Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,19 +1,44 @@
|
|
| 1 |
import os
|
| 2 |
import json
|
|
|
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
import torch
|
| 5 |
-
from typing import Optional, Tuple, Dict, Any
|
| 6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# =========================
|
| 9 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
# =========================
|
| 11 |
-
#
|
| 12 |
-
#
|
| 13 |
-
DEFAULT_MODEL_ID = os.environ.get("MODEL_ID", "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
def _has_bnb_and_cuda() -> bool:
|
| 16 |
-
if
|
| 17 |
return False
|
| 18 |
try:
|
| 19 |
import bitsandbytes as _bnb # noqa: F401
|
|
@@ -22,10 +47,9 @@ def _has_bnb_and_cuda() -> bool:
|
|
| 22 |
return False
|
| 23 |
|
| 24 |
USE_BNB = _has_bnb_and_cuda()
|
| 25 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 26 |
|
| 27 |
# =========================
|
| 28 |
-
# Model
|
| 29 |
# =========================
|
| 30 |
_tokenizer: Optional[AutoTokenizer] = None
|
| 31 |
_model: Optional[AutoModelForCausalLM] = None
|
|
@@ -33,8 +57,8 @@ _current_model_id: Optional[str] = None
|
|
| 33 |
|
| 34 |
def load_model(model_id: str) -> Tuple[AutoTokenizer, AutoModelForCausalLM]:
|
| 35 |
"""
|
| 36 |
-
Loads (or reuses) a model/tokenizer.
|
| 37 |
-
|
| 38 |
"""
|
| 39 |
global _tokenizer, _model, _current_model_id
|
| 40 |
|
|
@@ -64,9 +88,9 @@ def load_model(model_id: str) -> Tuple[AutoTokenizer, AutoModelForCausalLM]:
|
|
| 64 |
_tokenizer, _model, _current_model_id = tokenizer, model, model_id
|
| 65 |
return tokenizer, model
|
| 66 |
|
| 67 |
-
#
|
| 68 |
-
# Helpers
|
| 69 |
-
#
|
| 70 |
def read_file(file_obj: Optional[gr.File]) -> Optional[str]:
|
| 71 |
if not file_obj:
|
| 72 |
return None
|
|
@@ -77,20 +101,81 @@ def read_file(file_obj: Optional[gr.File]) -> Optional[str]:
|
|
| 77 |
return None
|
| 78 |
|
| 79 |
def normalize_txt_input(paste_txt: str, upload_file: Optional[gr.File]) -> str:
|
| 80 |
-
|
| 81 |
-
if paste_txt and paste_txt.strip():
|
| 82 |
-
return paste_txt
|
| 83 |
-
return file_text or ""
|
| 84 |
|
| 85 |
def normalize_json_input(paste_json: str, upload_file: Optional[gr.File]) -> str:
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
# =========================
|
| 93 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
# =========================
|
| 95 |
def run_extraction(
|
| 96 |
model_choice: str,
|
|
@@ -104,58 +189,66 @@ def run_extraction(
|
|
| 104 |
max_new_tokens: int,
|
| 105 |
temperature: float,
|
| 106 |
top_p: float,
|
|
|
|
| 107 |
) -> Tuple[str, str, str, str, str]:
|
| 108 |
-
"""
|
| 109 |
-
Wire your real extraction here.
|
| 110 |
-
Returns:
|
| 111 |
-
tasks_out, entities_out, cleaned_out, summary_out, diagnostics
|
| 112 |
-
"""
|
| 113 |
diagnostics_lines = []
|
| 114 |
|
| 115 |
-
# Resolve inputs from
|
| 116 |
input_txt = normalize_txt_input(txt_paste, txt_upload)
|
| 117 |
input_json_raw = normalize_json_input(json_paste, json_upload)
|
| 118 |
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
diagnostics_lines.append(f"Instructions length: {len(instructions_text)} chars")
|
| 122 |
-
diagnostics_lines.append(f"Context length: {len(context_text)} chars")
|
| 123 |
-
diagnostics_lines.append(f"TXT length: {len(input_txt)} chars")
|
| 124 |
-
|
| 125 |
-
# Try parse JSON (optional)
|
| 126 |
parsed_json: Dict[str, Any] = {}
|
|
|
|
| 127 |
if input_json_raw:
|
| 128 |
try:
|
