|
|
import aiohttp
|
|
|
import json
|
|
|
import torch
|
|
|
import torch.distributed as dist
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
from typing import List, Dict, Any
|
|
|
from components.adaptive_learning import AdaptiveLearningEnvironment
|
|
|
from components.ai_driven_creativity import AIDrivenCreativity
|
|
|
from components.collaborative_ai import CollaborativeAI
|
|
|
from components.cultural_sensitivity import CulturalSensitivityEngine
|
|
|
from components.data_processing import AdvancedDataProcessor
|
|
|
from components.dynamic_learning import DynamicLearner
|
|
|
from components.ethical_governance import EthicalAIGovernance
|
|
|
from components.explainable_ai import ExplainableAI
|
|
|
from components.feedback_manager import ImprovedFeedbackManager
|
|
|
from components.multimodal_analyzer import MultimodalAnalyzer
|
|
|
from components.neuro_symbolic import NeuroSymbolicEngine
|
|
|
from components.quantum_optimizer import QuantumInspiredOptimizer
|
|
|
from components.real_time_data import RealTimeDataIntegrator
|
|
|
from components.sentiment_analysis import EnhancedSentimentAnalyzer
|
|
|
from components.self_improving_ai import SelfImprovingAI
|
|
|
from components.user_personalization import UserPersonalizer
|
|
|
from models.cognitive_engine import BroaderPerspectiveEngine
|
|
|
from models.elements import Element
|
|
|
from models.healing_system import SelfHealingSystem
|
|
|
from models.safety_system import SafetySystem
|
|
|
from models.user_profiles import UserProfile
|
|
|
from utils.database import Database
|
|
|
from utils.logger import logger
|
|
|
|
|
|
class AICore:
|
|
|
"""Improved core system with cutting-edge capabilities"""
|
|
|
def __init__(self, config_path: str = "config/ai_assistant_config.json"):
|
|
|
self.config = self._load_config(config_path)
|
|
|
self.models = self._initialize_models()
|
|
|
self.cognition = BroaderPerspectiveEngine()
|
|
|
self.self_healing = SelfHealingSystem(self.config)
|
|
|
self.safety_system = SafetySystem()
|
|
|
self.emotional_analyzer = EnhancedSentimentAnalyzer()
|
|
|
self.elements = self._initialize_elements()
|
|
|
self.security_level = 0
|
|
|
self.http_session = aiohttp.ClientSession()
|
|
|
self.database = Database()
|
|
|
self.user_profiles = UserProfile(self.database)
|
|
|
self.feedback_manager = ImprovedFeedbackManager(self.database)
|
|
|
self.context_manager = AdaptiveLearningEnvironment()
|
|
|
self.data_fetcher = RealTimeDataIntegrator()
|
|
|
self.sentiment_analyzer = EnhancedSentimentAnalyzer()
|
|
|
self.data_processor = AdvancedDataProcessor()
|
|
|
self.dynamic_learner = DynamicLearner()
|
|
|
self.multimodal_analyzer = MultimodalAnalyzer()
|
|
|
self.ethical_decision_maker = EthicalAIGovernance()
|
|
|
self.user_personalizer = UserPersonalizer(self.database)
|
|
|
self.ai_integrator = CollaborativeAI()
|
|
|
self.neuro_symbolic_engine = NeuroSymbolicEngine()
|
|
|
self.explainable_ai = ExplainableAI()
|
|
|
self.quantum_inspired_optimizer = QuantumInspiredOptimizer()
|
|
|
self.cultural_sensitivity_engine = CulturalSensitivityEngine()
|
|
|
self.self_improving_ai = SelfImprovingAI()
|
|
|
self.ai_driven_creativity = AIDrivenCreativity()
|
|
|
self._validate_perspectives()
|
|
|
|
|
|
def _load_config(self, config_path: str) -> dict:
|
|
|
"""Load configuration from a file"""
|
|
|
