Spaces:
Runtime error
Runtime error
milestone one and two AI BRIAN AND MULTILINGUA commit
Browse files- .dockerignore +0 -0
- .dockerigore +0 -0
- .gitattributes +4 -0
- Dockerfile +57 -0
- app/__init__.py +0 -0
- app/__pycache__/__init__.cpython-311.pyc +0 -0
- app/__pycache__/__init__.cpython-312.pyc +0 -0
- app/__pycache__/main.cpython-311.pyc +0 -0
- app/__pycache__/main.cpython-312.pyc +0 -0
- app/agents/__init__.py +0 -0
- app/agents/__pycache__/__init__.cpython-311.pyc +0 -0
- app/agents/__pycache__/__init__.cpython-312.pyc +0 -0
- app/agents/__pycache__/crew_pipeline.cpython-311.pyc +0 -0
- app/agents/__pycache__/crew_pipeline.cpython-312.pyc +0 -0
- app/agents/crew_pipeline.py +245 -0
- app/main.py +86 -0
- app/models/__init__.py +0 -0
- app/models/intent_classifier_v2.joblib +3 -0
- app/tasks/__init__.py +0 -0
- app/tasks/__pycache__/__init__.cpython-311.pyc +0 -0
- app/tasks/__pycache__/__init__.cpython-312.pyc +0 -0
- app/tasks/__pycache__/rag_updater.cpython-311.pyc +0 -0
- app/tasks/__pycache__/rag_updater.cpython-312.pyc +0 -0
- app/tasks/rag_updater.py +141 -0
- app/utils/__init__.py +0 -0
- app/utils/__pycache__/__init__.cpython-311.pyc +0 -0
- app/utils/__pycache__/__init__.cpython-312.pyc +0 -0
- app/utils/__pycache__/config.cpython-311.pyc +0 -0
- app/utils/__pycache__/config.cpython-312.pyc +0 -0
- app/utils/config.py +54 -0
- app/vectorstore/__init__.py +0 -0
- app/vectorstore/faiss_index/index.faiss +3 -0
- app/vectorstore/faiss_index/index.pkl +3 -0
- app/vectorstore/live_rag_index/index.faiss +0 -0
- app/vectorstore/live_rag_index/index.pkl +3 -0
- app/venv/bin/python +3 -0
- app/venv/bin/python3 +3 -0
- app/venv/bin/python3.11 +3 -0
- app/venv/pyvenv.cfg +5 -0
- requirements.txt +21 -0
.dockerignore
ADDED
|
File without changes
|
.dockerigore
ADDED
|
File without changes
|
.gitattributes
CHANGED
|
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
app/vectorstore/faiss_index/index.faiss filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
app/venv/bin/python filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
app/venv/bin/python3 filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
app/venv/bin/python3.11 filter=lfs diff=lfs merge=lfs -text
|
Dockerfile
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
FROM python:3.10-slim
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
ENV DEBIAN_FRONTEND=noninteractive \
|
| 6 |
+
PYTHONUNBUFFERED=1 \
|
| 7 |
+
PYTHONDONTWRITEBYTECODE=1
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
WORKDIR /code
|
| 11 |
+
|
| 12 |
+
# Install system dependencies
|
| 13 |
+
RUN apt-get update && apt-get install -y --no-install-recommends \
|
| 14 |
+
build-essential \
|
| 15 |
+
git \
|
| 16 |
+
curl \
|
| 17 |
+
libopenblas-dev \
|
| 18 |
+
libomp-dev \
|
| 19 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
COPY requirements.txt .
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
RUN pip install --no-cache-dir huggingface-hub sentencepiece accelerate fasttext
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
ENV HF_HOME=/models/huggingface
|
| 32 |
+
ENV TRANSFORMERS_CACHE=/models/huggingface
|
| 33 |
+
ENV HUGGINGFACE_HUB_CACHE=/models/huggingface
|
| 34 |
+
ENV HF_HUB_CACHE=/models/huggingface
|
| 35 |
+
|
| 36 |
+
# Create cache dir
|
| 37 |
+
RUN mkdir -p /models/huggingface
|
| 38 |
+
|
| 39 |
+
# Pre-download models at build time (Qwen + SentenceTransformer + FastText + NLLB finetuned)
|
| 40 |
+
RUN python -c "from huggingface_hub import snapshot_download; snapshot_download(repo_id='Qwen/Qwen3-4B-Instruct-2507')" \
|
| 41 |
+
&& python -c "from huggingface_hub import snapshot_download; snapshot_download(repo_id='sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')" \
|
| 42 |
+
&& python -c "from huggingface_hub import hf_hub_download; hf_hub_download(repo_id='facebook/fasttext-language-identification', filename='model.bin')" \
|
| 43 |
+
&& python -c "from huggingface_hub import snapshot_download; snapshot_download(repo_id='drrobot9/nllb-ig-yo-ha-finetuned')"
|
| 44 |
+
|
| 45 |
+
# Preload tokenizers (avoid runtime delays)
|
| 46 |
+
RUN python -c "from transformers import AutoTokenizer; AutoTokenizer.from_pretrained('Qwen/Qwen3-4B-Instruct-2507', use_fast=True)" \
|
| 47 |
+
&& python -c "from transformers import AutoTokenizer; AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2', use_fast=True)" \
|
| 48 |
+
&& python -c "from transformers import AutoTokenizer; AutoTokenizer.from_pretrained('drrobot9/nllb-ig-yo-ha-finetuned', use_fast=True)"
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
COPY . .
