import aiohttp import json import torch import torch.distributed as dist from transformers import AutoModelForCausalLM, AutoTokenizer from typing import List, Dict, Any from components.adaptive_learning import AdaptiveLearningEnvironment from components.ai_driven_creativity import AIDrivenCreativity from components.collaborative_ai import CollaborativeAI from components.cultural_sensitivity import CulturalSensitivityEngine from components.data_processing import AdvancedDataProcessor from components.dynamic_learning import DynamicLearner from components.ethical_governance import EthicalAIGovernance from components.explainable_ai import ExplainableAI from components.feedback_manager import ImprovedFeedbackManager from components.multimodal_analyzer import MultimodalAnalyzer from components.neuro_symbolic import NeuroSymbolicEngine from components.quantum_optimizer import QuantumInspiredOptimizer from components.real_time_data import RealTimeDataIntegrator from components.sentiment_analysis import EnhancedSentimentAnalyzer from components.self_improving_ai import SelfImprovingAI from components.user_personalization import UserPersonalizer from models.cognitive_engine import BroaderPerspectiveEngine from models.elements import Element from models.healing_system import SelfHealingSystem from models.safety_system import SafetySystem from models.user_profiles import UserProfile from utils.database import Database from utils.logger import logger class AICore: """Improved core system with cutting-edge capabilities""" def __init__(self, config_path: str = "config/ai_assistant_config.json"): self.config = self._load_config(config_path) self.models = self._initialize_models() self.cognition = BroaderPerspectiveEngine() self.self_healing = SelfHealingSystem(self.config) self.safety_system = SafetySystem() self.emotional_analyzer = EnhancedSentimentAnalyzer() self.elements = self._initialize_elements() self.security_level = 0 self.http_session = aiohttp.ClientSession() self.database = Database() # Initialize database self.user_profiles = UserProfile(self.database) # Initialize user profiles self.feedback_manager = ImprovedFeedbackManager(self.database) # Initialize feedback manager self.context_manager = AdaptiveLearningEnvironment() # Initialize adaptive learning environment self.data_fetcher = RealTimeDataIntegrator() # Initialize real-time data fetcher self.sentiment_analyzer = EnhancedSentimentAnalyzer() # Initialize sentiment analyzer self.data_processor = AdvancedDataProcessor() # Initialize advanced data processor self.dynamic_learner = DynamicLearner() # Initialize dynamic learner self.multimodal_analyzer = MultimodalAnalyzer() # Initialize multimodal analyzer self.ethical_decision_maker = EthicalAIGovernance() # Initialize ethical decision maker self.user_personalizer = UserPersonalizer(self.database) # Initialize user personalizer self.ai_integrator = CollaborativeAI() # Initialize AI integrator self.neuro_symbolic_engine = NeuroSymbolicEngine() # Initialize neuro-symbolic engine self.explainable_ai = ExplainableAI() # Initialize explainable AI self.quantum_inspired_optimizer = QuantumInspiredOptimizer() # Initialize quantum-inspired optimizer self.cultural_sensitivity_engine = CulturalSensitivityEngine() # Initialize cultural sensitivity engine self.self_improving_ai = SelfImprovingAI() # Initialize self-improving AI self.ai_driven_creativity = AIDrivenCreativity() # Initialize AI-driven creativity self._validate_perspectives() def _load_config(self, config_path: str) -> dict: """Load configuration from a file""" with open(config_path, 'r') as file: return json.load(file) def _initialize_models(self): """Initialize models required by the AICore class""" models = { "mistralai": AutoModelForCausalLM.from_pretrained(self.config["model_name"]), "tokenizer": AutoTokenizer.from_pretrained(self.config["model_name"]) } return models def _initialize_elements(self): """Initialize elements with their defense abilities""" elements = { "hydrogen": Element("Hydrogen", "H", "Python", ["Lightweight", "Reactive"], ["Combustion"], "evasion"), "carbon": Element("Carbon", "C", "Java", ["Versatile", "Strong"], ["Bonding"], "adaptability"), "iron": Element("Iron", "Fe", "C++", ["Durable", "Magnetic"], ["Rusting"], "fortification"), "silicon": Element("Silicon", "Si", "JavaScript", ["Semiconductor", "Abundant"], ["Doping"], "barrier"), "oxygen": Element("Oxygen", "O", "Rust", ["Oxidizing", "Life-supporting"], ["Combustion"], "regeneration") } return