with open(config_path, 'r') as file:
|
|
|
return json.load(file)
|
|
|
|
|
|
def _initialize_models(self):
|
|
|
"""Initialize models required by the AICore class"""
|
|
|
models = {
|
|
|
"mistralai": AutoModelForCausalLM.from_pretrained(self.config["model_name"]),
|
|
|
"tokenizer": AutoTokenizer.from_pretrained(self.config["model_name"])
|
|
|
}
|
|
|
return models
|
|
|
|
|
|
def _initialize_elements(self):
|
|
|
"""Initialize elements with their defense abilities"""
|
|
|
elements = {
|
|
|
"hydrogen": Element("Hydrogen", "H", "Python", ["Lightweight", "Reactive"], ["Combustion"], "evasion"),
|
|
|
"carbon": Element("Carbon", "C", "Java", ["Versatile", "Strong"], ["Bonding"], "adaptability"),
|
|
|
"iron": Element("Iron", "Fe", "C++", ["Durable", "Magnetic"], ["Rusting"], "fortification"),
|
|
|
"silicon": Element("Silicon", "Si", "JavaScript", ["Semiconductor", "Abundant"], ["Doping"], "barrier"),
|
|
|
"oxygen": Element("Oxygen", "O", "Rust", ["Oxidizing", "Life-supporting"], ["Combustion"], "regeneration")
|
|
|
}
|
|
|
return elements
|
|
|
|
|
|
def _validate_perspectives(self):
|
|
|
"""Ensure configured perspectives are valid"""
|
|
|
valid = self.cognition.available_perspectives
|
|
|
invalid = [p for p in self.config["perspectives"] if p not in valid]
|
|
|
if invalid:
|
|
|
logger.warning(f"Removing invalid perspectives: {invalid}")
|
|
|
self.config["perspectives"] = [p for p in self.config["perspectives"] if p in valid]
|
|
|
|
|
|
async def _process_perspectives(self, query: str) -> List[str]:
|
|
|
"""Safely process perspectives using validated methods"""
|
|
|
perspectives = []
|
|
|
for p in self.config["perspectives"]:
|
|
|
try:
|
|
|
method = self.cognition.get_perspective_method(p)
|
|
|
perspectives.append(method(query))
|
|
|
except Exception as e:
|
|
|
logger.error(f"Perspective processing failed: {e}")
|
|
|
return perspectives
|
|
|
|
|
|
async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
|
|
|
"""Generate response with advanced capabilities"""
|
|
|
try:
|
|
|
|
|
|
response_modifiers = []
|
|
|
response_filters = []
|
|
|
|
|
|
|
|
|
for element in self.elements.values():
|
|
|
element.execute_defense_function(self, response_modifiers, response_filters)
|
|
|
|
|
|
|
|
|
perspectives = await self._process_perspectives(query)
|
|
|
model_response = await self._generate_local_model_response(query)
|
|
|
|
|
|
|
|
|
sentiment = self.sentiment_analyzer.detailed_analysis(query)
|
|
|
|
|
|
|
|
|
final_response = model_response
|
|
|
for modifier in response_modifiers:
|
|
|
final_response = modifier(final_response)
|
|
|
for filter_func in response_filters:
|
|
|
final_response = filter_func(final_response)
|
|
|
|
|
|
|
|
|
feedback = self.database.get_latest_feedback(user_id)
|
|
|
if feedback:
|
|
|
final_response = self.feedback_manager.adjust_response_based_on_feedback(final_response, feedback)
|
|
|
|
|
|
|
|
|
self.database.log_interaction(user_id, query, final_response)
|
|
|
|
|
|
|
|
|
self.context_manager.update_environment(user_id, {"query": query, "response": final_response})
|
|
|
|
|
|
|
|
|
final_response = self.user_personalizer.personalize_response(final_response, user_id)
|
|
|
|
|
|
|
|
|
final_response = self.ethical_decision_maker.enforce_policies(final_response)
|
|
|
|
|
|
|
|
|
explanation = self.explainable_ai.explain_decision(final_response, query)