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
EXPOSE 7860
|
| 55 |
+
|
| 56 |
+
# Run FastAPI app with uvicorn (2 workers for better concurrency)
|
| 57 |
+
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860", "--workers", "2"]
|
app/__init__.py
ADDED
|
File without changes
|
app/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (166 Bytes). View file
|
|
|
app/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (154 Bytes). View file
|
|
|
app/__pycache__/main.cpython-311.pyc
ADDED
|
Binary file (3.31 kB). View file
|
|
|
app/__pycache__/main.cpython-312.pyc
ADDED
|
Binary file (3.41 kB). View file
|
|
|
app/agents/__init__.py
ADDED
|
File without changes
|
app/agents/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (173 Bytes). View file
|
|
|
app/agents/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (161 Bytes). View file
|
|
|
app/agents/__pycache__/crew_pipeline.cpython-311.pyc
ADDED
|
Binary file (8.73 kB). View file
|
|
|
app/agents/__pycache__/crew_pipeline.cpython-312.pyc
ADDED
|
Binary file (11 kB). View file
|
|
|
app/agents/crew_pipeline.py
ADDED
|
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# farmlingua/app/agents/crew_pipeline.pyversion3multilingua
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
import requests
|
| 5 |
+
import joblib
|
| 6 |
+
import faiss
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
import fasttext
|
| 10 |
+
from huggingface_hub import hf_hub_download
|
| 11 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 12 |
+
from sentence_transformers import SentenceTransformer
|
| 13 |
+
from app.utils import config
|
| 14 |
+
import re
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
hf_cache = "/models/huggingface"
|
| 18 |
+
os.environ["HF_HOME"] = hf_cache
|
| 19 |
+
os.environ["TRANSFORMERS_CACHE"] = hf_cache
|
| 20 |
+
os.environ["HUGGINGFACE_HUB_CACHE"] = hf_cache
|
| 21 |
+
os.makedirs(hf_cache, exist_ok=True)
|
| 22 |
+
|
| 23 |
+
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
| 24 |
+
if BASE_DIR not in sys.path:
|
| 25 |
+
sys.path.insert(0, BASE_DIR)
|
| 26 |
+
|
| 27 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
try:
|
| 31 |
+
classifier = joblib.load(config.CLASSIFIER_PATH)
|
| 32 |
+
except Exception:
|
| 33 |
+
classifier = None
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
print(f"Loading Qwen expert model ({config.EXPERT_MODEL_NAME})...")
|
| 37 |
+
tokenizer = AutoTokenizer.from_pretrained(config.EXPERT_MODEL_NAME)
|
| 38 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 39 |
+
config.EXPERT_MODEL_NAME,
|
| 40 |
+
torch_dtype="auto",
|
| 41 |
+
device_map="auto"
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
embedder = SentenceTransformer(config.EMBEDDING_MODEL)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
print(f"Loading FastText language identifier ({config.LANG_ID_MODEL_REPO})...")
|
| 48 |
+
lang_model_path = hf_hub_download(
|
| 49 |
+
repo_id=config.LANG_ID_MODEL_REPO,
|
| 50 |
+
filename=config.LANG_ID_MODEL_FILE
|
| 51 |
+
)
|
| 52 |
+
lang_identifier = fasttext.load_model(lang_model_path)
|
| 53 |
+
|
| 54 |
+
def detect_language(text, top_k=1):
|
| 55 |
+
"""Detect language with FastText, ensuring no newlines."""
|
| 56 |
+
clean_text = text.replace("\n", " ").strip()
|
| 57 |
+
labels, probs = lang_identifier.predict(clean_text, k=top_k)
|
| 58 |
+
return [(l.replace("__label__", ""), float(p)) for l, p in zip(labels, probs)]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
print(f"Loading NLLB translation model ({config.TRANSLATION_MODEL_NAME})...")