elements def _validate_perspectives(self): """Ensure configured perspectives are valid""" valid = self.cognition.available_perspectives invalid = [p for p in self.config["perspectives"] if p not in valid] if invalid: logger.warning(f"Removing invalid perspectives: {invalid}") self.config["perspectives"] = [p for p in self.config["perspectives"] if p in valid] async def _process_perspectives(self, query: str) -> List[str]: """Safely process perspectives using validated methods""" perspectives = [] for p in self.config["perspectives"]: try: method = self.cognition.get_perspective_method(p) perspectives.append(method(query)) except Exception as e: logger.error(f"Perspective processing failed: {e}") return perspectives async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]: """Generate response with advanced capabilities""" try: # Initialize temporary modifiers/filters for this query response_modifiers = [] response_filters = [] # Execute element defenses for element in self.elements.values(): element.execute_defense_function(self, response_modifiers, response_filters) # Process perspectives and generate response perspectives = await self._process_perspectives(query) model_response = await self._generate_local_model_response(query) # Apply sentiment analysis sentiment = self.sentiment_analyzer.detailed_analysis(query) # Apply modifiers and filters final_response = model_response for modifier in response_modifiers: final_response = modifier(final_response) for filter_func in response_filters: final_response = filter_func(final_response) # Adjust response based on feedback feedback = self.database.get_latest_feedback(user_id) if feedback: final_response = self.feedback_manager.adjust_response_based_on_feedback(final_response, feedback) # Log user interaction for analytics self.database.log_interaction(user_id, query, final_response) # Update context self.context_manager.update_environment(user_id, {"query": query, "response": final_response}) # Personalize response final_response = self.user_personalizer.personalize_response(final_response, user_id) # Apply ethical decision-making framework final_response = self.ethical_decision_maker.enforce_policies(final_response) # Explain the decision explanation = self.explainable_ai.explain_decision(final_response, query) return { "insights": perspectives, "response": final_response, "sentiment": sentiment, "security_level": self.security_level, "health_status": await self.self_healing.check_health(), "explanation": explanation } except Exception as e: logger.error(f"Response generation failed: {e}") return {"error": "Processing failed - safety protocols engaged"} async def _generate_local_model_response(self, query: str) -> str: """Generate a response from the local model""" inputs = self.models['tokenizer'](query, return_tensors='pt') outputs = self.models['mistralai'].generate(**inputs) return self.models['tokenizer'].decode(outputs[0], skip_special_tokens=True) async def shutdown(self): """Proper async resource cleanup""" await self.http_session.close() await self.database.close() # Close the database connection # Optimization Techniques def apply_quantization(self): """Apply quantization to the model""" self.models['mistralai'] = torch.quantization.quantize_dynamic( self.models['mistralai'], {torch.nn.Linear}, dtype=torch.qint8 ) def apply_pruning(self): """Apply pruning to the model""" parameters_to_prune = ( (self.models['mistralai'].transformer.h[i].attn.c_attn, 'weight') for i in range(self.models['mistralai'].config.n_layer) ) torch.nn.utils.prune.global_unstructured( parameters_to_prune, pruning_method=torch.nn.utils.prune.L1Unstructured, amount=0.4, ) def apply_mixed_precision_training(self): """Enable mixed precision training""" scaler = torch.cuda.amp.GradScaler() return scaler def setup_distributed_training(self): """Setup distributed training""" world_size = int(os.getenv("WORLD_SIZE", "1")) rank = int(os.getenv("RANK", "0")) local_rank = int(os.getenv("LOCAL_RANK", "0")) if world_size > 1: dist.init_process_group("nccl") torch.cuda.set_device(local_rank) return world_size, rank, local_rank def optimize_data_pipeline(self): """Optimize data loading