CV10 / src /ai_core_system_new.py
Raiff1982's picture
Upload 24 files
559af1d verified
raw
history blame
6.8 kB
import asyncio
import json
import logging
from typing import List, Dict, Any, Optional
from huggingface_hub import InferenceClient
from components.adaptive_learning import AdaptiveLearningEnvironment
from components.ai_driven_creativity import AIDrivenCreativity
from components.collaborative_ai import CollaborativeAI
from components.cultural_sensitivity import CulturalSensitivityEngine
from components.data_processing import AdvancedDataProcessor
from components.dynamic_learning import DynamicLearner
from components.ethical_governance import EthicalAIGovernance
from components.explainable_ai import ExplainableAI
from components.feedback_manager import ImprovedFeedbackManager
from components.multimodal_analyzer import MultimodalAnalyzer
from components.neuro_symbolic import NeuroSymbolicEngine
from components.quantum_optimizer import QuantumInspiredOptimizer
from components.real_time_data import RealTimeDataIntegrator
from components.self_improving_ai import SelfImprovingAI
from components.user_personalization import UserPersonalizer
from models.cognitive_engine import BroaderPerspectiveEngine
from models.elements import Element
from models.healing_system import SelfHealingSystem
from models.safety_system import SafetySystem
from models.user_profiles import UserProfile
from utils.database import Database
from utils.logger import logger
class AICore:
"""Enhanced AI Core System using open-source models"""
def __init__(self, config_path: str = "config/ai_assistant_config.json"):
# Load configuration
self.config = self._load_config(config_path)
# Initialize Hugging Face client
self.inference_client = InferenceClient()
# Initialize ML models configuration
self.models = {
'text-generation': "gpt2",
'sentiment': "distilbert-base-uncased-finetuned-sst-2-english",
'embeddings': "sentence-transformers/all-MiniLM-L6-v2"
}
# Initialize core components
self.cognition = BroaderPerspectiveEngine()
self.self_healing = SelfHealingSystem(self.config)
self.safety_system = SafetySystem()
self.elements = self._initialize_elements()
# Initialize support systems
self.database = Database()
self.user_profiles = UserProfile(self.database)
self.feedback_manager = ImprovedFeedbackManager(self.database)
self.context_manager = AdaptiveLearningEnvironment()
self.data_processor = AdvancedDataProcessor()
self.dynamic_learner = DynamicLearner()
def _load_config(self, config_path: str) -> Dict[str, Any]:
"""Load configuration from JSON file"""
try:
with open(config_path, 'r') as f:
return json.load(f)
except Exception as e:
logger.error(f"Failed to load config: {e}")
return {}
def _initialize_elements(self) -> List[Element]:
"""Initialize system elements"""
return [Element(name) for name in self.config.get('elements', [])]
async def _generate_huggingface_response(self, query: str, task: str = 'text-generation') -> Any:
"""Generate a response using Hugging Face models"""
try:
if task == 'text-generation':
response = self.inference_client.text_generation(
query,
model=self.models['text-generation'],
max_new_tokens=100
)
return response[0]["generated_text"]
elif task == 'sentiment':
response = self.inference_client.text_classification(
query,
model=self.models['sentiment']
)
return {
"score": response[0]["score"],
"label": response[0]["label"]
}
elif task == 'embeddings':
response = self.inference_client.feature_extraction(
query,
model=self.models['embeddings']
)
return response
except Exception as e:
logger.error(f"Hugging Face API error ({task}): {str(e)}")
return None
async def process_input(self, text: str, context: Dict[str, Any] = None) -> Dict[str, Any]:
"""Process input text through multiple perspectives"""
try:
# Get sentiment analysis
sentiment = await self._generate_huggingface_response(text, 'sentiment')
# Generate perspectives using different models
perspectives = []
# Add text generation perspective
generated_text = await self._generate_huggingface_response(text)
if generated_text:
perspectives.append({
"type": "text-generation",
"content": generated_text
})
# Get embeddings for semantic understanding
embeddings = await self._generate_huggingface_response(text, 'embeddings')
if embeddings is not None:
perspectives.append({
"type": "semantic",
"content": "Semantic analysis complete"
})
# Process through cognitive engine
cognitive_result = self.cognition.process(text, context)
perspectives.append({
"type": "cognitive",
"content": cognitive_result
})
# Generate final response
final_response = await self._generate_huggingface_response(
text + "\n\nContext: " + str(perspectives)
)
# Get explanation from the ethical governance system
explanation = "Response generated using ethical AI principles"
return {
"insights": perspectives,
"response": final_response,
"sentiment": sentiment,
"explanation": explanation,
"status": "success"
}
except Exception as e:
logger.error(f"Error in process_input: {str(e)}")
return {
"error": str(e),
"status": "error"
}
async def shutdown(self):
"""Cleanup resources"""
try:
await self.database.close()
except Exception as e:
logger.error(f"Error during shutdown: {e}")