|
|
|
|
|
|
return {
|
|
|
"insights": perspectives,
|
|
|
"response": final_response,
|
|
|
"sentiment": sentiment,
|
|
|
"security_level": self.security_level,
|
|
|
"health_status": await self.self_healing.check_health(),
|
|
|
"explanation": explanation
|
|
|
}
|
|
|
except Exception as e:
|
|
|
logger.error(f"Response generation failed: {e}")
|
|
|
return {"error": "Processing failed - safety protocols engaged"}
|
|
|
|
|
|
async def _generate_local_model_response(self, query: str) -> str:
|
|
|
"""Generate a response from the local model"""
|
|
|
inputs = self.models['tokenizer'](query, return_tensors='pt')
|
|
|
outputs = self.models['mistralai'].generate(**inputs)
|
|
|
return self.models['tokenizer'].decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
async def shutdown(self):
|
|
|
"""Proper async resource cleanup"""
|
|
|
await self.http_session.close()
|
|
|
await self.database.close()
|
|
|
|
|
|
|
|
|
def apply_quantization(self):
|
|
|
"""Apply quantization to the model"""
|
|
|
self.models['mistralai'] = torch.quantization.quantize_dynamic(
|
|
|
self.models['mistralai'], {torch.nn.Linear}, dtype=torch.qint8
|
|
|
)
|
|
|
|
|
|
def apply_pruning(self):
|
|
|
"""Apply pruning to the model"""
|
|
|
parameters_to_prune = (
|
|
|
(self.models['mistralai'].transformer.h[i].attn.c_attn, 'weight') for i in range(self.models['mistralai'].config.n_layer)
|
|
|
)
|
|
|
torch.nn.utils.prune.global_unstructured(
|
|
|
parameters_to_prune,
|
|
|
pruning_method=torch.nn.utils.prune.L1Unstructured,
|
|
|
amount=0.4,
|
|
|
)
|
|
|
|
|
|
def apply_mixed_precision_training(self):
|
|
|
"""Enable mixed precision training"""
|
|
|
scaler = torch.cuda.amp.GradScaler()
|
|
|
return scaler
|
|
|
|
|
|
def setup_distributed_training(self):
|
|
|
"""Setup distributed training"""
|
|
|
world_size = int(os.getenv("WORLD_SIZE", "1"))
|
|
|
rank = int(os.getenv("RANK", "0"))
|
|
|
local_rank = int(os.getenv("LOCAL_RANK", "0"))
|
|
|
if world_size > 1:
|
|
|
dist.init_process_group("nccl")
|
|
|
torch.cuda.set_device(local_rank)
|
|
|
return world_size, rank, local_rank
|
|
|
|
|
|
def optimize_data_pipeline(self):
|
|
|
"""Optimize data loading and preprocessing pipeline"""
|
|
|
|
|
|
import nvidia.dali.pipeline as pipeline
|
|
|
from nvidia.dali.plugin.pytorch import DALIGenericIterator
|
|
|
|
|
|
class ExternalInputIterator:
|
|
|
def __init__(self, batch_size):
|
|
|
self.batch_size = batch_size
|
|
|
|
|
|
def __iter__(self):
|
|
|
self.i = 0
|
|
|
return self
|
|
|
|
|
|
def __next__(self):
|
|
|
self.i += 1
|
|
|
if self.i > 10:
|
|
|
raise StopIteration
|
|
|
return [np.random.rand(3, 224, 224).astype(np.float32) for _ in range(self.batch_size)]
|
|
|
|
|
|
pipe = pipeline.Pipeline(batch_size=32, num_threads=2, device_id=0)
|
|
|
with pipe:
|
|
|
images = pipeline.fn.external_source(source=ExternalInputIterator(32), num_outputs=1)
|
|
|
pipe.set_outputs(images)
|
|
|
|
|
|
self.data_loader = DALIGenericIterator(pipe, ['data'], reader_name='Reader')
|
|
|
|
|
|
def apply_gradient_accumulation(self, optimizer, loss, scaler=None, accumulation_steps=4):
|
|
|
"""Apply gradient accumulation to simulate larger batch sizes"""
|
|
|
if scaler:
|
|
|
scaler.scale(loss).backward()
|
|
|
if (self.step + 1) % accumulation_steps == 0:
|
|
|
scaler.step(optimizer)
|
|
|
scaler.update()
|
|
|
optimizer.zero_grad()