and preprocessing pipeline""" # Example: Using DALI for efficient data loading import nvidia.dali.pipeline as pipeline from nvidia.dali.plugin.pytorch import DALIGenericIterator class ExternalInputIterator: def __init__(self, batch_size): self.batch_size = batch_size def __iter__(self): self.i = 0 return self def __next__(self): self.i += 1 if self.i > 10: raise StopIteration return [np.random.rand(3, 224, 224).astype(np.float32) for _ in range(self.batch_size)] pipe = pipeline.Pipeline(batch_size=32, num_threads=2, device_id=0) with pipe: images = pipeline.fn.external_source(source=ExternalInputIterator(32), num_outputs=1) pipe.set_outputs(images) self.data_loader = DALIGenericIterator(pipe, ['data'], reader_name='Reader') def apply_gradient_accumulation(self, optimizer, loss, scaler=None, accumulation_steps=4): """Apply gradient accumulation to simulate larger batch sizes""" if scaler: scaler.scale(loss).backward() if (self.step + 1) % accumulation_steps == 0: scaler.step(optimizer) scaler.update() optimizer.zero_grad() else: loss.backward() if (self.step + 1) % accumulation_steps == 0: optimizer.step() optimizer.zero_grad() def apply_knowledge_distillation(self, teacher_model, student_model, data_loader, optimizer, loss_fn, temperature=1.0, alpha=0.5): """Apply knowledge distillation from teacher model to student model""" student_model.train() teacher_model.eval() for data in data_loader: inputs, labels = data inputs, labels = inputs.to(self.device), labels.to(self.device) with torch.no_grad(): teacher_outputs = teacher_model(inputs) student_outputs = student_model(inputs) loss = alpha * loss_fn(student_outputs, labels) + (1 - alpha) * loss_fn(student_outputs / temperature, teacher_outputs / temperature) optimizer.zero_grad() loss.backward() optimizer.step() def monitor_performance(self): """Monitor and profile performance""" from torch.profiler import profile, record_function, ProfilerActivity with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], record_shapes=True) as prof: with record_function("model_inference"): self.generate_response("Sample query", 1) print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10)) def apply_vector_search(self, embeddings, query_embedding, top_k=5): """Apply vector search to find the most similar embeddings""" from sklearn.metrics.pairwise import cosine_similarity similarities = cosine_similarity(query_embedding, embeddings) top_k_indices = similarities.argsort()[0][-top_k:] return top_k_indices def apply_prompt_engineering(self, prompt): """Apply prompt engineering to improve model responses""" engineered_prompt = f"Please provide a detailed and informative response to the following query: {prompt}" return engineered_prompt def optimize_model(self): """Optimize the model using various techniques""" self.apply_quantization() self.apply_pruning() scaler = self.apply_mixed_precision_training() world_size, rank, local_rank = self.setup_distributed_training() self.optimize_data_pipeline() self.monitor_performance() # Example usage of gradient accumulation optimizer = torch.optim.Adam(self.models['mistralai'].parameters(), lr=1e-4) for step, (inputs, labels) in enumerate(self.data_loader): self.step = step loss = self.models['mistralai'](inputs, labels) self.apply_gradient_accumulation(optimizer, loss, scaler) # Example usage of knowledge distillation teacher_model = AutoModelForCausalLM.from_pretrained("teacher_model_path") student_model = AutoModelForCausalLM.from_pretrained("student_model_path") loss_fn = torch.nn.CrossEntropyLoss() self.apply_knowledge_distillation(teacher_model, student_model, self.data_loader, optimizer, loss_fn) # Example usage of vector search embeddings = self.models['mistralai'].get_input_embeddings().weight.data.cpu().numpy() query_embedding = self.models['mistralai'].get_input_embeddings()(torch.tensor([self.models['tokenizer'].encode("query")])).cpu().numpy() top_k_indices = self.apply_vector_search(embeddings, query_embedding) print(f"Top {top_k} similar embeddings indices: {top_k_indices}") # Example usage of prompt engineering prompt = "What is the capital of France?" engineered_prompt = self.apply_prompt_engineering(prompt) print(f"Engineered prompt: {engineered_prompt}") if __name__ == "__main__": ai_core = AICore(config_path="config/ai_assistant_config.json") ai_core.optimize_model() import