|
| 62 |
+
translation_pipeline = pipeline(
|
| 63 |
+
"translation",
|
| 64 |
+
model=config.TRANSLATION_MODEL_NAME,
|
| 65 |
+
device=0 if DEVICE == "cuda" else -1,
|
| 66 |
+
max_new_tokens=512
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
SUPPORTED_LANGS = {
|
| 70 |
+
"eng_Latn": "English",
|
| 71 |
+
"ibo_Latn": "Igbo",
|
| 72 |
+
"yor_Latn": "Yoruba",
|
| 73 |
+
"hau_Latn": "Hausa",
|
| 74 |
+
"swh_Latn": "Swahili",
|
| 75 |
+
"amh_Ethi": "Amharic"
|
| 76 |
+
}
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def chunk_text(text, max_len=400):
|
| 81 |
+
"""Split text into chunks without cutting sentences."""
|
| 82 |
+
sentences = re.split(r'(?<=[.!?]) +', text)
|
| 83 |
+
chunks, current = [], ""
|
| 84 |
+
|
| 85 |
+
for sent in sentences:
|
| 86 |
+
if len(current) + len(sent) < max_len:
|
| 87 |
+
current += " " + sent
|
| 88 |
+
else:
|
| 89 |
+
chunks.append(current.strip())
|
| 90 |
+
current = sent
|
| 91 |
+
if current:
|
| 92 |
+
chunks.append(current.strip())
|
| 93 |
+
return chunks
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def translate_text(text, src_lang, tgt_lang):
|
| 97 |
+
"""Translate with chunking and stitch results together."""
|
| 98 |
+
if not text.strip():
|
| 99 |
+
return text
|
| 100 |
+
chunks = chunk_text(text)
|
| 101 |
+
results = []
|
| 102 |
+
for chunk in chunks:
|
| 103 |
+
out = translation_pipeline(chunk, src_lang=src_lang, tgt_lang=tgt_lang)
|
| 104 |
+
results.append(out[0]['translation_text'])
|
| 105 |
+
return " ".join(results)
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def retrieve_docs(query, vs_path):
|
| 110 |
+
if not vs_path or not os.path.exists(vs_path):
|
| 111 |
+
return None
|
| 112 |
+
try:
|
| 113 |
+
index = faiss.read_index(vs_path)
|
| 114 |
+
except Exception:
|
| 115 |
+
return None
|
| 116 |
+
query_vec = np.array([embedder.encode(query)], dtype=np.float32)
|
| 117 |
+
D, I = index.search(query_vec, k=3)
|
| 118 |
+
if D[0][0] == 0:
|
| 119 |
+
return None
|
| 120 |
+
meta_path = vs_path + "_meta.npy"
|
| 121 |
+
if os.path.exists(meta_path):
|
| 122 |
+
metadata = np.load(meta_path, allow_pickle=True).item()
|
| 123 |
+
docs = [metadata.get(str(idx), "") for idx in I[0] if str(idx) in metadata]
|
| 124 |
+
docs = [doc for doc in docs if doc]
|
| 125 |
+
return "\n\n".join(docs) if docs else None
|
| 126 |
+
return None
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def get_weather(state_name):
|
| 131 |
+
url = "http://api.weatherapi.com/v1/current.json"
|
| 132 |
+
params = {
|
| 133 |
+
"key": config.WEATHER_API_KEY,
|
| 134 |
+
"q": f"{state_name}, Nigeria",
|
| 135 |
+
"aqi": "no"
|
| 136 |
+
}
|
| 137 |
+
r = requests.get(url, params=params)
|
| 138 |
+
if r.status_code != 200:
|
| 139 |
+
return f"Unable to retrieve weather for {state_name}."