|
|
|
else:
|
|
|
loss.backward()
|
|
|
if (self.step + 1) % accumulation_steps == 0:
|
|
|
optimizer.step()
|
|
|
optimizer.zero_grad()
|
|
|
|
|
|
def apply_knowledge_distillation(self, teacher_model, student_model, data_loader, optimizer, loss_fn, temperature=1.0, alpha=0.5):
|
|
|
"""Apply knowledge distillation from teacher model to student model"""
|
|
|
student_model.train()
|
|
|
teacher_model.eval()
|
|
|
for data in data_loader:
|
|
|
inputs, labels = data
|
|
|
inputs, labels = inputs.to(self.device), labels.to(self.device)
|
|
|
|
|
|
with torch.no_grad():
|
|
|
teacher_outputs = teacher_model(inputs)
|
|
|
student_outputs = student_model(inputs)
|
|
|
|
|
|
loss = alpha * loss_fn(student_outputs, labels) + (1 - alpha) * loss_fn(student_outputs / temperature, teacher_outputs / temperature)
|
|
|
optimizer.zero_grad()
|
|
|
loss.backward()
|
|
|
optimizer.step()
|
|
|
|
|
|
def monitor_performance(self):
|
|
|
"""Monitor and profile performance"""
|
|
|
from torch.profiler import profile, record_function, ProfilerActivity
|
|
|
|
|
|
with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], record_shapes=True) as prof:
|
|
|
with record_function("model_inference"):
|
|
|
self.generate_response("Sample query", 1)
|
|
|
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
|
|
|
|
|
def apply_vector_search(self, embeddings, query_embedding, top_k=5):
|
|
|
"""Apply vector search to find the most similar embeddings"""
|
|
|
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
similarities = cosine_similarity(query_embedding, embeddings)
|
|
|
top_k_indices = similarities.argsort()[0][-top_k:]
|
|
|
return top_k_indices
|
|
|
|
|
|
def apply_prompt_engineering(self, prompt):
|
|
|
"""Apply prompt engineering to improve model responses"""
|
|
|
engineered_prompt = f"Please provide a detailed and informative response to the following query: {prompt}"
|
|
|
return engineered_prompt
|
|
|
|
|
|
def optimize_model(self):
|
|
|
"""Optimize the model using various techniques"""
|
|
|
self.apply_quantization()
|
|
|
self.apply_pruning()
|
|
|
scaler = self.apply_mixed_precision_training()
|
|
|
world_size, rank, local_rank = self.setup_distributed_training()
|
|
|
self.optimize_data_pipeline()
|
|
|
self.monitor_performance()
|
|
|
|
|
|
|
|
|
optimizer = torch.optim.Adam(self.models['mistralai'].parameters(), lr=1e-4)
|
|
|
for step, (inputs, labels) in enumerate(self.data_loader):
|
|
|
self.step = step
|
|
|
loss = self.models['mistralai'](inputs, labels)
|
|
|
self.apply_gradient_accumulation(optimizer, loss, scaler)
|
|
|
|
|
|
|
|
|
teacher_model = AutoModelForCausalLM.from_pretrained("teacher_model_path")
|
|
|
student_model = AutoModelForCausalLM.from_pretrained("student_model_path")
|
|
|
loss_fn = torch.nn.CrossEntropyLoss()
|
|
|
self.apply_knowledge_distillation(teacher_model, student_model, self.data_loader, optimizer, loss_fn)
|
|
|
|
|
|
|
|
|
embeddings = self.models['mistralai'].get_input_embeddings().weight.data.cpu().numpy()
|
|
|
query_embedding = self.models['mistralai'].get_input_embeddings()(torch.tensor([self.models['tokenizer'].encode("query")])).cpu().numpy()
|
|
|
top_k_indices = self.apply_vector_search(embeddings, query_embedding)
|
|
|
print(f"Top {top_k} similar embeddings indices: {top_k_indices}")
|
|
|
|
|
|
|
|
|
prompt = "What is the capital of France?"