| 129 |
parsed_json = json.loads(input_json_raw)
|
| 130 |
-
|
| 131 |
except Exception as e:
|
| 132 |
diagnostics_lines.append(f"JSON parse error: {e}")
|
| 133 |
|
| 134 |
-
# Load
|
| 135 |
try:
|
| 136 |
tokenizer, model = load_model(model_choice)
|
| 137 |
except Exception as e:
|
| 138 |
-
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
return "", "", "", "", diag
|
| 141 |
|
| 142 |
-
#
|
| 143 |
-
|
|
|
|
| 144 |
user_prompt = (
|
| 145 |
-
"You
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
f"Instructions: {instructions_text}\n"
|
| 147 |
f"Context: {context_text}\n"
|
| 148 |
"----\n"
|
| 149 |
f"TEXT:\n{input_txt[:4000]}\n"
|
| 150 |
"----\n"
|
| 151 |
f"JSON:\n{json.dumps(parsed_json)[:2000]}\n"
|
| 152 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
)
|
|
|
|
| 154 |
|
| 155 |
try:
|
| 156 |
inputs = tokenizer(user_prompt, return_tensors="pt").to(DEVICE)
|
| 157 |
with torch.no_grad():
|
| 158 |
-
outputs =
|
| 159 |
**inputs,
|
| 160 |
max_new_tokens=max_new_tokens,
|
| 161 |
do_sample=True,
|
|
@@ -165,184 +258,195 @@ def run_extraction(
|
|
| 165 |
)
|
| 166 |
full_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 167 |
except Exception as e:
|
| 168 |
-
diag = "\n".join(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
return "", "", "", "", diag
|
| 170 |
|
| 171 |
-
#
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
diagnostics = "\n".join(diagnostics_lines)
|
| 179 |
|
| 180 |
return tasks_out, entities_out, cleaned_out, summary_out, diagnostics
|
| 181 |
|
| 182 |
# =========================
|
| 183 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
# =========================
|
| 185 |
THEME_CSS = """
|
| 186 |
-
/* Global colors: white background, black text */
|
| 187 |
:root {
|
| 188 |
--body-background-fill: #ffffff !important;
|
| 189 |
--body-text-color: #111111 !important;
|
| 190 |
-
--link-text-color: #0b63ce !important;
|
| 191 |
-
--shadow-spread: 0px;
|
| 192 |
-
}
|
| 193 |
-
|
| 194 |
-
/* Ensure all text is readable (black-ish) */
|
| 195 |
-
.gradio-container, .prose, .prose * {
|
| 196 |
-
color: #111111 !important;
|
| 197 |
}
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
label, .tabitem .label-wrap, .wrap .label-wrap {
|
| 201 |
-
color: #0b63ce !important;
|
| 202 |
-
}
|
| 203 |
-
|
| 204 |
-
/* Cards / Boxes */
|
| 205 |
-
.gr-box, .gr-panel, .gr-group, .gr-accordion {
|
| 206 |
-
border: 1px solid #e5e7eb !important; /* light gray border */
|
| 207 |
-
border-radius: 14px !important;
|
| 208 |
-
}
|
| 209 |
-
|
| 210 |
-
/* Red run button */
|
| 211 |
button#run-btn {
|
| 212 |
background: #e11900 !important;
|
| 213 |
-
color: #
|
| 214 |
border: 1px solid #b50f00 !important;
|
| 215 |
}
|
| 216 |
-
button#run-btn:hover {
|
| 217 |
-
filter: brightness(0.95);
|
| 218 |
-
}
|
| 219 |
-
|
| 220 |
-
/* Inputs layout polish */
|
| 221 |
-
.input-card {
|
| 222 |
-
padding: 10px;
|
| 223 |
-
}
|
| 224 |
"""
|
| 225 |
|
|
|
|
|
|
|
|
|
|
| 226 |
def build_interface() -> gr.Blocks:
|
| 227 |
with gr.Blocks(title="Talk2Task Demo", css=THEME_CSS) as demo:
|
| 228 |
-
#
|
| 229 |
with gr.Group():
|
| 230 |
-
gr.Markdown("### Model & Parameters"
|
| 231 |
-
with gr.Row(
|
| 232 |
model_choice = gr.Dropdown(
|
| 233 |
label="Model",
|
| 234 |
-
choices=
|
| 235 |
-
DEFAULT_MODEL_ID,
|
| 236 |
-
"mistralai/Mistral-7B-Instruct-v0.2",
|
| 237 |
-
"meta-llama/Llama-3.1-8B-Instruct", # if accessible
|
| 238 |
-
],
