
class ModelWrapper:
def __init__(self, repo_id: str, hf_token: Optional[str], load_in_4bit: bool, use_sdpa: bool, force_tok_redownload: bool):
self.repo_id = repo_id
self.hf_token = hf_token
self.load_in_4bit = load_in_4bit
self.use_sdpa = use_sdpa
self.force_tok_redownload = force_tok_redownload
self.tokenizer = None
self.model = None
self.load_path = "uninitialized"
def _load_tokenizer(self):
"""
Prefer the slow (SentencePiece) tokenizer first to avoid Rust tokenizers JSON parsing.
If user asked to force fresh download, purge local cache first.
"""
if self.force_tok_redownload:
_purge_repo_from_cache(self.repo_id)
common = dict(
pretrained_model_name_or_path=self.repo_id,
token=self.hf_token,
cache_dir=str(SPACE_CACHE),
trust_remote_code=True,
local_files_only=False,
force_download=True if self.force_tok_redownload else False,
revision=None,
)
# 1) SLOW PATH FIRST
slow_err = None
tok = None
try:
tok = AutoTokenizer.from_pretrained(use_fast=False, **common)
except Exception as e:
slow_err = e
# 2) If slow somehow failed, try FAST as a last resort
fast_err = None
if tok is None:
try:
tok = AutoTokenizer.from_pretrained(use_fast=True, **common)
except Exception as e:
fast_err = e
if tok is None:
raise RuntimeError(f"Tokenizer failed (slow: {slow_err}) (fast: {fast_err})")
if tok.pad_token is None and tok.eos_token:
tok.pad_token = tok.eos_token
# Tag which path we used
if slow_err is None:
self.load_path = "tok:SLOW"
else:
self.load_path = "tok:FAST"
return tok
def load(self):
qcfg = None
if self.load_in_4bit and DEVICE == "cuda":
qcfg = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
)
tok = self._load_tokenizer()
errors = []
for desc, kwargs in [
("auto_device_no_lowcpu" + ("_sdpa" if (self.use_sdpa and DEVICE=="cuda") else ""),
dict(
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
device_map="auto" if DEVICE == "cuda" else None,
low_cpu_mem_usage=False,
quantization_config=qcfg,
trust_remote_code=True,
cache_dir=str(SPACE_CACHE),
attn_implementation=("sdpa" if (self.use_sdpa and DEVICE == "cuda") else None),
)),
("auto_device_no_sdpa",
dict(
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
device_map="auto" if DEVICE == "cuda" else None,
low_cpu_mem_usage=False,
quantization_config=qcfg,
trust_remote_code=True,
cache_dir=str(SPACE_CACHE),
)),
("cpu_then_to_cuda" if DEVICE == "cuda" else "cpu_only",
dict(
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
device_map=None,
low_cpu_mem_usage=False,
quantization_config=None if DEVICE != "cuda" else qcfg,
trust_remote_code=True,
cache_dir=str(SPACE_CACHE),
)),
]:
try:
mdl = AutoModelForCausalLM.from_pretrained(self.repo_id, token=self.hf_token, **kwargs)
if desc.startswith("cpu_then_to_cuda") and DEVICE == "cuda":
mdl = mdl.to(torch.device("cuda"))
self.tokenizer = tok
self.model = mdl
self.load_path = f"{self.load_path} | {desc}"
return
except Exception as e:
errors.append(f"{desc}: {e}")
raise RuntimeError("All load attempts failed:\n" + "\n".join(errors))
@torch.inference_mode()
def generate(self, system_prompt: str, user_prompt: str) -> str:
if hasattr(self.tokenizer, "apply_chat_template"):
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
