Spaces:
Runtime error
Runtime error
File size: 2,247 Bytes
55d4d3e 2891d1d 55d4d3e 2891d1d 55d4d3e 2891d1d 55d4d3e 2891d1d 55d4d3e 2891d1d 55d4d3e 2891d1d 55d4d3e 2891d1d 55d4d3e 2891d1d 55d4d3e 2891d1d 55d4d3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
# Base Image
FROM python:3.10-slim
ENV DEBIAN_FRONTEND=noninteractive \
PYTHONUNBUFFERED=1 \
PYTHONDONTWRITEBYTECODE=1
WORKDIR /code
# System Dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential \
git \
curl \
libopenblas-dev \
libomp-dev \
&& rm -rf /var/lib/apt/lists/*
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
# Hugging Face + model tools
RUN pip install --no-cache-dir huggingface-hub sentencepiece accelerate fasttext
# Hugging Face cache environment
ENV HF_HOME=/models/huggingface \
TRANSFORMERS_CACHE=/models/huggingface \
HUGGINGFACE_HUB_CACHE=/models/huggingface \
HF_HUB_CACHE=/models/huggingface
# Created cache dir and set permissions
RUN mkdir -p /models/huggingface && chmod -R 777 /models/huggingface
# Pre-download models at build time
RUN python -c "from huggingface_hub import snapshot_download; snapshot_download(repo_id='Qwen/Qwen3-4B-Instruct-2507')" \
&& python -c "from huggingface_hub import snapshot_download; snapshot_download(repo_id='sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')" \
&& python -c "from huggingface_hub import hf_hub_download; hf_hub_download(repo_id='facebook/fasttext-language-identification', filename='model.bin')" \
&& python -c "from huggingface_hub import snapshot_download; snapshot_download(repo_id='drrobot9/nllb-ig-yo-ha-finetuned')" \
&& find /models/huggingface -name '*.lock' -delete
# Preload tokenizers (avoid runtime delays)
RUN python -c "from transformers import AutoTokenizer; AutoTokenizer.from_pretrained('Qwen/Qwen3-4B-Instruct-2507', use_fast=True)" \
&& python -c "from transformers import AutoTokenizer; AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2', use_fast=True)" \
&& python -c "from transformers import AutoTokenizer; AutoTokenizer.from_pretrained('drrobot9/nllb-ig-yo-ha-finetuned', use_fast=True)"
# Copy project files
COPY . .
# Expose FastAPI port
EXPOSE 7860
# Run FastAPI app with uvicorn (1 workers for concurrency)
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860", "--workers", "1"]
|