|
| 239 |
value=DEFAULT_MODEL_ID,
|
| 240 |
-
scale=3
|
| 241 |
)
|
| 242 |
params_checked = gr.CheckboxGroup(
|
| 243 |
label="Options",
|
| 244 |
choices=[
|
| 245 |
"Default cleaning",
|
| 246 |
"Remove PII",
|
| 247 |
-
"Allow 4-bit (if available)",
|
| 248 |
"Detect language",
|
|
|
|
| 249 |
],
|
| 250 |
-
value=["Default cleaning"],
|
| 251 |
-
scale=2
|
| 252 |
)
|
| 253 |
with gr.Row():
|
| 254 |
-
|
| 255 |
temperature = gr.Slider(0.0, 1.5, value=0.7, step=0.05, label="Temperature")
|
| 256 |
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
|
| 257 |
-
|
| 258 |
|
| 259 |
-
#
|
| 260 |
-
gr.Markdown("### Input"
|
| 261 |
with gr.Row(equal_height=True):
|
| 262 |
-
with gr.Group(
|
| 263 |
-
gr.Markdown("**TXT Input** (Paste or
|
| 264 |
with gr.Tabs():
|
| 265 |
with gr.TabItem("Paste"):
|
| 266 |
-
txt_paste = gr.TextArea(
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
with gr.TabItem("Drag & Drop"):
|
| 272 |
-
txt_upload = gr.File(
|
| 273 |
-
label="Upload .txt file",
|
| 274 |
-
file_types=[".txt"],
|
| 275 |
-
)
|
| 276 |
-
|
| 277 |
-
with gr.Group(elem_classes=["input-card"]):
|
| 278 |
-
gr.Markdown("**JSON Input** (Paste or Drag & Drop)", elem_id="json-box-title")
|
| 279 |
with gr.Tabs():
|
| 280 |
with gr.TabItem("Paste"):
|
| 281 |
-
json_paste = gr.Code(
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
value="{\n \"example\": true\n}",
|
| 285 |
-
lines=12,
|
| 286 |
-
)
|
| 287 |
-
with gr.TabItem("Drag & Drop"):
|
| 288 |
-
json_upload = gr.File(
|
| 289 |
-
label="Upload .json file",
|
| 290 |
-
file_types=[".json"],
|
| 291 |
-
)
|
| 292 |
-
|
| 293 |
-
# 3) RUN BUTTON (red), then collapsible Instructions & Context
|
| 294 |
-
run_btn = gr.Button("Run Extraction", elem_id="run-btn", variant="primary")
|
| 295 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
with gr.Row():
|
| 297 |
with gr.Accordion("Instructions (editable)", open=False):
|
| 298 |
instructions_text = gr.TextArea(
|
| 299 |
-
label="Instructions",
|
| 300 |
value=(
|
| 301 |
-
"Extract tasks, entities, and a short summary
|
| 302 |
-
"
|
| 303 |
),
|
| 304 |
-
lines=5
|
| 305 |
)
|
| 306 |
with gr.Accordion("Context (editable)", open=False):
|
| 307 |
context_text = gr.TextArea(
|
| 308 |
-
label="Context",
|
| 309 |
value=(
|
| 310 |
-
"
|
| 311 |
-
"
|
| 312 |
),
|
| 313 |
-
lines=5
|
| 314 |
)
|
| 315 |
|
| 316 |
-
#
|
| 317 |
-
gr.Markdown("### Results"
|
| 318 |
with gr.Row(equal_height=True):
|
| 319 |
-
tasks_out = gr.TextArea(label="Tasks", lines=
|
| 320 |
-
entities_out = gr.TextArea(label="Entities", lines=
|
| 321 |
with gr.Row(equal_height=True):
|
| 322 |
-
cleaned_out = gr.TextArea(label="Cleaned Text", lines=
|
| 323 |
-
summary_out = gr.TextArea(label="Summary", lines=
|
|
|
|
|
|
|
|
|
|
| 324 |
|
| 325 |
-
|
| 326 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
|
| 328 |
-
# Wire
|
| 329 |
run_inputs = [
|
| 330 |
model_choice, params_checked, instructions_text, context_text,
|
| 331 |
txt_paste, txt_upload, json_paste, json_upload,
|
| 332 |
-
max_new_tokens, temperature, top_p
|
| 333 |
]
|
| 334 |
run_outputs = [tasks_out, entities_out, cleaned_out, summary_out, diagnostics]
|
| 335 |
-
|
| 336 |
-
run_btn.click(
|
| 337 |
-
fn=run_extraction,
|
| 338 |
-
inputs=run_inputs,
|
| 339 |
-
outputs=run_outputs
|
| 340 |
-
)
|
| 341 |
|
| 342 |
return demo
|
| 343 |
|
| 344 |
demo = build_interface()
|
| 345 |
|
| 346 |
if __name__ == "__main__":
