Spaces:
Runtime error
Runtime error
Update app.py
#11
by
Gwaldo
- opened
app.py
CHANGED
|
@@ -1,241 +1,172 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from huggingface_hub import HfApi, hf_hub_download
|
| 3 |
from huggingface_hub.repocard import metadata_load
|
|
|
|
| 4 |
import requests
|
| 5 |
import re
|
| 6 |
import pandas as pd
|
| 7 |
-
|
| 8 |
-
import os
|
| 9 |
-
|
| 10 |
|
|
|
|
|
|
|
|
|
|
| 11 |
def pass_emoji(passed):
|
| 12 |
-
if passed
|
| 13 |
-
passed = "✅"
|
| 14 |
-
else:
|
| 15 |
-
passed = "❌"
|
| 16 |
-
return passed
|
| 17 |
|
| 18 |
api = HfApi()
|
| 19 |
USERNAMES_DATASET_ID = "huggingface-course/audio-course-u7-hands-on"
|
| 20 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 21 |
|
| 22 |
-
|
| 23 |
def get_user_models(hf_username, task):
|
| 24 |
"""
|
| 25 |
List the user's models for a given task
|
| 26 |
-
:param hf_username: User HF username
|
| 27 |
"""
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
user_model_ids = [x.modelId for x in models]
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
dataset = 'marsyas/gtzan'
|
| 34 |
-
|
| 35 |
dataset = 'PolyAI/minds14'
|
| 36 |
-
|
| 37 |
dataset = ""
|
| 38 |
-
|
| 39 |
-
print("Unsupported task")
|
|
|
|
| 40 |
|
| 41 |
dataset_specific_models = []
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
if meta is None:
|
| 49 |
-
continue
|
| 50 |
-
try:
|
| 51 |
-
if meta["datasets"] == [dataset]:
|
| 52 |
dataset_specific_models.append(model)
|
| 53 |
-
|
| 54 |
continue
|
| 55 |
-
return dataset_specific_models
|
| 56 |
-
|
| 57 |
-
def calculate_best_result(user_models, task):
|
| 58 |
-
"""
|
| 59 |
-
Calculate the best results of a unit for a given task
|
| 60 |
-
:param user_model_ids: models of a user
|
| 61 |
-
"""
|
| 62 |
-
|
| 63 |
-
best_model = ""
|
| 64 |
-
|
| 65 |
-
if task == "audio-classification":
|
| 66 |
-
best_result = -100
|
| 67 |
-
larger_is_better = True
|
| 68 |
-
elif task == "automatic-speech-recognition":
|
| 69 |
-
best_result = 100
|
| 70 |
-
larger_is_better = False
|
| 71 |
-
|
| 72 |
-
for model in user_models:
|
| 73 |
-
meta = get_metadata(model)
|
| 74 |
-
if meta is None:
|
| 75 |
-
continue
|
| 76 |
-
metric = parse_metrics(model, task)
|
| 77 |
-
|
| 78 |
-
if metric == None:
|
| 79 |
-
continue
|
| 80 |
-
|
| 81 |
-
if larger_is_better:
|
| 82 |
-
if metric > best_result:
|
| 83 |
-
best_result = metric
|
| 84 |
-
best_model = meta['model-index'][0]["name"]
|
| 85 |
-
else:
|
| 86 |
-
if metric < best_result:
|
| 87 |
-
best_result = metric
|
| 88 |
-
best_model = meta['model-index'][0]["name"]
|
| 89 |
-
|
| 90 |
-
return best_result, best_model
|
| 91 |
|
|
|
|
| 92 |
|
| 93 |
def get_metadata(model_id):
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
# 404 README.md not found
|
| 103 |
-
return None
|
| 104 |
-
|
| 105 |
|
| 106 |
def extract_metric(model_card_content, task):
|
| 107 |
-
"""
|
| 108 |
-
Extract the metric value from the models' model card
|
| 109 |
-
:param model_card_content: model card content
|
| 110 |
-
"""
|
| 111 |
accuracy_pattern = r"(?:Accuracy|eval_accuracy): (\d+\.\d+)"
|
| 112 |
wer_pattern = r"Wer: (\d+\.\d+)"
|
| 113 |
-
|
| 114 |
-
if task == "audio-classification":
|
| 115 |
-
pattern = accuracy_pattern
|
| 116 |
-
elif task == "automatic-speech-recognition":
|
| 117 |
-
pattern = wer_pattern
|
| 118 |
-
|
| 119 |
match = re.search(pattern, model_card_content)
|
| 120 |
-
if match
|
| 121 |
-
metric = match.group(1)
|
| 122 |
-
return float(metric)
|
| 123 |
-
else:
|
| 124 |
-
return None
|
| 125 |
-
|
| 126 |
|
| 127 |
def parse_metrics(model, task):
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
return extract_metric(card.content, task)
|
| 134 |
-
|
| 135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
def certification(hf_username):
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