aiohttp import json import torch import torch.distributed as dist from transformers import AutoModelForCausalLM, AutoTokenizer from typing import List, Dict, Any from components.adaptive_learning import AdaptiveLearningEnvironment from components.ai_driven_creativity import AIDrivenCreativity from components.collaborative_ai import CollaborativeAI from components.cultural_sensitivity import CulturalSensitivityEngine from components.data_processing import AdvancedDataProcessor from components.dynamic_learning import DynamicLearner from components.ethical_governance import EthicalAIGovernance from components.explainable_ai import ExplainableAI from components.feedback_manager import ImprovedFeedbackManager from components.multimodal_analyzer import MultimodalAnalyzer from components.neuro_symbolic import NeuroSymbolicEngine from components.quantum_optimizer import QuantumInspiredOptimizer from components.real_time_data import RealTimeDataIntegrator from components.sentiment_analysis import EnhancedSentimentAnalyzer from components.self_improving_ai import SelfImprovingAI from components.user_personalization import UserPersonalizer from models.cognitive_engine import BroaderPerspectiveEngine from models.elements import Element from models.healing_system import SelfHealingSystem from models.safety_system import SafetySystem from models.user_profiles import UserProfile from utils.database import Database from utils.logger import logger class AICore: """Improved core system with cutting-edge capabilities""" def __init__(self, config_path: str = "config/ai_assistant_config.json"): self.config = self._load_config(config_path) self.models = self._initialize_models() self.cognition = BroaderPerspectiveEngine() self.self_healing = SelfHealingSystem(self.config) self.safety_system = SafetySystem() self.emotional_analyzer = EnhancedSentimentAnalyzer() self.elements = self._initialize_elements() self.security_level = 0 self.http_session = aiohttp.ClientSession() self.database = Database() # Initialize database self.user_profiles = UserProfile(self.database) # Initialize user profiles self.feedback_manager = ImprovedFeedbackManager(self.database) # Initialize feedback manager self.context_manager = AdaptiveLearningEnvironment() # Initialize adaptive learning environment self.data_fetcher = RealTimeDataIntegrator() # Initialize real-time data fetcher self.sentiment_analyzer = EnhancedSentimentAnalyzer() # Initialize sentiment analyzer self.data_processor = AdvancedDataProcessor() # Initialize advanced data processor self.dynamic_learner = DynamicLearner() # Initialize dynamic learner self.multimodal_analyzer = MultimodalAnalyzer() # Initialize multimodal analyzer self.ethical_decision_maker = EthicalAIGovernance() # Initialize ethical decision maker self.user_personalizer = UserPersonalizer(self.database) # Initialize user personalizer self.ai_integrator = CollaborativeAI() # Initialize AI integrator self.neuro_symbolic_engine = NeuroSymbolicEngine() # Initialize neuro-symbolic engine self.explainable_ai = ExplainableAI() # Initialize explainable AI self.quantum_inspired_optimizer = QuantumInspiredOptimizer() # Initialize quantum-inspired optimizer self.cultural_sensitivity_engine = CulturalSensitivityEngine() # Initialize cultural sensitivity engine self.self_improving_ai = SelfImprovingAI() # Initialize self-improving AI self.ai_driven_creativity = AIDrivenCreativity() # Initialize AI-driven creativity self._validate_perspectives() def _load_config(self, config_path: str) -> dict: """Load configuration from a file""" with open(config_path, 'r') as file: return json.load(file) def _initialize_models(self): """Initialize models required by the AICore class""" models = { "mistralai": AutoModelForCausalLM.from_pretrained(self.config["model_name"]), "tokenizer": AutoTokenizer.from_pretrained(self.config["model_name"]) } return models def _initialize_elements(self): """Initialize elements with their defense abilities""" elements = { "hydrogen": Element("Hydrogen", "H", "Python", ["Lightweight", "Reactive"], ["Combustion"], "evasion"), "carbon": Element("Carbon", "C", "Java", ["Versatile", "Strong"], ["Bonding"], "adaptability"), "iron": Element("Iron", "Fe", "C++", ["Durable", "Magnetic"], ["Rusting"], "fortification"), "silicon": Element("Silicon", "Si", "JavaScript", ["Semiconductor", "Abundant"], ["Doping"], "barrier"), "oxygen": Element("Oxygen", "O", "Rust", ["Oxidizing", "Life-supporting"], ["Combustion"], "regeneration") } return