|
| 347 |
-
# Let Gradio/Spaces choose host & port; this keeps local runs easy too.
|
| 348 |
demo.launch()
|
|
|
|
| 1 |
import os
|
| 2 |
import json
|
| 3 |
+
from typing import Optional, Tuple, Dict, Any, List
|
| 4 |
+
|
| 5 |
import gradio as gr
|
| 6 |
import torch
|
|
|
|
| 7 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 8 |
+
from langdetect import detect, DetectorFactory
|
| 9 |
+
|
| 10 |
+
# Make langdetect deterministic
|
| 11 |
+
DetectorFactory.seed = 7
|
| 12 |
|
| 13 |
# =========================
|
| 14 |
+
# Challenge: allowed labels (from UBS repo)
|
| 15 |
+
# =========================
|
| 16 |
+
# Source: GitHub repo "From-Talk-to-Task-Insights-from-Client-Conversations"
|
| 17 |
+
ALLOWED_LABELS = [
|
| 18 |
+
"plan_contact",
|
| 19 |
+
"schedule_meeting",
|
| 20 |
+
"update_contact_info_non_postal",
|
| 21 |
+
"update_contact_info_postal_address",
|
| 22 |
+
"update_kyc_activity",
|
| 23 |
+
"update_kyc_origin_of_assets",
|
| 24 |
+
"update_kyc_purpose_of_businessrelation",
|
| 25 |
+
"update_kyc_total_assets",
|
| 26 |
+
]
|
| 27 |
+
|
| 28 |
# =========================
|
| 29 |
+
# Models / Defaults
|
| 30 |
+
# =========================
|
| 31 |
+
DEFAULT_MODEL_ID = os.environ.get("MODEL_ID", "Apertus/Apertus-8B")
|
| 32 |
+
SUPPORTED_MODELS = [
|
| 33 |
+
"Apertus/Apertus-8B",
|
| 34 |
+
"meta-llama/Meta-Llama-3-8B-Instruct",
|
| 35 |
+
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
| 36 |
+
]
|
| 37 |
+
|
| 38 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 39 |
|
| 40 |
def _has_bnb_and_cuda() -> bool:
|
| 41 |
+
if DEVICE != "cuda":
|
| 42 |
return False
|
| 43 |
try:
|
| 44 |
import bitsandbytes as _bnb # noqa: F401
|
|
|
|
| 47 |
return False
|
| 48 |
|
| 49 |
USE_BNB = _has_bnb_and_cuda()
|
|
|
|
| 50 |
|
| 51 |
# =========================
|
| 52 |
+
# Model cache
|
| 53 |
# =========================
|
| 54 |
_tokenizer: Optional[AutoTokenizer] = None
|
| 55 |
_model: Optional[AutoModelForCausalLM] = None
|
|
|
|
| 57 |
|
| 58 |
def load_model(model_id: str) -> Tuple[AutoTokenizer, AutoModelForCausalLM]:
|
| 59 |
"""
|
| 60 |
+
Loads (or reuses) a model/tokenizer.
|
| 61 |
+
Uses bitsandbytes 4-bit only if CUDA + bnb available; otherwise standard load.
|
| 62 |
"""
|
| 63 |
global _tokenizer, _model, _current_model_id
|
| 64 |
|
|
|
|
| 88 |
_tokenizer, _model, _current_model_id = tokenizer, model, model_id
|
| 89 |
return tokenizer, model
|
| 90 |
|
| 91 |
+
# =========================
|
| 92 |
+
# Helpers
|
| 93 |
+
# =========================
|
| 94 |
def read_file(file_obj: Optional[gr.File]) -> Optional[str]:
|
| 95 |
if not file_obj:
|
| 96 |
return None
|
|
|
|
| 101 |
return None
|
| 102 |
|
| 103 |
def normalize_txt_input(paste_txt: str, upload_file: Optional[gr.File]) -> str:
|
| 104 |
+
return paste_txt.strip() if (paste_txt and paste_txt.strip()) else (read_file(upload_file) or "")
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
def normalize_json_input(paste_json: str, upload_file: Optional[gr.File]) -> str:
|
| 107 |
+
if paste_json and paste_json.strip():
|
| 108 |
+
return paste_json
|
| 109 |
+
return read_file(upload_file) or ""
|
| 110 |
+
|
| 111 |
+
def safe_lang_detect(text: str) -> str:
|
| 112 |
+
try:
|
| 113 |
+
if not text or not text.strip():
|
| 114 |
+
return "unknown"
|
| 115 |
+
return detect(text)
|
| 116 |
+
except Exception:
|
| 117 |
+
return "unknown"
|
| 118 |
+
|
| 119 |
+
def count_tokens(tokenizer: AutoTokenizer, text: str) -> int:
|
| 120 |
+
try:
|
| 121 |
+
return len(tokenizer(text, return_tensors=None).get("input_ids", []))
|
| 122 |
+
except Exception:
|
| 123 |
+
# Fallback rough estimate if tokenizer path fails
|
| 124 |
+
return max(1, len(text.split()))
|
| 125 |
|
| 126 |
# =========================
|
| 127 |
+
# Evaluation function (from repo)
|
| 128 |
+
# =========================
|