]
input_ids = self.tokenizer.apply_chat_template(
messages, tokenize=True, add_generation_prompt=True, return_tensors="pt"
)
input_ids = input_ids.to(self.model.device)
gen_kwargs = dict(
input_ids=input_ids,
generation_config=GEN_CONFIG,
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=self.tokenizer.pad_token_id,
)
else:
enc = self.tokenizer(
f"<s>[SYSTEM]\n{system_prompt}\n[/SYSTEM]\n[USER]\n{user_prompt}\n[/USER]\n",
return_tensors="pt"
).to(self.model.device)
gen_kwargs = dict(
**enc,
generation_config=GEN_CONFIG,
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=self.tokenizer.pad_token_id,
)
with torch.cuda.amp.autocast(enabled=(DEVICE == "cuda")):
out_ids = self.model.generate(**gen_kwargs)
return self.tokenizer.decode(out_ids[0], skip_special_tokens=True)
_MODEL_CACHE: Dict[str, ModelWrapper] = {}
def get_model(repo_id: str, hf_token: Optional[str], load_in_4bit: bool, use_sdpa: bool, force_tok_redownload: bool) -> ModelWrapper:
key = f"{repo_id}::{'4bit' if (load_in_4bit and DEVICE=='cuda') else 'full'}::{'sdpa' if use_sdpa else 'nosdpa'}::{'force' if force_tok_redownload else 'cache'}"
if key not in _MODEL_CACHE:
m = ModelWrapper(repo_id, hf_token, load_in_4bit, use_sdpa, force_tok_redownload)
m.load()
_MODEL_CACHE[key] = m
return _MODEL_CACHE[key]
# =========================
# Evaluation (official weighted score)
# =========================
def evaluate_predictions(y_true: List[List[str]], y_pred: List[List[str]]) -> float:
ALLOWED_LABELS = OFFICIAL_LABELS
LABEL_TO_IDX = {label: idx for idx, label in enumerate(ALLOWED_LABELS)}
def _process_sample_labels(sample_labels: List[str], sample_name: str) -> List[str]:
if not isinstance(sample_labels, list):
raise ValueError(f"{sample_name} must be a list of strings, got {type(sample_labels)}")
seen, uniq = set(), []
for label in sample_labels:
if not isinstance(label, str):
raise ValueError(f"{sample_name} contains non-string: {label} (type: {type(label)})")
if label in seen:
raise ValueError(f"{sample_name} contains duplicate label: '{label}'")
if label not in ALLOWED_LABELS:
raise ValueError(f"{sample_name} contains invalid label: '{label}'. Allowed: {ALLOWED_LABELS}")
seen.add(label); uniq.append(label)
return uniq
if len(y_true) != len(y_pred):
raise ValueError(f"y_true and y_pred must have same length. Got {len(y_true)} vs {len(y_pred)}")
n_samples = len(y_true)
n_labels = len(OFFICIAL_LABELS)
y_true_binary = np.zeros((n_samples, n_labels), dtype=int)
y_pred_binary = np.zeros((n_samples, n_labels), dtype=int)
for i, sample_labels in enumerate(y_true):
for label in _process_sample_labels(sample_labels, f"y_true[{i}]"):
y_true_binary[i, LABEL_TO_IDX[label]] = 1
for i, sample_labels in enumerate(y_pred):
for label in _process_sample_labels(sample_labels, f"y_pred[{i}]"):
y_pred_binary[i, LABEL_TO_IDX[label]] = 1
fn = np.sum((y_true_binary == 1) & (y_pred_binary == 0), axis=1)
fp = np.sum((y_true_binary == 0) & (y_pred_binary == 1), axis=1)
weighted = 2.0 * fn + 1.0 * fp
max_err = 2.0 * np.sum(y_true_binary, axis=1) + 1.0 * (n_labels - np.sum(y_true_binary, axis=1))
per_sample = np.where(max_err > 0, 1.0 - (weighted / max_err), 1.0)