|
|
|
engineered_prompt = self.apply_prompt_engineering(prompt)
|
|
|
print(f"Engineered prompt: {engineered_prompt}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
ai_core = AICore(config_path="config/ai_assistant_config.json")
|
|
|
ai_core.optimize_model()
|
|
|
import aiohttp
|
|
|
import json
|
|
|
import torch
|
|
|
import torch.distributed as dist
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
from typing import List, Dict, Any
|
|
|
from components.adaptive_learning import AdaptiveLearningEnvironment
|
|
|
from components.ai_driven_creativity import AIDrivenCreativity
|
|
|
from components.collaborative_ai import CollaborativeAI
|
|
|
from components.cultural_sensitivity import CulturalSensitivityEngine
|
|
|
from components.data_processing import AdvancedDataProcessor
|
|
|
from components.dynamic_learning import DynamicLearner
|
|
|
from components.ethical_governance import EthicalAIGovernance
|
|
|
from components.explainable_ai import ExplainableAI
|
|
|
from components.feedback_manager import ImprovedFeedbackManager
|
|
|
from components.multimodal_analyzer import MultimodalAnalyzer
|
|
|
from components.neuro_symbolic import NeuroSymbolicEngine
|
|
|
from components.quantum_optimizer import QuantumInspiredOptimizer
|
|
|
from components.real_time_data import RealTimeDataIntegrator
|
|
|
from components.sentiment_analysis import EnhancedSentimentAnalyzer
|
|
|
from components.self_improving_ai import SelfImprovingAI
|
|
|
from components.user_personalization import UserPersonalizer
|
|
|
from models.cognitive_engine import BroaderPerspectiveEngine
|
|
|
from models.elements import Element
|
|
|
from models.healing_system import SelfHealingSystem
|
|
|
from models.safety_system import SafetySystem
|
|
|
from models.user_profiles import UserProfile
|
|
|
from utils.database import Database
|
|
|
from utils.logger import logger
|
|
|
|
|
|
class AICore:
|
|
|
"""Improved core system with cutting-edge capabilities"""
|
|
|
def __init__(self, config_path: str = "config/ai_assistant_config.json"):
|
|
|
self.config = self._load_config(config_path)
|
|
|
self.models = self._initialize_models()
|
|
|
self.cognition = BroaderPerspectiveEngine()
|
|
|
self.self_healing = SelfHealingSystem(self.config)
|
|
|
self.safety_system = SafetySystem()
|
|
|
self.emotional_analyzer = EnhancedSentimentAnalyzer()
|
|
|
self.elements = self._initialize_elements()
|
|
|
self.security_level = 0
|
|
|
self.http_session = aiohttp.ClientSession()
|
|
|
self.database = Database()
|
|
|
self.user_profiles = UserProfile(self.database)
|
|
|
self.feedback_manager = ImprovedFeedbackManager(self.database)
|
|
|
self.context_manager = AdaptiveLearningEnvironment()
|
|
|
self.data_fetcher = RealTimeDataIntegrator()
|
|
|
self.sentiment_analyzer = EnhancedSentimentAnalyzer()
|
|
|
self.data_processor = AdvancedDataProcessor()
|
|
|
self.dynamic_learner = DynamicLearner()
|
|
|
self.multimodal_analyzer = MultimodalAnalyzer()
|
|
|
self.ethical_decision_maker = EthicalAIGovernance()
|
|
|
self.user_personalizer = UserPersonalizer(self.database)
|
|
|
self.ai_integrator = CollaborativeAI()
|
|
|
self.neuro_symbolic_engine = NeuroSymbolicEngine()
|
|
|
self.explainable_ai = ExplainableAI()
|
|
|
self.quantum_inspired_optimizer = QuantumInspiredOptimizer()
|
|
|
self.cultural_sensitivity_engine = CulturalSensitivityEngine()
|
|
|
self.self_improving_ai = SelfImprovingAI()
|
|
|
self.ai_driven_creativity = AIDrivenCreativity()
|
|
|
self._validate_perspectives()