| 129 |
+
# Source: UBS GitHub README "Evaluation" snippet (weighted FN/FP, custom penalties)
|
| 130 |
+
def evaluate_predictions(y_true: List[List[str]], y_pred: List[List[str]]) -> float:
|
| 131 |
+
import numpy as np
|
| 132 |
+
|
| 133 |
+
LABEL_TO_IDX = {label: idx for idx, label in enumerate(ALLOWED_LABELS)}
|
| 134 |
+
FN_PENALTY = 2.0
|
| 135 |
+
FP_PENALTY = 1.0
|
| 136 |
+
|
| 137 |
+
if len(y_true) != len(y_pred):
|
| 138 |
+
raise ValueError(f"y_true and y_pred must have same length. Got {len(y_true)} vs {len(y_pred)}")
|
| 139 |
+
|
| 140 |
+
n_samples = len(y_true)
|
| 141 |
+
n_labels = len(ALLOWED_LABELS)
|
| 142 |
+
|
| 143 |
+
y_true_binary = np.zeros((n_samples, n_labels), dtype=int)
|
| 144 |
+
y_pred_binary = np.zeros((n_samples, n_labels), dtype=int)
|
| 145 |
+
|
| 146 |
+
def _process(sample_labels: List[str], sample_name: str) -> List[str]:
|
| 147 |
+
if not isinstance(sample_labels, list):
|
| 148 |
+
raise ValueError(f"{sample_name} must be a list of strings, got {type(sample_labels)}")
|
| 149 |
+
seen = set()
|
| 150 |
+
valid = []
|
| 151 |
+
for lbl in sample_labels:
|
| 152 |
+
if not isinstance(lbl, str):
|
| 153 |
+
raise ValueError(f"{sample_name} contains non-string label: {lbl}")
|
| 154 |
+
if lbl in seen:
|
| 155 |
+
raise ValueError(f"{sample_name} contains duplicate label: '{lbl}'")
|
| 156 |
+
seen.add(lbl)
|
| 157 |
+
if lbl not in ALLOWED_LABELS:
|
| 158 |
+
raise ValueError(f"{sample_name} contains invalid label: '{lbl}'. Allowed: {ALLOWED_LABELS}")
|
| 159 |
+
valid.append(lbl)
|
| 160 |
+
return valid
|
| 161 |
+
|
| 162 |
+
for i, lbls in enumerate(y_true):
|
| 163 |
+
for lbl in _process(lbls, f"y_true[{i}]"):
|
| 164 |
+
y_true_binary[i, LABEL_TO_IDX[lbl]] = 1
|
| 165 |
+
|
| 166 |
+
for i, lbls in enumerate(y_pred):
|
| 167 |
+
for lbl in _process(lbls, f"y_pred[{i}]"):
|
| 168 |
+
y_pred_binary[i, LABEL_TO_IDX[lbl]] = 1
|
| 169 |
+
|
| 170 |
+
false_negatives = np.sum((y_true_binary == 1) & (y_pred_binary == 0), axis=1)
|
| 171 |
+
false_positives = np.sum((y_true_binary == 0) & (y_pred_binary == 1), axis=1)
|
| 172 |
+
weighted_errors = FN_PENALTY * false_negatives + FP_PENALTY * false_positives
|
| 173 |
+
max_errors_per_sample = FN_PENALTY * np.sum(y_true_binary, axis=1) + FP_PENALTY * (n_labels - np.sum(y_true_binary, axis=1))
|
| 174 |
+
per_sample_scores = np.where(max_errors_per_sample > 0, 1.0 - (weighted_errors / max_errors_per_sample), 1.0)
|
| 175 |
+
return float(np.mean(per_sample_scores))
|
| 176 |
+
|
| 177 |
+
# =========================
|
| 178 |
+
# Core Extraction
|
| 179 |
# =========================
|
| 180 |
def run_extraction(
|
| 181 |
model_choice: str,
|
|
|
|
| 189 |
max_new_tokens: int,
|
| 190 |
temperature: float,
|
| 191 |
top_p: float,
|
| 192 |
+
usd_per_1k_tokens: float,
|
| 193 |
) -> Tuple[str, str, str, str, str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
diagnostics_lines = []
|
| 195 |
|
| 196 |
+
# Resolve inputs from the unified boxes
|
| 197 |
input_txt = normalize_txt_input(txt_paste, txt_upload)
|
| 198 |
input_json_raw = normalize_json_input(json_paste, json_upload)
|
| 199 |
|
| 200 |
+
# Language detection & JSON parse
|
| 201 |
+
lang = safe_lang_detect(input_txt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
parsed_json: Dict[str, Any] = {}
|
| 203 |
+
json_parse_ok = False
|
| 204 |
if input_json_raw:
|
| 205 |
try:
|
| 206 |
parsed_json = json.loads(input_json_raw)
|
| 207 |
+
json_parse_ok = True
|
| 208 |
except Exception as e:
|
| 209 |
diagnostics_lines.append(f"JSON parse error: {e}")
|
| 210 |
|
| 211 |
+
# Load model
|
| 212 |
try:
|
| 213 |
tokenizer, model = load_model(model_choice)
|
| 214 |
except Exception as e:
|
| 215 |
+
diag = "\n".join([
|
| 216 |
+
f"Model: {model_choice}",
|
| 217 |
+
f"Params: {params_checked}",
|
| 218 |
+
f"Language detected: {lang}",
|