return float(max(0.0, min(1.0, np.mean(per_sample))))
# =========================
# Multilingual regex fallback (optional)
# =========================
def multilingual_fallback(text: str, allowed: List[str], cues: Dict[str, List[str]]) -> Dict[str, Any]:
low = text.lower()
labels, tasks = [], []
for lab in allowed:
for pat in cues.get(lab, []):
m = re.search(pat, low)
if m:
i = m.start()
start = max(0, i - 60); end = min(len(text), i + len(m.group(0)) + 60)
if lab not in labels:
labels.append(lab)
tasks.append({
"label": lab,
"explanation": "Rule hit (multilingual fallback)",
"evidence": text[start:end].strip()
})
break
return {"labels": normalize_labels(labels), "tasks": tasks}
# =========================
# Inference helpers
# =========================
def build_glossary_str(glossary: Dict[str, str], allowed: List[str]) -> str:
return "\n".join([f"- {lab}: {glossary.get(lab, '')}" for lab in allowed])
def warmup_model(model_repo: str, use_4bit: bool, use_sdpa: bool, hf_token: str, force_tok_redownload: bool) -> str:
t0 = _now_ms()
try:
model = get_model(model_repo, (hf_token or "").strip() or None, use_4bit, use_sdpa, force_tok_redownload)
_ = model.generate("Return JSON only.", '{"labels": [], "tasks": []}')
return f"Warm-up complete in {_now_ms() - t0} ms. Load path: {model.load_path}"
except Exception as e:
return f"Warm-up failed: {e}"
def run_single(
transcript_text: str,
transcript_file,
gt_json_text: str,
gt_json_file,
use_cleaning: bool,
use_fallback: bool,
allowed_labels_text: str,
sys_instructions_text: str,
glossary_json_text: str,
fallback_json_text: str,
model_repo: str,
use_4bit: bool,
use_sdpa: bool,
max_input_tokens: int,
hf_token: str,
force_tok_redownload: bool,
) -> Tuple[str, str, str, str, str, str, str, str, str]:
t0 = _now_ms()
raw_text = ""
if transcript_file:
raw_text = read_text_file_any(transcript_file)
raw_text = (raw_text or transcript_text or "").strip()
if not raw_text:
return "", "", "No transcript provided.", "", "", "", "", "", ""
text = clean_transcript(raw_text) if use_cleaning else raw_text
user_allowed = [ln.strip() for ln in (allowed_labels_text or "").splitlines() if ln.strip()]
allowed = normalize_labels(user_allowed or OFFICIAL_LABELS)
try:
sys_instructions = (sys_instructions_text or DEFAULT_SYSTEM_INSTRUCTIONS).strip() or DEFAULT_SYSTEM_INSTRUCTIONS
except Exception:
sys_instructions = DEFAULT_SYSTEM_INSTRUCTIONS
try:
label_glossary = json.loads(glossary_json_text) if glossary_json_text else DEFAULT_LABEL_GLOSSARY
except Exception:
label_glossary = DEFAULT_LABEL_GLOSSARY
try:
fallback_cues = json.loads(fallback_json_text) if fallback_json_text else DEFAULT_FALLBACK_CUES
except Exception:
fallback_cues = DEFAULT_FALLBACK_CUES
try:
model = get_model(model_repo, (hf_token or "").strip() or None, use_4bit, use_sdpa, force_tok_redownload)
except Exception as e:
return "", "", f"Model load failed: {e}", "", "", "", "", "", ""
trunc = truncate_tokens(model.tokenizer, text, max_input_tokens)
glossary_str = build_glossary_str(label_glossary, allowed)
allowed_list_str = "\n".join(f"- {l}" for l in allowed)
user_prompt = USER_PROMPT_TEMPLATE.format(
transcript=trunc,