elements def _validate_perspectives(self): """Ensure configured perspectives are valid""" valid = self.cognition.available_perspectives invalid = [p for p in self.config["perspectives"] if p not in valid] if invalid: logger.warning(f"Removing invalid perspectives: {invalid}") self.config["perspectives"] = [p for p in self.config["perspectives"] if p in valid] async def _process_perspectives(self, query: str) -> List[str]: """Safely process perspectives using validated methods""" perspectives = [] for p in self.config["perspectives"]: try: method = self.cognition.get_perspective_method(p) perspectives.append(method(query)) except Exception as e: logger.error(f"Perspective processing failed: {e}") return perspectives async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]: """Generate response with advanced capabilities""" try: # Initialize temporary modifiers/filters for this query response_modifiers = [] response_filters = [] # Execute element defenses for element in self.elements.values(): element.execute_defense_function(self, response_modifiers, response_filters) # Process perspectives and generate response perspectives = await self._process_perspectives(query) model_response = await self._generate_local_model_response(query) # Apply sentiment analysis sentiment = self.sentiment_analyzer.detailed_analysis(query) # Apply modifiers and filters final_response = model_response for modifier in response_modifiers: final_response = modifier(final_response) for filter_func in response_filters: final_response = filter_func(final_response) # Adjust response based on feedback feedback = self.database.get_latest_feedback(user_id) if feedback: final_response = self.feedback_manager.adjust_response_based_on_feedback(final_response, feedback) # Log user interaction for analytics self.database.log_interaction(user_id, query, final_response) # Update context self.context_manager.update_environment(user_id, {"query": query, "response": final_response}) # Personalize response final_response = self.user_personalizer.personalize_response(final_response, user_id) # Apply ethical decision-making framework final_response = self.ethical_decision_maker.enforce_policies(final_response) # Explain the decision explanation = self.explainable_ai.explain_decision(final_response, query) return { "insights": perspectives, "response": final_response, "sentiment": sentiment, "security_level": self.security_level, "health_status": await self.self_healing.check_health(), "explanation": explanation } except Exception as e: logger.error(f"Response generation failed: {e}") return {"error": "Processing failed - safety protocols engaged"} async def _generate_local_model_response(self, query: str) -> str: """Generate a response from the local model""" inputs = self.models['tokenizer'](query, return_tensors='pt') outputs = self.models['mistralai'].generate(**inputs) return self.models['tokenizer'].decode(outputs[0], skip_special_tokens=True) async def shutdown(self): """Proper async resource cleanup""" await self.http_session.close() await self.database.close() # Close the database connection # Optimization Techniques def apply_quantization(self): """Apply quantization to the model""" self.models['mistralai'] = torch.quantization.quantize_dynamic( self.models['mistralai'], {torch.nn.Linear}, dtype=torch.qint8 ) def apply_pruning(self): """Apply pruning to the model""" parameters_to_prune = ( (self.models['mistralai'].transformer.h[i].attn.c_attn, 'weight') for i in range(self.models['mistralai'].config.n_layer) ) torch.nn.utils.prune.global_unstructured( parameters_to_prune, pruning_method=torch.nn.utils.prune.L1Unstructured, amount=0.4, ) def apply_mixed_precision_training(self): """Enable mixed precision training""" scaler = torch.cuda.amp.GradScaler() return scaler def setup_distributed_training(self): """Setup distributed training""" world_size = int(os.getenv("WORLD_SIZE", "1")) rank = int(os.getenv("RANK", "0")) local_rank = int(os.getenv("LOCAL_RANK", "0")) if world_size > 1: dist.init_process_group("nccl") torch.cuda.set_device(local_rank) return world_size, rank, local_rank def optimize_data_pipeline(self): """Optimize data loading