| 219 |
+
f"TXT length: {len(input_txt)}",
|
| 220 |
+
f"JSON parsed: {json_parse_ok}",
|
| 221 |
+
f"Model load failed: {e}"
|
| 222 |
+
])
|
| 223 |
return "", "", "", "", diag
|
| 224 |
|
| 225 |
+
# Token counts & rough cost estimate
|
| 226 |
+
in_tokens = count_tokens(tokenizer, input_txt) + count_tokens(tokenizer, json.dumps(parsed_json) if parsed_json else "")
|
| 227 |
+
# Build multilingual-aware prompt (summary in English; extraction language-agnostic)
|
| 228 |
user_prompt = (
|
| 229 |
+
"You analyze client-conversation transcripts.\n"
|
| 230 |
+
"Transcripts may be multilingual. Detect the language automatically. "
|
| 231 |
+
"Extract tasks and entities correctly regardless of language. "
|
| 232 |
+
"Always write the short summary in English.\n"
|
| 233 |
+
"Include only information present in the inputs; avoid hallucinations.\n"
|
| 234 |
f"Instructions: {instructions_text}\n"
|
| 235 |
f"Context: {context_text}\n"
|
| 236 |
"----\n"
|
| 237 |
f"TEXT:\n{input_txt[:4000]}\n"
|
| 238 |
"----\n"
|
| 239 |
f"JSON:\n{json.dumps(parsed_json)[:2000]}\n"
|
| 240 |
+
"Output:\n"
|
| 241 |
+
"- Tasks list (use allowed labels where possible)\n"
|
| 242 |
+
"- Entities list\n"
|
| 243 |
+
"- Cleaned text\n"
|
| 244 |
+
"- Short summary (English)\n"
|
| 245 |
)
|
| 246 |
+
prompt_tokens = count_tokens(tokenizer, user_prompt)
|
| 247 |
|
| 248 |
try:
|
| 249 |
inputs = tokenizer(user_prompt, return_tensors="pt").to(DEVICE)
|
| 250 |
with torch.no_grad():
|
| 251 |
+
outputs = model.generate(
|
| 252 |
**inputs,
|
| 253 |
max_new_tokens=max_new_tokens,
|
| 254 |
do_sample=True,
|
|
|
|
| 258 |
)
|
| 259 |
full_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 260 |
except Exception as e:
|
| 261 |
+
diag = "\n".join([
|
| 262 |
+
f"Model: {model_choice}",
|
| 263 |
+
f"Params: {params_checked}",
|
| 264 |
+
f"Language detected: {lang}",
|
| 265 |
+
f"TXT length: {len(input_txt)}",
|
| 266 |
+
f"JSON parsed: {json_parse_ok}",
|
| 267 |
+
f"Inference failed: {e}"
|
| 268 |
+
])
|
| 269 |
return "", "", "", "", diag
|
| 270 |
|
| 271 |
+
# (Replace this with your structured parser that maps to ALLOWED_LABELS)
|
| 272 |
+
# For now, placeholders to keep UI working:
|
| 273 |
+
tasks_out = "• plan_contact\n• schedule_meeting"
|
| 274 |
+
entities_out = "• Client: John Doe\n• Product: Mortgage"
|
| 275 |
+
cleaned_out = "Cleaned transcript text here…"
|
| 276 |
+
summary_out = "A short English summary of the conversation."
|
| 277 |
+
|
| 278 |
+
# Output token count and cost
|
| 279 |
+
out_tokens = count_tokens(tokenizer, full_text)
|
| 280 |
+
total_tokens = in_tokens + prompt_tokens + out_tokens
|
| 281 |
+
est_cost = (total_tokens / 1000.0) * max(0.0, float(usd_per_1k_tokens))
|
| 282 |
+
|
| 283 |
+
diagnostics_lines.extend([
|
| 284 |
+
f"Model: {model_choice}",
|
| 285 |
+
f"Params: {params_checked}",
|
| 286 |
+
f"Language detected: {lang}",
|
| 287 |
+
f"TXT length: {len(input_txt)}",
|
| 288 |
+
f"JSON parsed: {json_parse_ok}",
|
| 289 |
+
f"Input tokens (txt+json): {in_tokens}",
|
| 290 |
+
f"Prompt tokens: {prompt_tokens}",
|
| 291 |
+
f"Output tokens: {out_tokens}",
|
| 292 |
+
f"Total tokens (approx): {total_tokens}",
|
| 293 |
+
f"Est. cost @ ${usd_per_1k_tokens:.4f}/1k toks: ${est_cost:.6f}",
|
| 294 |
+
"Generation completed successfully.",
|
| 295 |
+
])
|
| 296 |
diagnostics = "\n".join(diagnostics_lines)
|
| 297 |
|
| 298 |
return tasks_out, entities_out, cleaned_out, summary_out, diagnostics
|
| 299 |
|
| 300 |
# =========================
|
| 301 |
+
# Evaluation handler (JSON arrays or files)
|
| 302 |
+
# =========================
|
| 303 |
+
def evaluate_ui(y_true_text: str, y_true_file: Optional[gr.File], y_pred_text: str, y_pred_file: Optional[gr.File]) -> str:
|
| 304 |
+
"""
|
| 305 |
+
Accepts pasted JSON (e.g., [["plan_contact"], ["schedule_meeting", ...], ...])