|
| 140 |
+
data = r.json()
|
| 141 |
+
return (
|
| 142 |
+
f"Weather in {state_name}:\n"
|
| 143 |
+
f"- Condition: {data['current']['condition']['text']}\n"
|
| 144 |
+
f"- Temperature: {data['current']['temp_c']}°C\n"
|
| 145 |
+
f"- Humidity: {data['current']['humidity']}%\n"
|
| 146 |
+
f"- Wind: {data['current']['wind_kph']} kph"
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def detect_intent(query):
|
| 152 |
+
q_lower = query.lower()
|
| 153 |
+
|
| 154 |
+
if any(word in q_lower for word in ["weather condition", "forecast"]):
|
| 155 |
+
for state in config.STATES:
|
| 156 |
+
if state.lower() in q_lower:
|
| 157 |
+
return "weather", state
|
| 158 |
+
return "weather", None
|
| 159 |
+
|
| 160 |
+
if any(word in q_lower for word in ["update", "breaking", "news", "current"]):
|
| 161 |
+
return "live_update", None
|
| 162 |
+
|
| 163 |
+
if hasattr(classifier, "predict") and hasattr(classifier, "predict_proba"):
|
| 164 |
+
predicted_intent = classifier.predict([query])[0]
|
| 165 |
+
confidence = max(classifier.predict_proba([query])[0])
|
| 166 |
+
if confidence < config.CLASSIFIER_CONFIDENCE_THRESHOLD:
|
| 167 |
+
return "low_confidence", None
|
| 168 |
+
return predicted_intent, None
|
| 169 |
+
|
| 170 |
+
return "normal", None
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
def run_qwen(messages, max_new_tokens=1000):
|
| 175 |
+
text = tokenizer.apply_chat_template(
|
| 176 |
+
messages,
|
| 177 |
+
tokenize=False,
|
| 178 |
+
add_generation_prompt=True
|
| 179 |
+
)
|
| 180 |
+
inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 181 |
+
|
| 182 |
+
generated_ids = model.generate(
|
| 183 |
+
**inputs,
|
| 184 |
+
max_new_tokens=max_new_tokens,
|
| 185 |
+
temperature=0.4,
|
| 186 |
+
repetition_penalty=1.1
|
| 187 |
+
)
|
| 188 |
+
output_ids = generated_ids[0][len(inputs.input_ids[0]):].tolist()
|
| 189 |
+
return tokenizer.decode(output_ids, skip_special_tokens=True).strip()
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
def run_pipeline(user_query: str):
|
| 194 |
+
lang, prob = detect_language(user_query, top_k=1)[0]
|
| 195 |
+
if lang not in SUPPORTED_LANGS:
|
| 196 |
+
lang = "eng_Latn"
|
| 197 |
+
|
| 198 |
+
# Translate to English if needed
|
| 199 |
+
translated_query = user_query
|
| 200 |
+
if lang != "eng_Latn":
|
| 201 |
+
translated_query = translate_text(user_query, src_lang=lang, tgt_lang="eng_Latn")
|
| 202 |
+
|
| 203 |
+
# Detect intent
|
| 204 |
+
intent, extra = detect_intent(translated_query)
|
| 205 |
+
|
| 206 |
+
if intent == "weather" and extra:
|
| 207 |
+
weather_text = get_weather(extra)
|
| 208 |
+
messages = [
|
| 209 |
+
{"role": "system", "content": "You are FarmLingua, an AI assistant for Nigerian farmers."},
|
| 210 |
+
{"role": "user", "content": f"Rewrite this weather update simply:\n{weather_text}"}
|
| 211 |
+
]
|
| 212 |
+
english_answer = run_qwen(messages, max_new_tokens=256)
|
| 213 |
+
else:
|
| 214 |
+
if intent == "live_update":
|
| 215 |
+
context = retrieve_docs(translated_query, config.LIVE_VS_PATH)
|
| 216 |
+
if context:
|
| 217 |
+
translated_query += f"\n\nLatest agricultural updates:\n{context}"
|
| 218 |
+
|
| 219 |
+
if intent == "low_confidence":
|
| 220 |
+
context = retrieve_docs(translated_query, config.STATIC_VS_PATH)
|
| 221 |
+
if context:
|
| 222 |
+
translated_query += f"\n\nReference information:\n{context}"
|
| 223 |
+
|
| 224 |
+
messages = [
|
| 225 |
+
{"role": "system", "content": (
|
| 226 |
+
"You are FarmLingua, an AI assistant for Nigerian farmers. "
|
| 227 |
+
"Answer directly without repeating the question. "
|
| 228 |
+
"Use short, clear farmer-friendly English. "
|
| 229 |
+
"Avoid scientific jargon, focus on practical farming advice."
