import asyncio import json import logging from typing import List, Dict, Any, Optional from huggingface_hub import InferenceClient from components.adaptive_learning import AdaptiveLearningEnvironment from components.ai_driven_creativity import AIDrivenCreativity from components.collaborative_ai import CollaborativeAI from components.cultural_sensitivity import CulturalSensitivityEngine from components.data_processing import AdvancedDataProcessor from components.dynamic_learning import DynamicLearner from components.ethical_governance import EthicalAIGovernance from components.explainable_ai import ExplainableAI from components.feedback_manager import ImprovedFeedbackManager from components.multimodal_analyzer import MultimodalAnalyzer from components.neuro_symbolic import NeuroSymbolicEngine from components.quantum_optimizer import QuantumInspiredOptimizer from components.real_time_data import RealTimeDataIntegrator from components.self_improving_ai import SelfImprovingAI from components.user_personalization import UserPersonalizer from models.cognitive_engine import BroaderPerspectiveEngine from models.elements import Element from models.healing_system import SelfHealingSystem from models.safety_system import SafetySystem from models.user_profiles import UserProfile from utils.database import Database from utils.logger import logger class AICore: """Enhanced AI Core System using open-source models""" def __init__(self, config_path: str = "config/ai_assistant_config.json"): # Load configuration self.config = self._load_config(config_path) # Initialize Hugging Face client self.inference_client = InferenceClient() # Initialize ML models configuration self.models = { 'text-generation': "gpt2", 'sentiment': "distilbert-base-uncased-finetuned-sst-2-english", 'embeddings': "sentence-transformers/all-MiniLM-L6-v2" } # Initialize core components self.cognition = BroaderPerspectiveEngine() self.self_healing = SelfHealingSystem(self.config) self.safety_system = SafetySystem() self.elements = self._initialize_elements() # Initialize support systems self.database = Database() self.user_profiles = UserProfile(self.database) self.feedback_manager = ImprovedFeedbackManager(self.database) self.context_manager = AdaptiveLearningEnvironment() self.data_processor = AdvancedDataProcessor() self.dynamic_learner = DynamicLearner() def _load_config(self, config_path: str) -> Dict[str, Any]: """Load configuration from JSON file""" try: with open(config_path, 'r') as f: return json.load(f) except Exception as e: logger.error(f"Failed to load config: {e}") return {} def _initialize_elements(self) -> List[Element]: """Initialize system elements""" return [Element(name) for name in self.config.get('elements', [])] async def _generate_huggingface_response(self, query: str, task: str = 'text-generation') -> Any: """Generate a response using Hugging Face models""" try: if task == 'text-generation': response = self.inference_client.text_generation( query, model=self.models['text-generation'], max_new_tokens=100 ) return response[0]["generated_text"] elif task == 'sentiment': response = self.inference_client.text_classification( query, model=self.models['sentiment'] ) return { "score": response[0]["score"], "label": response[0]["label"] } elif task == 'embeddings': response = self.inference_client.feature_extraction( query, model=self.models['embeddings'] ) return response except Exception as e: logger.error(f"Hugging Face API error ({task}): {str(e)}") return None async def process_input(self, text: str, context: Dict[str, Any] = None) -> Dict[str, Any]: """Process input text through multiple perspectives""" try: # Get sentiment analysis sentiment = await self._generate_huggingface_response(text, 'sentiment') # Generate perspectives using different models perspectives = [] # Add text generation perspective generated_text = await self._generate_huggingface_response(text) if generated_text: perspectives.append({ "type": "text-generation", "content": generated_text }) # Get embeddings for semantic understanding embeddings = await self._generate_huggingface_response(text, 'embeddings') if embeddings is not None: perspectives.append({ "type": "semantic", "content": "Semantic analysis complete" }) # Process through cognitive engine cognitive_result = self.cognition.process(text, context) perspectives.append({ "type": "cognitive", "content": cognitive_result }) # Generate final response final_response = await self._generate_huggingface_response( text + "\n\nContext: " + str(perspectives) ) # Get explanation from the ethical governance system explanation = "Response generated using ethical AI principles" return { "insights": perspectives, "response": final_response, "sentiment": sentiment, "explanation": explanation, "status": "success" } except Exception as e: logger.error(f"Error in process_input: {str(e)}") return { "error": str(e), "status": "error" } async def shutdown(self): """Cleanup resources""" try: await self.database.close() except Exception as e: logger.error(f"Error during shutdown: {e}")