|
| 306 |
+
or uploaded .json files for y_true and y_pred. Returns the score or an error.
|
| 307 |
+
"""
|
| 308 |
+
def _load_json(text: str, file_obj: Optional[gr.File]) -> Any:
|
| 309 |
+
if text and text.strip():
|
| 310 |
+
return json.loads(text)
|
| 311 |
+
ftxt = read_file(file_obj)
|
| 312 |
+
if ftxt:
|
| 313 |
+
return json.loads(ftxt)
|
| 314 |
+
raise ValueError("Missing JSON input")
|
| 315 |
+
|
| 316 |
+
try:
|
| 317 |
+
y_true = _load_json(y_true_text, y_true_file)
|
| 318 |
+
y_pred = _load_json(y_pred_text, y_pred_file)
|
| 319 |
+
score = evaluate_predictions(y_true, y_pred)
|
| 320 |
+
return f"Evaluation score: {score:.4f} (higher is better; weighted FN>FP)"
|
| 321 |
+
except Exception as e:
|
| 322 |
+
return f"Evaluation error: {e}"
|
| 323 |
+
|
| 324 |
+
# =========================
|
| 325 |
+
# UI Styling (black text on white; blue accents; red Run)
|
| 326 |
# =========================
|
| 327 |
THEME_CSS = """
|
|
|
|
| 328 |
:root {
|
| 329 |
--body-background-fill: #ffffff !important;
|
| 330 |
--body-text-color: #111111 !important;
|
| 331 |
+
--link-text-color: #0b63ce !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 332 |
}
|
| 333 |
+
.gradio-container, .prose, .prose * { color: #111111 !important; }
|
| 334 |
+
label { color: #0b63ce !important; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
button#run-btn {
|
| 336 |
background: #e11900 !important;
|
| 337 |
+
color: #fff !important;
|
| 338 |
border: 1px solid #b50f00 !important;
|
| 339 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
"""
|
| 341 |
|
| 342 |
+
# =========================
|
| 343 |
+
# UI Layout
|
| 344 |
+
# =========================
|
| 345 |
def build_interface() -> gr.Blocks:
|
| 346 |
with gr.Blocks(title="Talk2Task Demo", css=THEME_CSS) as demo:
|
| 347 |
+
# Model selection (full width) with checklist + sliders + price input
|
| 348 |
with gr.Group():
|
| 349 |
+
gr.Markdown("### Model & Parameters")
|
| 350 |
+
with gr.Row():
|
| 351 |
model_choice = gr.Dropdown(
|
| 352 |
label="Model",
|
| 353 |
+
choices=SUPPORTED_MODELS,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
value=DEFAULT_MODEL_ID,
|
| 355 |
+
scale=3,
|
| 356 |
)
|
| 357 |
params_checked = gr.CheckboxGroup(
|
| 358 |
label="Options",
|
| 359 |
choices=[
|
| 360 |
"Default cleaning",
|
| 361 |
"Remove PII",
|
|
|
|
| 362 |
"Detect language",
|
| 363 |
+
"Use 4-bit if available",
|
| 364 |
],
|
| 365 |
+
value=["Default cleaning", "Detect language"],
|
| 366 |
+
scale=2,
|
| 367 |
)
|
| 368 |
with gr.Row():
|
| 369 |
+
max_new_tokens = gr.Slider(64, 1024, value=200, step=16, label="Max new tokens")
|
| 370 |
temperature = gr.Slider(0.0, 1.5, value=0.7, step=0.05, label="Temperature")
|
| 371 |
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
|
| 372 |
+
usd_per_1k_tokens = gr.Number(value=0.002, label="Est. $ per 1k tokens (edit)")
|
| 373 |
|
| 374 |
+
# Single boxes for TXT and JSON via Tabs (left/right)
|
| 375 |
+
gr.Markdown("### Input")
|
| 376 |
with gr.Row(equal_height=True):
|
| 377 |
+
with gr.Group():
|
| 378 |
+
gr.Markdown("**TXT Input** (Paste or Upload)")
|
| 379 |
with gr.Tabs():
|
| 380 |
with gr.TabItem("Paste"):
|
| 381 |
+
txt_paste = gr.TextArea(label="Paste TXT", lines=12, placeholder="Paste transcript here (any language)…")
|
| 382 |
+
with gr.TabItem("Upload"):
|
| 383 |
+
txt_upload = gr.File(label="Upload TXT", file_types=[".txt"])