|
|
|
|
|
|
def _load_config(self, config_path: str) -> dict:
|
|
|
"""Load configuration from a file"""
|
|
|
with open(config_path, 'r') as file:
|
|
|
return json.load(file)
|
|
|
|
|
|
def _initialize_models(self):
|
|
|
"""Initialize models required by the AICore class"""
|
|
|
models = {
|
|
|
"mistralai": AutoModelForCausalLM.from_pretrained(self.config["model_name"]),
|
|
|
"tokenizer": AutoTokenizer.from_pretrained(self.config["model_name"])
|
|
|
}
|
|
|
return models
|
|
|
|
|
|
def _initialize_elements(self):
|
|
|
"""Initialize elements with their defense abilities"""
|
|
|
elements = {
|
|
|
"hydrogen": Element("Hydrogen", "H", "Python", ["Lightweight", "Reactive"], ["Combustion"], "evasion"),
|
|
|
"carbon": Element("Carbon", "C", "Java", ["Versatile", "Strong"], ["Bonding"], "adaptability"),
|
|
|
"iron": Element("Iron", "Fe", "C++", ["Durable", "Magnetic"], ["Rusting"], "fortification"),
|
|
|
"silicon": Element("Silicon", "Si", "JavaScript", ["Semiconductor", "Abundant"], ["Doping"], "barrier"),
|
|
|
"oxygen": Element("Oxygen", "O", "Rust", ["Oxidizing", "Life-supporting"], ["Combustion"], "regeneration")
|
|
|
}
|
|
|
return elements
|
|
|
|
|
|
def _validate_perspectives(self):
|
|
|
"""Ensure configured perspectives are valid"""
|
|
|
valid = self.cognition.available_perspectives
|
|
|
invalid = [p for p in self.config["perspectives"] if p not in valid]
|
|
|
if invalid:
|
|
|
logger.warning(f"Removing invalid perspectives: {invalid}")
|
|
|
self.config["perspectives"] = [p for p in self.config["perspectives"] if p in valid]
|
|
|
|
|
|
async def _process_perspectives(self, query: str) -> List[str]:
|
|
|
"""Safely process perspectives using validated methods"""
|
|
|
perspectives = []
|
|
|
for p in self.config["perspectives"]:
|
|
|
try:
|
|
|
method = self.cognition.get_perspective_method(p)
|
|
|
perspectives.append(method(query))
|
|
|
except Exception as e:
|
|
|
logger.error(f"Perspective processing failed: {e}")
|
|
|
return perspectives
|
|
|
|
|
|
async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
|
|
|
"""Generate response with advanced capabilities"""
|
|
|
try:
|
|
|
|
|
|
response_modifiers = []
|
|
|
response_filters = []
|
|
|
|
|
|
|
|
|
for element in self.elements.values():
|
|
|
element.execute_defense_function(self, response_modifiers, response_filters)
|
|
|
|
|
|
|
|
|
perspectives = await self._process_perspectives(query)
|
|
|
model_response = await self._generate_local_model_response(query)
|
|
|
|
|
|
|
|
|
sentiment = self.sentiment_analyzer.detailed_analysis(query)
|
|
|
|
|
|
|
|
|
final_response = model_response
|
|
|
for modifier in response_modifiers:
|
|
|
final_response = modifier(final_response)
|
|
|
for filter_func in response_filters:
|
|
|
final_response = filter_func(final_response)
|
|
|
|
|
|
|
|
|
feedback = self.database.get_latest_feedback(user_id)
|
|
|
if feedback:
|
|
|
final_response = self.feedback_manager.adjust_response_based_on_feedback(final_response, feedback)
|
|
|
|
|
|
|
|
|
self.database.log_interaction(user_id, query, final_response)
|
|
|
|
|
|
|
|
|
self.context_manager.update_environment(user_id, {"query": query, "response": final_response})
|
|
|
|
|
|
|
|
|
final_response = self.user_personalizer.personalize_response(final_response, user_id)
|
|
|
|
|
|
|
|
|
final_response = self.ethical_decision_maker.enforce_policies(final_response)
|
|
|
|
|
|
|
|
|
explanation = self.explainable_ai.explain_decision(final_response, query)