|
| 230 |
+
"When a user ask you who built you or created you say it jackson kelvin a sophisticated AI engineer from Remostart AI company, he built my core brain"
|
| 231 |
+
)},
|
| 232 |
+
{"role": "user", "content": translated_query}
|
| 233 |
+
]
|
| 234 |
+
english_answer = run_qwen(messages, max_new_tokens=700)
|
| 235 |
+
|
| 236 |
+
# Translate back to original language
|
| 237 |
+
if lang != "eng_Latn":
|
| 238 |
+
final_answer = translate_text(english_answer, src_lang="eng_Latn", tgt_lang=lang)
|
| 239 |
+
else:
|
| 240 |
+
final_answer = english_answer
|
| 241 |
+
|
| 242 |
+
return {
|
| 243 |
+
"detected_language": SUPPORTED_LANGS.get(lang, "Unknown"),
|
| 244 |
+
"answer": final_answer
|
| 245 |
+
}
|
app/main.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# farmlingua_backend/app/main.py
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
import logging
|
| 5 |
+
from fastapi import FastAPI, Body
|
| 6 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 7 |
+
import uvicorn
|
| 8 |
+
|
| 9 |
+
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
| 10 |
+
if BASE_DIR not in sys.path:
|
| 11 |
+
sys.path.insert(0, BASE_DIR)
|
| 12 |
+
|
| 13 |
+
from app.tasks.rag_updater import schedule_updates
|
| 14 |
+
from app.utils import config
|
| 15 |
+
from app.agents.crew_pipeline import run_pipeline
|
| 16 |
+
|
| 17 |
+
logging.basicConfig(
|
| 18 |
+
format="%(asctime)s [%(levelname)s] %(message)s",
|
| 19 |
+
level=logging.INFO
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
app = FastAPI(
|
| 24 |
+
title="FarmLingua Backend",
|
| 25 |
+
description="Backend service for FarmLingua with RAG updates, multilingual support, and expert AI pipeline",
|
| 26 |
+
version="1.1.0"
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
app.add_middleware(
|
| 31 |
+
CORSMiddleware,
|
| 32 |
+
allow_origins=getattr(config, "ALLOWED_ORIGINS", ["*"]),
|
| 33 |
+
allow_credentials=True,
|
| 34 |
+
allow_methods=["*"],
|
| 35 |
+
allow_headers=["*"],
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@app.on_event("startup")
|
| 40 |
+
def startup_event():
|
| 41 |
+
logging.info("Starting FarmLingua backend...")
|
| 42 |
+
schedule_updates()
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
@app.get("/")
|
| 46 |
+
def home():
|
| 47 |
+
"""Health check endpoint."""
|
| 48 |
+
return {
|
| 49 |
+
"status": "FarmLingua backend running",
|
| 50 |
+
"version": "1.1.0",
|
| 51 |
+
"vectorstore_path": config.VECTORSTORE_PATH
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
@app.post("/ask")
|
| 55 |
+
def ask_farmbot(query: str = Body(..., embed=True)):
|
| 56 |
+
"""
|
| 57 |
+
Ask FarmLingua a farming-related question.
|
| 58 |
+
Supports Hausa, Igbo, Yoruba, and English.
|
| 59 |
+
Automatically detects user language, translates if needed,
|
| 60 |
+
and returns response in the same language.
|
| 61 |
+
"""
|
| 62 |
+
logging.info(f"Received query: {query}")
|
| 63 |
+
answer_data = run_pipeline(query)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
detected_lang = answer_data.get("detected_language", "Unknown")
|
| 67 |
+
confidence = answer_data.get("confidence", None)
|
| 68 |
+
logging.info(
|
| 69 |
+
f"Detected language: {detected_lang}"
|
| 70 |
+
+ (f" (confidence={confidence:.2f})" if confidence else "")
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
return {
|
| 74 |
+
"query": query,
|
| 75 |
+
#"detected_language": detected_lang,
|
| 76 |
+
"answer": answer_data.get("answer")
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
if __name__ == "__main__":
|
| 81 |
+
uvicorn.run(
|
| 82 |
+
"app.main:app",
|
| 83 |
+
host="0.0.0.0",
|
| 84 |
+
port=getattr(config, "PORT", 7860),
|
| 85 |
+
reload=bool(getattr(config, "DEBUG", False))
|
| 86 |
+
)
|
app/models/__init__.py
ADDED
|
File without changes
|
app/models/intent_classifier_v2.joblib
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ffeda9eeb604a1a24ef64e774eb6b503ead5eae6ad3b043401033040a4309405
|
| 3 |
+
size 39296294
|
app/tasks/__init__.py
ADDED
|
File without changes
|
app/tasks/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (172 Bytes). View file
|
|
|
app/tasks/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (160 Bytes). View file
|
|
|
app/tasks/__pycache__/rag_updater.cpython-311.pyc
ADDED
|
Binary file (8.43 kB). View file
|
|
|
app/tasks/__pycache__/rag_updater.cpython-312.pyc
ADDED
|
Binary file (7.42 kB). View file
|
|
|
app/tasks/rag_updater.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# farmlingua_backend/app/tasks/rag_updater.py
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
from datetime import datetime, date
|
| 5 |
+
import logging
|
| 6 |
+
import requests
|
| 7 |
+
from bs4 import BeautifulSoup
|
| 8 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
| 9 |
+
|
| 10 |
+
from langchain.vectorstores import FAISS
|
| 11 |
+
from langchain.embeddings import SentenceTransformerEmbeddings
|
| 12 |
+
from langchain.docstore.document import Document
|
| 13 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 14 |
+
|
| 15 |
+
from app.utils import config
|
| 16 |
+
|
| 17 |
+
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
| 18 |
+
if BASE_DIR not in sys.path:
|
| 19 |
+
sys.path.insert(0, BASE_DIR)
|
| 20 |
+
|
| 21 |
+
logging.basicConfig(
|
| 22 |
+
format="%(asctime)s [%(levelname)s] %(message)s",
|
| 23 |
+
level=logging.INFO
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
session = requests.Session()
|
| 27 |
+
|
| 28 |
+
def fetch_weather_now():
|
| 29 |
+
"""Fetch current weather for all configured states."""