|
| 384 |
+
with gr.Group():
|
| 385 |
+
gr.Markdown("**JSON Input** (Paste or Upload)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 386 |
with gr.Tabs():
|
| 387 |
with gr.TabItem("Paste"):
|
| 388 |
+
json_paste = gr.Code(label="Paste JSON", language="json", value="{\n \"example\": true\n}", lines=12)
|
| 389 |
+
with gr.TabItem("Upload"):
|
| 390 |
+
json_upload = gr.File(label="Upload JSON", file_types=[".json"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
|
| 392 |
+
# Red run button
|
| 393 |
+
run_btn = gr.Button("Run Extraction", elem_id="run-btn")
|
| 394 |
+
|
| 395 |
+
# Collapsible instructions/context (defaults aligned to brief)
|
| 396 |
with gr.Row():
|
| 397 |
with gr.Accordion("Instructions (editable)", open=False):
|
| 398 |
instructions_text = gr.TextArea(
|
|
|
|
| 399 |
value=(
|
| 400 |
+
"Extract key tasks (use allowed labels when applicable), entities, cleaned text, and a short summary.\n"
|
| 401 |
+
"Be robust to noisy or incomplete data. Avoid hallucinations."
|
| 402 |
),
|
| 403 |
+
lines=5
|
| 404 |
)
|
| 405 |
with gr.Accordion("Context (editable)", open=False):
|
| 406 |
context_text = gr.TextArea(
|
|
|
|
| 407 |
value=(
|
| 408 |
+
"Client-advisor banking context. Assume transcripts may include multiple languages; "
|
| 409 |
+
"summaries must be in English."
|
| 410 |
),
|
| 411 |
+
lines=5
|
| 412 |
)
|
| 413 |
|
| 414 |
+
# Outputs (symmetrical)
|
| 415 |
+
gr.Markdown("### Results")
|
| 416 |
with gr.Row(equal_height=True):
|
| 417 |
+
tasks_out = gr.TextArea(label="Tasks", lines=8)
|
| 418 |
+
entities_out = gr.TextArea(label="Entities", lines=8)
|
| 419 |
with gr.Row(equal_height=True):
|
| 420 |
+
cleaned_out = gr.TextArea(label="Cleaned Text", lines=8)
|
| 421 |
+
summary_out = gr.TextArea(label="Summary (English)", lines=8)
|
| 422 |
+
|
| 423 |
+
gr.Markdown("### Diagnostics / Metrics")
|
| 424 |
+
diagnostics = gr.TextArea(label="Diagnostics", lines=12)
|
| 425 |
|
| 426 |
+
# Evaluation accordion (cost-accuracy comparison support)
|
| 427 |
+
with gr.Accordion("Evaluation (paste or upload y_true / y_pred arrays)", open=False):
|
| 428 |
+
with gr.Row():
|
| 429 |
+
y_true_text = gr.Code(label="y_true (JSON)", language="json", lines=10)
|
| 430 |
+
y_pred_text = gr.Code(label="y_pred (JSON)", language="json", lines=10)
|
| 431 |
+
with gr.Row():
|
| 432 |
+
y_true_file = gr.File(label="Upload y_true.json", file_types=[".json"])
|
| 433 |
+
y_pred_file = gr.File(label="Upload y_pred.json", file_types=[".json"])
|
| 434 |
+
eval_btn = gr.Button("Compute Official Score")
|
| 435 |
+
eval_result = gr.Textbox(label="Evaluation Result")
|
| 436 |
+
eval_btn.click(evaluate_ui, inputs=[y_true_text, y_true_file, y_pred_text, y_pred_file], outputs=eval_result)
|
| 437 |
|
| 438 |
+
# Wire main run
|
| 439 |
run_inputs = [
|
| 440 |
model_choice, params_checked, instructions_text, context_text,
|
| 441 |
txt_paste, txt_upload, json_paste, json_upload,
|
| 442 |
+
max_new_tokens, temperature, top_p, usd_per_1k_tokens
|
| 443 |
]
|
| 444 |
run_outputs = [tasks_out, entities_out, cleaned_out, summary_out, diagnostics]
|
| 445 |
+
run_btn.click(fn=run_extraction, inputs=run_inputs, outputs=run_outputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 446 |
|
| 447 |
return demo
|
| 448 |
|
| 449 |
demo = build_interface()
|
| 450 |
|
| 451 |
if __name__ == "__main__":
|
|
|
|
| 452 |
demo.launch()
|