|
|
|
|
|
|
return {
|
|
|
"insights": perspectives,
|
|
|
"response": final_response,
|
|
|
"sentiment": sentiment,
|
|
|
"security_level": self.security_level,
|
|
|
"health_status": await self.self_healing.check_health(),
|
|
|
"explanation": explanation
|
|
|
}
|
|
|
except Exception as e:
|
|
|
logger.error(f"Response generation failed: {e}")
|
|
|
return {"error": "Processing failed - safety protocols engaged"}
|
|
|
|
|
|
async def _generate_local_model_response(self, query: str) -> str:
|
|
|
"""Generate a response from the local model"""
|
|
|
inputs = self.models['tokenizer'](query, return_tensors='pt')
|
|
|
outputs = self.models['mistralai'].generate(**inputs)
|
|
|
return self.models['tokenizer'].decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
async def shutdown(self):
|
|
|
"""Proper async resource cleanup"""
|
|
|
await self.http_session.close()
|
|
|
await self.database.close()
|
|
|
|
|
|
|
|
|
def apply_quantization(self):
|
|
|
"""Apply quantization to the model"""
|
|
|
self.models['mistralai'] = torch.quantization.quantize_dynamic(
|
|
|
self.models['mistralai'], {torch.nn.Linear}, dtype=torch.qint8
|
|
|
)
|
|
|
|
|
|
def apply_pruning(self):
|
|
|
"""Apply pruning to the model"""
|
|
|
parameters_to_prune = (
|
|
|
(self.models['mistralai'].transformer.h[i].attn.c_attn, 'weight') for i in range(self.models['mistralai'].config.n_layer)
|
|
|
)
|
|
|
torch.nn.utils.prune.global_unstructured(
|
|
|
parameters_to_prune,
|
|
|
pruning_method=torch.nn.utils.prune.L1Unstructured,
|
|
|
amount=0.4,
|
|
|
)
|
|
|
|
|
|
def apply_mixed_precision_training(self):
|
|
|
"""Enable mixed precision training"""
|
|
|
scaler = torch.cuda.amp.GradScaler()
|
|
|
return scaler
|
|
|
|
|
|
def setup_distributed_training(self):
|
|
|
"""Setup distributed training"""
|
|
|
world_size = int(os.getenv("WORLD_SIZE", "1"))
|
|
|
rank = int(os.getenv("RANK", "0"))
|
|
|
local_rank = int(os.getenv("LOCAL_RANK", "0"))
|
|
|
if world_size > 1:
|
|
|
dist.init_process_group("nccl")
|
|
|
torch.cuda.set_device(local_rank)
|
|
|
return world_size, rank, local_rank
|
|
|
|
|
|
def optimize_data_pipeline(self):
|
|
|
"""Optimize data loading and preprocessing pipeline"""
|
|
|
|
|
|
import nvidia.dali.pipeline as pipeline
|
|
|
from nvidia.dali.plugin.pytorch import DALIGenericIterator
|
|
|
|
|
|
class ExternalInputIterator:
|
|
|
def __init__(self, batch_size):
|
|
|
self.batch_size = batch_size
|
|
|
|
|
|
def __iter__(self):
|
|
|
self.i = 0
|
|
|
return self
|
|
|
|
|
|
def __next__(self):
|
|
|
self.i += 1
|
|
|
if self.i > 10:
|
|
|
raise StopIteration
|
|
|
return [np.random.rand(3, 224, 224).astype(np.float32) for _ in range(self.batch_size)]
|
|
|
|
|
|
pipe = pipeline.Pipeline(batch_size=32, num_threads=2, device_id=0)
|
|
|
with pipe:
|
|
|
images = pipeline.fn.external_source(source=ExternalInputIterator(32), num_outputs=1)
|
|
|
pipe.set_outputs(images)
|
|
|
|
|
|
self.data_loader = DALIGenericIterator(pipe, ['data'], reader_name='Reader')
|
|
|
|
|
|
def apply_gradient_accumulation(self, optimizer, loss, scaler=None, accumulation_steps=4):
|
|
|
"""Apply gradient accumulation to simulate larger batch sizes"""
|
|
|
if scaler:
|
|
|
scaler.scale(loss).backward()
|
|
|
if (self.step + 1) % accumulation_steps == 0:
|
|
|
scaler.step(optimizer)
|
|
|
scaler.update()
|
|
|
optimizer.zero_grad()
|
|
|
else:
|
|
|
loss.backward()
|
|
|
if (self.step + 1) % accumulation_steps == 0:
|
|
|
optimizer.step()
|
|
|
optimizer.zero_grad()