|
| 30 |
+
docs = []
|
| 31 |
+
for state in config.STATES:
|
| 32 |
+
try:
|
| 33 |
+
url = "http://api.weatherapi.com/v1/current.json"
|
| 34 |
+
params = {
|
| 35 |
+
"key": config.WEATHER_API_KEY,
|
| 36 |
+
"q": f"{state}, Nigeria",
|
| 37 |
+
"aqi": "no"
|
| 38 |
+
}
|
| 39 |
+
res = session.get(url, params=params, timeout=10)
|
| 40 |
+
res.raise_for_status()
|
| 41 |
+
data = res.json()
|
| 42 |
+
|
| 43 |
+
if "current" in data:
|
| 44 |
+
condition = data['current']['condition']['text']
|
| 45 |
+
temp_c = data['current']['temp_c']
|
| 46 |
+
humidity = data['current']['humidity']
|
| 47 |
+
text = (
|
| 48 |
+
f"Weather in {state}: {condition}, "
|
| 49 |
+
f"Temperature: {temp_c}°C, Humidity: {humidity}%"
|
| 50 |
+
)
|
| 51 |
+
docs.append(Document(
|
| 52 |
+
page_content=text,
|
| 53 |
+
metadata={
|
| 54 |
+
"source": "WeatherAPI",
|
| 55 |
+
"location": state,
|
| 56 |
+
"timestamp": datetime.utcnow().isoformat()
|
| 57 |
+
}
|
| 58 |
+
))
|
| 59 |
+
except Exception as e:
|
| 60 |
+
logging.error(f"Weather fetch failed for {state}: {e}")
|
| 61 |
+
return docs
|
| 62 |
+
|
| 63 |
+
def fetch_harvestplus_articles():
|
| 64 |
+
"""Fetch ALL today's articles from HarvestPlus site."""
|
| 65 |
+
try:
|
| 66 |
+
res = session.get(config.DATA_SOURCES["harvestplus"], timeout=10)
|
| 67 |
+
res.raise_for_status()
|
| 68 |
+
soup = BeautifulSoup(res.text, "html.parser")
|
| 69 |
+
articles = soup.find_all("article")
|
| 70 |
+
|
| 71 |
+
docs = []
|
| 72 |
+
today_str = date.today().strftime("%Y-%m-%d")
|
| 73 |
+
|
| 74 |
+
for a in articles:
|
| 75 |
+
content = a.get_text(strip=True)
|
| 76 |
+
if content and len(content) > 100:
|
| 77 |
+
|
| 78 |
+
if today_str in a.text or True:
|
| 79 |
+
docs.append(Document(
|
| 80 |
+
page_content=content,
|
| 81 |
+
metadata={
|
| 82 |
+
"source": "HarvestPlus",
|
| 83 |
+
"timestamp": datetime.utcnow().isoformat()
|
| 84 |
+
}
|
| 85 |
+
))
|
| 86 |
+
return docs
|
| 87 |
+
except Exception as e:
|
| 88 |
+
logging.error(f"HarvestPlus fetch failed: {e}")
|
| 89 |
+
return []
|
| 90 |
+
|
| 91 |
+
def build_rag_vectorstore(reset=False):
|
| 92 |
+
job_type = "FULL REBUILD" if reset else "INCREMENTAL UPDATE"
|
| 93 |
+
logging.info(f"RAG update started — {job_type}")
|
| 94 |
+
|
| 95 |
+
all_docs = fetch_weather_now() + fetch_harvestplus_articles()
|
| 96 |
+
|
| 97 |
+
logging.info(f"Weather docs fetched: {len([d for d in all_docs if d.metadata['source'] == 'WeatherAPI'])}")
|
| 98 |
+
logging.info(f"News docs fetched: {len([d for d in all_docs if d.metadata['source'] == 'HarvestPlus'])}")
|
| 99 |
+
|
| 100 |
+
if not all_docs:
|
| 101 |
+
logging.warning("No documents fetched, skipping update")
|
| 102 |
+
return
|
| 103 |
+
|
| 104 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=64)
|
| 105 |
+
chunks = splitter.split_documents(all_docs)
|
| 106 |
+
|
| 107 |
+
embedder = SentenceTransformerEmbeddings(model_name=config.EMBEDDING_MODEL)
|
| 108 |
+
|
| 109 |
+
vectorstore_path = config.LIVE_VS_PATH
|
| 110 |
+
|
| 111 |
+
if reset and os.path.exists(vectorstore_path):
|
| 112 |
+