allowed_labels_list=allowed_list_str,
glossary=glossary_str,
)
transcript_tokens = len(model.tokenizer(trunc, add_special_tokens=False)["input_ids"])
prompt_tokens = len(model.tokenizer(user_prompt, add_special_tokens=False)["input_ids"])
token_info_text = f"Transcript tokens: {transcript_tokens} | Prompt tokens: {prompt_tokens} | Load path: {model.load_path}"
prompt_preview_text = "```\n" + user_prompt[:4000] + ("\n... (truncated)" if len(user_prompt) > 4000 else "") + "\n```"
t1 = _now_ms()
try:
out = model.generate(sys_instructions, user_prompt)
except Exception as e:
return "", "", f"Generation error: {e}", "", "", "", prompt_preview_text, token_info_text, ""
t2 = _now_ms()
parsed = robust_json_extract(out)
filtered = restrict_to_allowed(parsed, allowed)
if use_fallback:
fb = multilingual_fallback(trunc, allowed, fallback_cues)
if fb["labels"]:
merged_labels = sorted(list(set(filtered.get("labels", [])) | set(fb["labels"])))
existing = {tt.get("label") for tt in filtered.get("tasks", [])}
merged_tasks = filtered.get("tasks", []) + [t for t in fb["tasks"] if t["label"] not in existing]
filtered = {"labels": merged_labels, "tasks": merged_tasks}
diag = "\n".join([
f"Device: {DEVICE} (4-bit: {'Yes' if (use_4bit and DEVICE=='cuda') else 'No'})",
f"Model: {model_repo}",
f"Input cleaned: {'Yes' if use_cleaning else 'No'}",
f"Fallback rules: {'Yes' if use_fallback else 'No'}",
f"SDPA attention: {'Yes' if use_sdpa else 'No'}",
f"Tokens (input limit): ≤ {max_input_tokens}",
f"Latency: prep {t1-t0} ms, gen {t2-t1} ms, total {t2-t0} ms",
f"Allowed labels: {', '.join(allowed)}",
])
labs = filtered.get("labels", [])
tasks = filtered.get("tasks", [])
summary = "Detected labels:\n" + ("\n".join(f"- {l}" for l in labs) if labs else "(none)")
if tasks:
summary += "\n\nTasks:\n" + "\n".join(
f"• [{t['label']}] {t.get('explanation','')} | ev: {t.get('evidence','')[:140]}{'…' if len(t.get('evidence',''))>140 else ''}"
for t in tasks
)
else:
summary += "\n\nTasks: (none)"
json_out = json.dumps(filtered, indent=2, ensure_ascii=False)
metrics = ""
if gt_json_file or (gt_json_text and gt_json_text.strip()):
truth_obj = None
if gt_json_file:
truth_obj = read_json_file_any(gt_json_file)
if (not truth_obj) and gt_json_text:
try:
truth_obj = json.loads(gt_json_text)
except Exception:
pass
if isinstance(truth_obj, dict) and isinstance(truth_obj.get("labels"), list):
true_labels = [x for x in truth_obj["labels"] if x in OFFICIAL_LABELS]
pred_labels = labs
try:
score = evaluate_predictions([true_labels], [pred_labels])
tp = len(set(true_labels) & set(pred_labels))
fp = len(set(pred_labels) - set(true_labels))
fn = len(set(true_labels) - set(pred_labels))
recall = tp / (tp + fn) if (tp + fn) else 1.0
precision = tp / (tp + fp) if (tp + fp) else 1.0
f1 = (2 * precision * recall / (precision + recall)) if (precision + recall) else 1.0
metrics = (
f"Weighted score: {score:.3f}\n"
f"Recall: {recall:.3f} | Precision: {precision:.3f} | F1: {f1:.3f}\n"
f"TP={tp} FP={fp} FN={fn}\n"
f"Truth: {', '.join(true_labels)}"
)
except Exception as e:
metrics = f"Scoring error: {e}"
else:
metrics = "Ground truth JSON missing or invalid; expected {'labels': [...]}."