and preprocessing pipeline""" # Example: Using DALI for efficient data loading import nvidia.dali.pipeline as pipeline from nvidia.dali.plugin.pytorch import DALIGenericIterator class ExternalInputIterator: def __init__(self, batch_size): self.batch_size = batch_size def __iter__(self): self.i = 0 return self def __next__(self): self.i += 1 if self.i > 10: raise StopIteration return [np.random.rand(3, 224, 224).astype(np.float32) for _ in range(self.batch_size)] pipe = pipeline.Pipeline(batch_size=32, num_threads=2, device_id=0) with pipe: images = pipeline.fn.external_source(source=ExternalInputIterator(32), num_outputs=1) pipe.set_outputs(images) self.data_loader = DALIGenericIterator(pipe, ['data'], reader_name='Reader') def apply_gradient_accumulation(self, optimizer, loss, scaler=None, accumulation_steps=4): """Apply gradient accumulation to simulate larger batch sizes""" if scaler: scaler.scale(loss).backward() if (self.step + 1) % accumulation_steps == 0: scaler.step(optimizer) scaler.update() optimizer.zero_grad() else: loss.backward() if (self.step + 1) % accumulation_steps == 0: optimizer.step() optimizer.zero_grad() def apply_knowledge_distillation(self, teacher_model, student_model, data_loader, optimizer, loss_fn, temperature=1.0, alpha=0.5): """Apply knowledge distillation from teacher model to student model""" student_model.train() teacher_model.eval() for data in data_loader: inputs, labels = data inputs, labels = inputs.to(self.device), labels.to(self.device) with torch.no_grad(): teacher_outputs = teacher_model(inputs) student_outputs = student_model(inputs) loss = alpha * loss_fn(student_outputs, labels) + (1 - alpha) * loss_fn(student_outputs / temperature, teacher_outputs / temperature) optimizer.zero_grad() loss.backward() optimizer.step() def monitor_performance(self): """Monitor and profile performance""" from torch.profiler import profile, record_function, ProfilerActivity with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], record_shapes=True) as prof: with record_function("model_inference"): self.generate_response("Sample query", 1) print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10)) def apply_vector_search(self, embeddings, query_embedding, top_k=5): """Apply vector search to find the most similar embeddings""" from sklearn.metrics.pairwise import cosine_similarity similarities = cosine_similarity(query_embedding, embeddings) top_k_indices = similarities.argsort()[0][-top_k:] return top_k_indices def apply_prompt_engineering(self, prompt): """Apply prompt engineering to improve model responses""" engineered_prompt = f"Please provide a detailed and informative response to the following query: {prompt}" return engineered_prompt def optimize_model(self): """Optimize the model using various techniques""" self.apply_quantization() self.apply_pruning() scaler = self.apply_mixed_precision_training() world_size, rank, local_rank = self.setup_distributed_training() self.optimize_data_pipeline() self.monitor_performance() # Example usage of gradient accumulation optimizer = torch.optim.Adam(self.models['mistralai'].parameters(), lr=1e-4) for step, (inputs, labels) in enumerate(self.data_loader): self.step = step loss = self.models['mistralai'](inputs, labels) self.apply_gradient_accumulation(optimizer, loss, scaler) # Example usage of knowledge distillation teacher_model = AutoModelForCausalLM.from_pretrained("teacher_model_path") student_model = AutoModelForCausalLM.from_pretrained("student_model_path") loss_fn = torch.nn.CrossEntropyLoss() self.apply_knowledge_distillation(teacher_model, student_model, self.data_loader, optimizer, loss_fn) # Example usage of vector search embeddings = self.models['mistralai'].get_input_embeddings().weight.data.cpu().numpy() query_embedding = self.models['mistralai'].get_input_embeddings()(torch.tensor([self.models['tokenizer'].encode("query")])).cpu().numpy() top_k_indices = self.apply_vector_search(embeddings, query_embedding) print(f"Top {top_k} similar embeddings indices: {top_k_indices}") # Example usage of prompt engineering prompt = "What is the capital of France?" engineered_prompt = self.apply_prompt_engineering(prompt) print(f"Engineered prompt: {engineered_prompt}") if __name__ == "__main__": ai_core = AICore(config_path="config/ai_assistant_config.json") ai_core.optimize_model()