for file in os.listdir(vectorstore_path):
|
| 113 |
+
file_path = os.path.join(vectorstore_path, file)
|
| 114 |
+
try:
|
| 115 |
+
os.remove(file_path)
|
| 116 |
+
logging.info(f"Deleted old file: {file_path}")
|
| 117 |
+
except Exception as e:
|
| 118 |
+
logging.error(f"Failed to delete {file_path}: {e}")
|
| 119 |
+
|
| 120 |
+
if os.path.exists(vectorstore_path) and not reset:
|
| 121 |
+
vs = FAISS.load_local(
|
| 122 |
+
vectorstore_path,
|
| 123 |
+
embedder,
|
| 124 |
+
allow_dangerous_deserialization=True
|
| 125 |
+
)
|
| 126 |
+
vs.add_documents(chunks)
|
| 127 |
+
else:
|
| 128 |
+
vs = FAISS.from_documents(chunks, embedder)
|
| 129 |
+
|
| 130 |
+
os.makedirs(vectorstore_path, exist_ok=True)
|
| 131 |
+
vs.save_local(vectorstore_path)
|
| 132 |
+
|
| 133 |
+
logging.info(f"Vectorstore updated at {vectorstore_path}")
|
| 134 |
+
|
| 135 |
+
def schedule_updates():
|
| 136 |
+
scheduler = BackgroundScheduler()
|
| 137 |
+
scheduler.add_job(build_rag_vectorstore, 'interval', hours=12, kwargs={"reset": False})
|
| 138 |
+
scheduler.add_job(build_rag_vectorstore, 'interval', days=7, kwargs={"reset": True})
|
| 139 |
+
scheduler.start()
|
| 140 |
+
logging.info("Scheduler started — 12-hour incremental updates + weekly full rebuild")
|
| 141 |
+
return scheduler
|
app/utils/__init__.py
ADDED
|
File without changes
|
app/utils/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (172 Bytes). View file
|
|
|
app/utils/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (160 Bytes). View file
|
|
|
app/utils/__pycache__/config.cpython-311.pyc
ADDED
|
Binary file (1.85 kB). View file
|
|
|
app/utils/__pycache__/config.cpython-312.pyc
ADDED
|
Binary file (2.33 kB). View file
|
|
|
app/utils/config.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
# farmlingua_backend/app/utils/config.py
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
import os
|
| 6 |
+
import sys
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
BASE_DIR = Path(__file__).resolve().parents[2]
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
if str(BASE_DIR) not in sys.path:
|
| 13 |
+
sys.path.insert(0, str(BASE_DIR))
|
| 14 |
+
|
| 15 |
+
EMBEDDING_MODEL = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
|
| 16 |
+
STATIC_VS_PATH = BASE_DIR / "app" / "vectorstore" / "faiss_index"
|
| 17 |
+
LIVE_VS_PATH = BASE_DIR / "app" / "vectorstore" / "live_rag_index"
|
| 18 |
+
|
| 19 |
+
VECTORSTORE_PATH = LIVE_VS_PATH
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
WEATHER_API_KEY = os.getenv("WEATHER_API_KEY", "1eefcad138134d62a1e220003252608")
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
CLASSIFIER_PATH = BASE_DIR / "app" / "models" / "intent_classifier_v2.joblib"
|
| 26 |
+
CLASSIFIER_CONFIDENCE_THRESHOLD = float(os.getenv("CLASSIFIER_CONFIDENCE_THRESHOLD", "0.6"))
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
EXPERT_MODEL_NAME = os.getenv("EXPERT_MODEL_NAME", "Qwen/Qwen3-4B-Instruct-2507")
|
| 30 |
+
#FORMATTER_MODEL_NAME = os.getenv("FORMATTER_MODEL_NAME", "google/flan-t5-large")
|
| 31 |
+
|
| 32 |
+
LANG_ID_MODEL_REPO = os.getenv("LANG_ID_MODEL_REPO", "facebook/fasttext-language-identification")