context_preview = "### Label Glossary (used)\n" + "\n".join(f"- {k}: {v}" for k, v in DEFAULT_LABEL_GLOSSARY.items() if k in allowed)
instructions_preview = "```\n" + (sys_instructions_text or DEFAULT_SYSTEM_INSTRUCTIONS) + "\n```"
return summary, json_out, diag, out.strip(), context_preview, instructions_preview, metrics, prompt_preview_text, token_info_text
# =========================
# Batch mode
# =========================
def read_zip_from_path(path: str, exdir: Path) -> List[Path]:
exdir.mkdir(parents=True, exist_ok=True)
with open(path, "rb") as f:
data = f.read()
with zipfile.ZipFile(io.BytesIO(data)) as zf:
zf.extractall(exdir)
return [p for p in exdir.rglob("*") if p.is_file()]
def run_batch(
zip_path,
use_cleaning: bool,
use_fallback: bool,
sys_instructions_text: str,
glossary_json_text: str,
fallback_json_text: str,
model_repo: str,
use_4bit: bool,
use_sdpa: bool,
max_input_tokens: int,
hf_token: str,
force_tok_redownload: bool,
limit_files: int,
) -> Tuple[str, str, pd.DataFrame, str]:
if not zip_path:
return ("No ZIP provided.", "", pd.DataFrame(), "")
try:
sys_instructions = (sys_instructions_text or DEFAULT_SYSTEM_INSTRUCTIONS).strip() or DEFAULT_SYSTEM_INSTRUCTIONS
except Exception:
sys_instructions = DEFAULT_SYSTEM_INSTRUCTIONS
try:
label_glossary = json.loads(glossary_json_text) if glossary_json_text else DEFAULT_LABEL_GLOSSARY
except Exception:
label_glossary = DEFAULT_LABEL_GLOSSARY
try:
fallback_cues = json.loads(fallback_json_text) if fallback_json_text else DEFAULT_FALLBACK_CUES
except Exception:
fallback_cues = DEFAULT_FALLBACK_CUES
work = Path("/tmp/batch")
if work.exists():
for p in sorted(work.rglob("*"), reverse=True):
try: p.unlink()
except Exception: pass
try: work.rmdir()
except Exception: pass
work.mkdir(parents=True, exist_ok=True)
files = read_zip_from_path(zip_path, work)
txts: Dict[str, Path] = {}
gts: Dict[str, Path] = {}
for p in files:
if p.suffix.lower() == ".txt":
txts[p.stem] = p
elif p.suffix.lower() == ".json":
gts[p.stem] = p
stems = sorted(txts.keys())
if limit_files > 0:
stems = stems[:limit_files]
if not stems:
return ("No .txt transcripts found in ZIP.", "", pd.DataFrame(), "")
try:
model = get_model(model_repo, (hf_token or "").strip() or None, use_4bit, use_sdpa, force_tok_redownload)
except Exception as e:
return (f"Model load failed: {e}", "", pd.DataFrame(), "")
allowed = OFFICIAL_LABELS[:]
glossary_str = build_glossary_str(label_glossary, allowed)
allowed_list_str = "\n".join(f"- {l}" for l in allowed)
y_true, y_pred = [], []
rows = []
t_start = _now_ms()
for stem in stems:
raw = txts[stem].read_text(encoding="utf-8", errors="ignore")
text = clean_transcript(raw) if use_cleaning else raw
trunc = truncate_tokens(model.tokenizer, text, max_input_tokens)
user_prompt = USER_PROMPT_TEMPLATE.format(
transcript=trunc,
allowed_labels_list=allowed_list_str,
glossary=glossary_str,
)
t0 = _now_ms()
out = model.generate(sys_instructions, user_prompt)
t1 = _now_ms()
parsed = robust_json_extract(out)
filtered = restrict_to_allowed(parsed, allowed)
if use_fallback:
fb = multilingual_fallback(trunc, allowed, fallback_cues)
if fb["labels"]:
merged_labels = sorted(list(set(filtered.get("labels", [])) | set(fb["labels"])))
existing = {tt.get("label") for tt in filtered.get("tasks", [])}
merged_tasks = filtered.get("tasks", []) + [t for t in fb["tasks"] if t["label"] not in existing]
filtered = {"labels": merged_labels, "tasks": merged_tasks}