|
|
|
|
|
|
def apply_knowledge_distillation(self, teacher_model, student_model, data_loader, optimizer, loss_fn, temperature=1.0, alpha=0.5):
|
|
|
"""Apply knowledge distillation from teacher model to student model"""
|
|
|
student_model.train()
|
|
|
teacher_model.eval()
|
|
|
for data in data_loader:
|
|
|
inputs, labels = data
|
|
|
inputs, labels = inputs.to(self.device), labels.to(self.device)
|
|
|
|
|
|
with torch.no_grad():
|
|
|
teacher_outputs = teacher_model(inputs)
|
|
|
student_outputs = student_model(inputs)
|
|
|
|
|
|
loss = alpha * loss_fn(student_outputs, labels) + (1 - alpha) * loss_fn(student_outputs / temperature, teacher_outputs / temperature)
|
|
|
optimizer.zero_grad()
|
|
|
loss.backward()
|
|
|
optimizer.step()
|
|
|
|
|
|
def monitor_performance(self):
|
|
|
"""Monitor and profile performance"""
|
|
|
from torch.profiler import profile, record_function, ProfilerActivity
|
|
|
|
|
|
with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], record_shapes=True) as prof:
|
|
|
with record_function("model_inference"):
|
|
|
self.generate_response("Sample query", 1)
|
|
|
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
|
|
|
|
|
def apply_vector_search(self, embeddings, query_embedding, top_k=5):
|
|
|
"""Apply vector search to find the most similar embeddings"""
|
|
|
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
similarities = cosine_similarity(query_embedding, embeddings)
|
|
|
top_k_indices = similarities.argsort()[0][-top_k:]
|
|
|
return top_k_indices
|
|
|
|
|
|
def apply_prompt_engineering(self, prompt):
|
|
|
"""Apply prompt engineering to improve model responses"""
|
|
|
engineered_prompt = f"Please provide a detailed and informative response to the following query: {prompt}"
|
|
|
return engineered_prompt
|
|
|
|
|
|
def optimize_model(self):
|
|
|
"""Optimize the model using various techniques"""
|
|
|
self.apply_quantization()
|
|
|
self.apply_pruning()
|
|
|
scaler = self.apply_mixed_precision_training()
|
|
|
world_size, rank, local_rank = self.setup_distributed_training()
|
|
|
self.optimize_data_pipeline()
|
|
|
self.monitor_performance()
|
|
|
|
|
|
|
|
|
optimizer = torch.optim.Adam(self.models['mistralai'].parameters(), lr=1e-4)
|
|
|
for step, (inputs, labels) in enumerate(self.data_loader):
|
|
|
self.step = step
|
|
|
loss = self.models['mistralai'](inputs, labels)
|
|
|
self.apply_gradient_accumulation(optimizer, loss, scaler)
|
|
|
|
|
|
|
|
|
teacher_model = AutoModelForCausalLM.from_pretrained("teacher_model_path")
|
|
|
student_model = AutoModelForCausalLM.from_pretrained("student_model_path")
|
|
|
loss_fn = torch.nn.CrossEntropyLoss()
|
|
|
self.apply_knowledge_distillation(teacher_model, student_model, self.data_loader, optimizer, loss_fn)
|
|
|
|
|
|
|
|
|
embeddings = self.models['mistralai'].get_input_embeddings().weight.data.cpu().numpy()
|
|
|
query_embedding = self.models['mistralai'].get_input_embeddings()(torch.tensor([self.models['tokenizer'].encode("query")])).cpu().numpy()
|
|
|
top_k_indices = self.apply_vector_search(embeddings, query_embedding)
|
|
|
print(f"Top {top_k} similar embeddings indices: {top_k_indices}")
|
|
|
|
|
|
|
|
|
prompt = "What is the capital of France?"
|
|
|
engineered_prompt = self.apply_prompt_engineering(prompt)
|
|
|
print(f"Engineered prompt: {engineered_prompt}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
ai_core = AICore(config_path="config/ai_assistant_config.json")
|
|
|
ai_core.optimize_model()
|
|
|
|