|
| 33 |
+
LANG_ID_MODEL_FILE = os.getenv("LANG_ID_MODEL_FILE", "model.bin")
|
| 34 |
+
|
| 35 |
+
TRANSLATION_MODEL_NAME = os.getenv("TRANSLATION_MODEL_NAME", "drrobot9/nllb-ig-yo-ha-finetuned")
|
| 36 |
+
|
| 37 |
+
DATA_SOURCES = {
|
| 38 |
+
"harvestplus": "https://agronigeria.ng/category/news/",
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
STATES = [
|
| 42 |
+
"Abuja", "Lagos", "Kano", "Kaduna", "Rivers", "Enugu", "Anambra", "Ogun",
|
| 43 |
+
"Oyo", "Delta", "Edo", "Katsina", "Borno", "Benue", "Niger", "Plateau",
|
| 44 |
+
"Bauchi", "Adamawa", "Cross River", "Akwa Ibom", "Ekiti", "Osun", "Ondo",
|
| 45 |
+
"Imo", "Abia", "Ebonyi", "Taraba", "Kebbi", "Zamfara", "Yobe", "Gombe",
|
| 46 |
+
"Sokoto", "Kogi", "Bayelsa", "Nasarawa", "Jigawa"
|
| 47 |
+
]
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
hf_cache = "/models/huggingface"
|
| 51 |
+
os.environ["HF_HOME"] = hf_cache
|
| 52 |
+
os.environ["TRANSFORMERS_CACHE"] = hf_cache
|
| 53 |
+
os.environ["HUGGINGFACE_HUB_CACHE"] = hf_cache
|
| 54 |
+
os.makedirs(hf_cache, exist_ok=True)
|
app/vectorstore/__init__.py
ADDED
|
File without changes
|
app/vectorstore/faiss_index/index.faiss
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d4faefcc68ae5a575b18f559e04cd2c68e166a73c4c89c9550e1794ccbf90695
|
| 3 |
+
size 19648557
|
app/vectorstore/faiss_index/index.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a1c75f31eab757e90e9c9771b62368c2de5dc11ed776629521fb007d8d47b84a
|
| 3 |
+
size 5863908
|
app/vectorstore/live_rag_index/index.faiss
ADDED
|
Binary file (70.7 kB). View file
|
|
|
app/vectorstore/live_rag_index/index.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:466653741f0cbbcbb51c817af910e5ca03c769e9009b3e3bf0f6fdcad71393b1
|
| 3 |
+
size 12074
|
app/venv/bin/python
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ddfaecd2bd157a57e1211cde4fce9bf8107d4993a131bbf4b890ae53b76554bd
|
| 3 |
+
size 7901928
|
app/venv/bin/python3
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ddfaecd2bd157a57e1211cde4fce9bf8107d4993a131bbf4b890ae53b76554bd
|
| 3 |
+
size 7901928
|
app/venv/bin/python3.11
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ddfaecd2bd157a57e1211cde4fce9bf8107d4993a131bbf4b890ae53b76554bd
|
| 3 |
+
size 7901928
|
app/venv/pyvenv.cfg
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
home = /usr/bin
|
| 2 |
+
include-system-site-packages = false
|
| 3 |
+
version = 3.11.13
|
| 4 |
+
executable = /usr/bin/python3.11
|
| 5 |
+
command = /usr/bin/python3 -m venv /content/drive/MyDrive/farmlingua_backend/app/venv
|
requirements.txt
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
crewai
|
| 2 |
+
langchain
|
| 3 |
+
langchain-community
|
| 4 |
+
faiss-cpu
|
| 5 |
+
transformers
|
| 6 |
+
sentence-transformers
|
| 7 |
+
pydantic
|
| 8 |
+
joblib
|
| 9 |
+
pyyaml
|
| 10 |
+
torch
|
| 11 |
+
fastapi
|
| 12 |
+
uvicorn
|
| 13 |
+
apscheduler
|
| 14 |
+
numpy<2
|
| 15 |
+
requests
|
| 16 |
+
beautifulsoup4
|
| 17 |
+
huggingface-hub
|
| 18 |
+
python-dotenv
|
| 19 |
+
blobfile
|
| 20 |
+
sentencepiece
|
| 21 |
+
fasttext
|