pred_labels = filtered.get("labels", [])
y_pred.append(pred_labels)
gt_labels = []
if stem in gts:
try:
gt_obj = json.loads(gts[stem].read_text(encoding="utf-8", errors="ignore"))
if isinstance(gt_obj, dict) and isinstance(gt_obj.get("labels"), list):
gt_labels = [x for x in gt_obj["labels"] if x in OFFICIAL_LABELS]
except Exception:
pass
y_true.append(gt_labels)
gt_set, pr_set = set(gt_labels), set(pred_labels)
tp = sorted(gt_set & pr_set)
fp = sorted(pr_set - gt_set)
fn = sorted(gt_set - pr_set)
rows.append({
"file": stem,
"true_labels": ", ".join(gt_labels),
"pred_labels": ", ".join(pred_labels),
"TP": len(tp), "FP": len(fp), "FN": len(fn),
"gen_ms": t1 - t0
})
have_truth = any(len(v) > 0 for v in y_true)
score = evaluate_predictions(y_true, y_pred) if have_truth else None
df = pd.DataFrame(rows).sort_values(["FN", "FP", "file"])
diag = [
f"Processed files: {len(stems)}",
f"Device: {DEVICE} (4-bit: {'Yes' if (use_4bit and DEVICE=='cuda') else 'No'})",
f"Model: {model_repo}",
f"Fallback rules: {'Yes' if use_fallback else 'No'}",
f"SDPA attention: {'Yes' if use_sdpa else 'No'}",
f"Tokens (input limit): ≤ {max_input_tokens}",
f"Batch time: {_now_ms()-t_start} ms",
]
if have_truth and score is not None:
total_tp = int(df["TP"].sum())
total_fp = int(df["FP"].sum())
total_fn = int(df["FN"].sum())
recall = total_tp / (total_tp + total_fn) if (total_tp + total_fn) else 1.0
precision = total_tp / (total_tp + total_fp) if (total_tp + total_fp) else 1.0
f1 = (2 * precision * recall / (precision + recall)) if (precision + recall) else 1.0
diag += [
f"Official weighted score (0–1): {score:.3f}",
f"Recall: {recall:.3f} | Precision: {precision:.3f} | F1: {f1:.3f}",
f"Total TP={total_tp} FP={total_fp} FN={total_fn}",
]
diag_str = "\n".join(diag)
out_csv = Path("/tmp/batch_results.csv")
df.to_csv(out_csv, index=False, encoding="utf-8")
return ("Batch done.", diag_str, df, str(out_csv))
# =========================
# UI
# =========================
MODEL_CHOICES = [
"swiss-ai/Apertus-8B-Instruct-2509",
"meta-llama/Meta-Llama-3-8B-Instruct",
"mistralai/Mistral-7B-Instruct-v0.3",
]
# White, modern UI (no purple)
custom_css = """
:root { --radius: 14px; }
.gradio-container { font-family: Inter, ui-sans-serif, system-ui; background: #ffffff; color: #111827; }
.card { border: 1px solid #e5e7eb; border-radius: var(--radius); padding: 14px 16px; background: #ffffff; box-shadow: 0 1px 2px rgba(0,0,0,.03); }
.header { font-weight: 700; font-size: 22px; margin-bottom: 4px; color: #0f172a; }
.subtle { color: #475569; font-size: 14px; margin-bottom: 12px; }
hr.sep { border: none; border-top: 1px solid #e5e7eb; margin: 10px 0 16px; }
.gr-button { border-radius: 12px !important; }
a, .prose a { color: #0ea5e9; }
"""
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css, fill_height=True) as demo:
gr.Markdown("<div class='header'>Talk2Task — Multilingual Task Extraction (UBS Challenge)</div>")
gr.Markdown("<div class='subtle'>Single-pass multilingual extraction (DE/FR/IT/EN). Optional rules fallback for recall. Batch evaluation included.</div>")
with gr.Tab("Single transcript"):
with gr.Row():
with gr.Column(scale=3):
gr.Markdown("<div class='card'><div class='header'>Transcript</div>")
file = gr.File(
label="Drag & drop transcript (.txt / .md / .json)",
file_types=[".txt", ".md", ".json"],
type="filepath",
)
