|
|
--- |
|
|
title: ZeroGPU-LLM-Inference |
|
|
emoji: 🧠 |
|
|
colorFrom: pink |
|
|
colorTo: purple |
|
|
sdk: gradio |
|
|
sdk_version: 5.49.1 |
|
|
app_file: app.py |
|
|
pinned: false |
|
|
license: apache-2.0 |
|
|
short_description: Streaming LLM chat with web search and debug |
|
|
--- |
|
|
|
|
|
This Gradio app provides **token-streaming, chat-style inference** on a wide variety of Transformer models—leveraging ZeroGPU for free GPU acceleration on HF Spaces. |
|
|
|
|
|
Key features: |
|
|
- **Real-time DuckDuckGo web search** (background thread, configurable timeout) with results injected into the system prompt. |
|
|
- **Prompt preview panel** for debugging and prompt-engineering insights—see exactly what’s sent to the model. |
|
|
- **Thought vs. Answer streaming**: any `<think>…</think>` blocks emitted by the model are shown as separate “💭 Thought.” |
|
|
- **Cancel button** to immediately stop generation. |
|
|
- **Dynamic system prompt**: automatically inserts today’s date when you toggle web search. |
|
|
- **Extensive model selection**: over 30 LLMs (from Phi-4 mini to Qwen3-14B, SmolLM2, Taiwan-ELM, Mistral, Meta-Llama, MiMo, Gemma, DeepSeek-R1, etc.). |
|
|
- **Memory-safe design**: loads one model at a time, clears cache after each generation. |
|
|
- **Customizable generation parameters**: max tokens, temperature, top-k, top-p, repetition penalty. |
|
|
- **Web-search settings**: max results, max chars per result, search timeout. |
|
|
- **Requirements pinned** to ensure reproducible deployment. |
|
|
|
|
|
## 🔄 Supported Models |
|
|
|
|
|
Use the dropdown to select any of these: |
|
|
|
|
|
| Name | Repo ID | |
|
|
| ------------------------------------- | -------------------------------------------------- | |
|
|
| Taiwan-ELM-1_1B-Instruct | liswei/Taiwan-ELM-1_1B-Instruct | |
|
|
| Taiwan-ELM-270M-Instruct | liswei/Taiwan-ELM-270M-Instruct | |
|
|
| Qwen3-0.6B | Qwen/Qwen3-0.6B | |
|
|
| Qwen3-1.7B | Qwen/Qwen3-1.7B | |
|
|
| Qwen3-4B | Qwen/Qwen3-4B | |
|
|
| Qwen3-8B | Qwen/Qwen3-8B | |
|
|
| Qwen3-14B | Qwen/Qwen3-14B | |
|
|
| Gemma-3-4B-IT | unsloth/gemma-3-4b-it | |
|
|
| SmolLM2-135M-Instruct-TaiwanChat | Luigi/SmolLM2-135M-Instruct-TaiwanChat | |
|
|
| SmolLM2-135M-Instruct | HuggingFaceTB/SmolLM2-135M-Instruct | |
|
|
| SmolLM2-360M-Instruct-TaiwanChat | Luigi/SmolLM2-360M-Instruct-TaiwanChat | |
|
|
| Llama-3.2-Taiwan-3B-Instruct | lianghsun/Llama-3.2-Taiwan-3B-Instruct | |
|
|
| MiniCPM3-4B | openbmb/MiniCPM3-4B | |
|
|
| Qwen2.5-3B-Instruct | Qwen/Qwen2.5-3B-Instruct | |
|
|
| Qwen2.5-7B-Instruct | Qwen/Qwen2.5-7B-Instruct | |
|
|
| Phi-4-mini-Reasoning | microsoft/Phi-4-mini-reasoning | |
|
|
| Phi-4-mini-Instruct | microsoft/Phi-4-mini-instruct | |
|
|
| Meta-Llama-3.1-8B-Instruct | MaziyarPanahi/Meta-Llama-3.1-8B-Instruct | |
|
|
| DeepSeek-R1-Distill-Llama-8B | unsloth/DeepSeek-R1-Distill-Llama-8B | |
|
|
| Mistral-7B-Instruct-v0.3 | MaziyarPanahi/Mistral-7B-Instruct-v0.3 | |
|
|
| Qwen2.5-Coder-7B-Instruct | Qwen/Qwen2.5-Coder-7B-Instruct | |
|
|
| Qwen2.5-Omni-3B | Qwen/Qwen2.5-Omni-3B | |
|
|
| MiMo-7B-RL | XiaomiMiMo/MiMo-7B-RL | |
|
|
|
|
|
*(…and more can easily be added in `MODELS` in `app.py`.)* |
|
|
|
|
|
## ⚙️ Generation & Search Parameters |
|
|
|
|
|
- **Max Tokens**: 64–16384 |
|
|
- **Temperature**: 0.1–2.0 |
|
|
- **Top-K**: 1–100 |
|
|
- **Top-P**: 0.1–1.0 |
|
|
- **Repetition Penalty**: 1.0–2.0 |
|
|
|
|
|
- **Enable Web Search**: on/off |
|
|
- **Max Results**: integer |
|
|
- **Max Chars/Result**: integer |
|
|
- **Search Timeout (s)**: 0.0–30.0 |
|
|
|
|
|
## 🚀 How It Works |
|
|
|
|
|
1. **User message** enters chat history. |
|
|
2. If search is enabled, a background DuckDuckGo thread fetches snippets. |
|
|
3. After up to *Search Timeout* seconds, snippets merge into the system prompt. |
|
|
4. The selected model pipeline is loaded (bf16→f16→f32 fallback) on ZeroGPU. |
|
|
5. Prompt is formatted—any `<think>…</think>` blocks will be streamed as separate “💭 Thought.” |
|
|
6. Tokens stream to the Chatbot UI. Press **Cancel** to stop mid-generation. |