text = gr.Textbox(label="Or paste transcript", lines=10, placeholder="Paste transcript in DE/FR/IT/EN…")
gr.Markdown("<hr class='sep'/>")
gr.Markdown("<div class='header'>Ground truth JSON (optional)</div>")
gt_file = gr.File(
label="Upload ground truth JSON (expects {'labels': [...]})",
file_types=[".json"],
type="filepath",
)
gt_text = gr.Textbox(label="Or paste ground truth JSON", lines=6, placeholder='{\"labels\": [\"schedule_meeting\"]}')
gr.Markdown("</div>") # close card
gr.Markdown("<div class='card'><div class='header'>Processing options</div>")
use_cleaning = gr.Checkbox(label="Apply default cleaning (remove disclaimers, timestamps, speakers, footers)", value=True)
use_fallback = gr.Checkbox(label="Enable multilingual fallback rule layer", value=True)
gr.Markdown("</div>")
gr.Markdown("<div class='card'><div class='header'>Allowed labels</div>")
labels_text = gr.Textbox(label="Allowed Labels (one per line)", value=OFFICIAL_LABELS_TEXT, lines=8)
reset_btn = gr.Button("Reset to official labels")
gr.Markdown("</div>")
gr.Markdown("<div class='card'><div class='header'>Editable instructions & context</div>")
sys_instr_tb = gr.Textbox(label="System Instructions (editable)", value=DEFAULT_SYSTEM_INSTRUCTIONS, lines=5)
glossary_tb = gr.Code(label="Label Glossary (JSON; editable)", value=json.dumps(DEFAULT_LABEL_GLOSSARY, indent=2), language="json")
fallback_tb = gr.Code(label="Fallback Cues (Multilingual, JSON; editable)", value=json.dumps(DEFAULT_FALLBACK_CUES, indent=2), language="json")
gr.Markdown("</div>")
with gr.Column(scale=2):
gr.Markdown("<div class='card'><div class='header'>Model & run</div>")
repo = gr.Dropdown(label="Model", choices=MODEL_CHOICES, value=MODEL_CHOICES[0])
use_4bit = gr.Checkbox(label="Use 4-bit (GPU only)", value=True)
use_sdpa = gr.Checkbox(label="Use SDPA attention (faster on many GPUs)", value=True)
force_tok_redownload = gr.Checkbox(label="Force fresh tokenizer download", value=False)
max_tokens = gr.Slider(label="Max input tokens", minimum=1024, maximum=8192, step=512, value=2048)
hf_token = gr.Textbox(label="HF_TOKEN (only for gated models)", type="password", value=os.environ.get("HF_TOKEN",""))
warm_btn = gr.Button("Warm up model (load & compile kernels)")
run_btn = gr.Button("Run Extraction", variant="primary")
gr.Markdown("</div>")
gr.Markdown("<div class='card'><div class='header'>Outputs</div>")
summary = gr.Textbox(label="Summary", lines=12)
json_out = gr.Code(label="Strict JSON Output", language="json")
diag = gr.Textbox(label="Diagnostics", lines=10)
raw = gr.Textbox(label="Raw Model Output", lines=8)
metrics_tb = gr.Textbox(label="Metrics vs Ground Truth (optional)", lines=6)
prompt_preview = gr.Code(label="Prompt preview (user prompt sent)", language="markdown")
token_info = gr.Textbox(label="Token counts (transcript / prompt / load path)", lines=2)
gr.Markdown("</div>")
with gr.Row():
with gr.Column():
with gr.Accordion("Instructions used (system prompt)", open=False):
instr_md = gr.Markdown("```\n" + DEFAULT_SYSTEM_INSTRUCTIONS + "\n```")
with gr.Column():
with gr.Accordion("Context used (glossary)", open=True):
context_md = gr.Markdown("")
# Reset labels
reset_btn.click(fn=lambda: OFFICIAL_LABELS_TEXT, inputs=None, outputs=labels_text)
# Warm-up
warm_btn.click(
fn=warmup_model,
inputs=[repo, use_4bit, use_sdpa, hf_token, force_tok_redownload],
outputs=diag
)
def _pack_context_md(glossary_json, allowed_text):
try:
glossary = json.loads(glossary_json) if glossary_json else DEFAULT_LABEL_GLOSSARY
except Exception:
glossary = DEFAULT_LABEL_GLOSSARY
allowed_list = [ln.strip() for ln in (allowed_text or OFFICIAL_LABELS_TEXT).splitlines() if ln.strip()]
return "### Label Glossary (used)\n" + "\n".join(f"- {k}: {glossary.get(k,'')}" for k in allowed_list)
context_md.value = _pack_context_md(json.dumps(DEFAULT_LABEL_GLOSSARY), OFFICIAL_LABELS_TEXT)
# Run single
run_btn.click(
fn=run_single,
inputs=[
text, file, gt_text, gt_file, use_cleaning, use_fallback,
labels_text, sys_instr_tb, glossary_tb, fallback_tb,
repo, use_4bit, use_sdpa, max_tokens, hf_token, force_tok_redownload
],
outputs=[summary, json_out, diag, raw, context_md, instr_md, metrics_tb, prompt_preview, token_info],
)
with gr.Tab("Batch evaluation"):
with gr.Row():
with gr.Column(scale=3):
gr.Markdown("<div class='card'><div class='header'>ZIP input</div>")
zip_in = gr.File(label="ZIP with transcripts (.txt) and truths (.json)", file_types=[".zip"], type="filepath")
use_cleaning_b = gr.Checkbox(label="Apply default cleaning", value=True)
use_fallback_b = gr.Checkbox(label="Enable multilingual fallback rule layer", value=True)
gr.Markdown("</div>")
with gr.Column(scale=2):
gr.Markdown("<div class='card'><div class='header'>Model & run</div>")
repo_b = gr.Dropdown(label="Model", choices=MODEL_CHOICES, value=MODEL_CHOICES[0])
use_4bit_b = gr.Checkbox(label="Use 4-bit (GPU only)", value=True)
use_sdpa_b = gr.Checkbox(label="Use SDPA attention (faster on many GPUs)", value=True)
force_tok_redownload_b = gr.Checkbox(label="Force fresh tokenizer download", value=False)
max_tokens_b = gr.Slider(label="Max input tokens", minimum=1024, maximum=8192, step=512, value=2048)
hf_token_b = gr.Textbox(label="HF_TOKEN (only for gated models)", type="password", value=os.environ.get("HF_TOKEN",""))
sys_instr_tb_b = gr.Textbox(label="System Instructions (editable for batch)", value=DEFAULT_SYSTEM_INSTRUCTIONS, lines=4)
glossary_tb_b = gr.Code(label="Label Glossary (JSON; editable for batch)", value=json.dumps(DEFAULT_LABEL_GLOSSARY, indent=2), language="json")
fallback_tb_b = gr.Code(label="Fallback Cues (Multilingual, JSON; editable for batch)", value=json.dumps(DEFAULT_FALLBACK_CUES, indent=2), language="json")
limit_files = gr.Slider(label="Process at most N files (0 = all)", minimum=0, maximum=2000, step=10, value=0)
run_batch_btn = gr.Button("Run Batch", variant="primary")
gr.Markdown("</div>")
with gr.Row():
gr.Markdown("<div class='card'><div class='header'>Batch outputs</div>")
status = gr.Textbox(label="Status", lines=1)
diag_b = gr.Textbox(label="Batch diagnostics & metrics", lines=12)
df_out = gr.Dataframe(label="Per-file results (TP/FP/FN, latency)", interactive=False)
csv_out = gr.File(label="Download CSV", interactive=False)
gr.Markdown("</div>")
run_batch_btn.click(
fn=run_batch,
inputs=[
zip_in, use_cleaning_b, use_fallback_b,
sys_instr_tb_b, glossary_tb_b, fallback_tb_b,
repo_b, use_4bit_b, use_sdpa_b, max_tokens_b, hf_token_b, force_tok_redownload_b, limit_files
],
outputs=[status, diag_b, df_out, csv_out],
)
if __name__ == "__main__":
# Optional: print environment info to logs
try:
print("Torch version:", torch.__version__)
print("CUDA available:", torch.cuda.is_available())
if torch.cuda.is_available():
print("CUDA (compiled):", torch.version.cuda)
print("Device:", torch.cuda.get_device_name(0))
except Exception as _:
pass
demo.launch()
|