unit["passed_"] = True
|
| 194 |
-
unit["passed"] = pass_emoji(unit["passed_"])
|
| 195 |
-
except: print("Either no relevant models found, or no metrics in the model card for automatic speech recognition")
|
| 196 |
-
case "text-to-speech":
|
| 197 |
-
try:
|
| 198 |
-
user_tts_models = get_user_models(hf_username, task = "text-to-speech")
|
| 199 |
-
if user_tts_models:
|
| 200 |
-
unit["best_result"] = 0
|
| 201 |
-
unit["best_model_id"] = user_tts_models[0]
|
| 202 |
-
unit["passed_"] = True
|
| 203 |
-
unit["passed"] = pass_emoji(unit["passed_"])
|
| 204 |
-
except: print("Either no relevant models found, or no metrics in the model card for automatic speech recognition")
|
| 205 |
-
case "demo":
|
| 206 |
-
u7_usernames = hf_hub_download(USERNAMES_DATASET_ID, repo_type = "dataset", filename="usernames.csv", token=HF_TOKEN)
|
| 207 |
-
u7_users = pd.read_csv(u7_usernames)
|
| 208 |
-
if hf_username in u7_users['username'].tolist():
|
| 209 |
-
unit["best_result"] = 0
|
| 210 |
-
unit["best_model_id"] = "Demo check passed, no model id"
|
| 211 |
-
unit["passed_"] = True
|
| 212 |
-
unit["passed"] = pass_emoji(unit["passed_"])
|
| 213 |
-
case _:
|
| 214 |
-
print("Unknown task")
|
| 215 |
-
|
| 216 |
-
print(results_certification)
|
| 217 |
-
|
| 218 |
-
df = pd.DataFrame(results_certification)
|
| 219 |
-
df = df[['passed', 'unit', 'task', 'baseline_metric', 'best_result', 'best_model_id']]
|
| 220 |
-
return df
|
| 221 |
-
|
| 222 |
with gr.Blocks() as demo:
|
| 223 |
-
gr.Markdown(
|
| 224 |
# 🏆 Check your progress in the Audio Course 🏆
|
| 225 |
-
|
| 226 |
-
-
|
| 227 |
-
-
|
| 228 |
-
|
| 229 |
-
For the assignments where you have to train a model, your model's metric should be equal to or better than the baseline metric.
|
| 230 |
-
For the Unit 7 assignment, first, check your demo with the [Unit 7 assessment space](https://huggingface.co/spaces/huggingface-course/audio-course-u7-assessment)
|
| 231 |
-
|
| 232 |
-
Make sure that you have uploaded your model(s) to Hub, and that your Unit 7 demo is public.
|
| 233 |
-
To check your progress, type your Hugging Face Username here (in my case MariaK)
|
| 234 |
""")
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from huggingface_hub import HfApi, hf_hub_download
|
| 3 |
from huggingface_hub.repocard import metadata_load
|
| 4 |
+
from huggingface_hub import ModelCard
|
| 5 |
import requests
|
| 6 |
import re
|
| 7 |
import pandas as pd
|
| 8 |
+
import os
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
# --------------------
|
| 11 |
+
# Helper functions
|
| 12 |
+
# --------------------
|
| 13 |
def pass_emoji(passed):
|
| 14 |
+
return "✅" if passed else "❌"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
api = HfApi()
|
| 17 |
USERNAMES_DATASET_ID = "huggingface-course/audio-course-u7-hands-on"
|
| 18 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 19 |
|
|
|
|
| 20 |
def get_user_models(hf_username, task):
|
| 21 |
"""
|
| 22 |
List the user's models for a given task
|
|
|
|
| 23 |
"""
|
| 24 |
+
try:
|
| 25 |
+
models = api.list_models(author=hf_username, filter=[task])
|
| 26 |
+
except Exception:
|
| 27 |
+
return []
|
| 28 |
+
|
| 29 |
user_model_ids = [x.modelId for x in models]
|
| 30 |
|
| 31 |
+
# map task to dataset
|
| 32 |
+
if task == "audio-classification":
|
| 33 |
dataset = 'marsyas/gtzan'
|
| 34 |
+
elif task == "automatic-speech-recognition":
|
| 35 |
dataset = 'PolyAI/minds14'
|
| 36 |
+
elif task == "text-to-speech":
|
| 37 |
dataset = ""
|
| 38 |
+
else:
|
| 39 |
+
print(f"Unsupported task: {task}")
|
| 40 |
+
return []
|
| 41 |
|
| 42 |
dataset_specific_models = []
|
| 43 |
+
for model in user_model_ids:
|
| 44 |
+
try:
|
| 45 |
+
meta = get_metadata(model)
|
| 46 |
+
if meta is None:
|
| 47 |
+
continue
|
| 48 |
+
if dataset == "" or meta.get("datasets") == [dataset]:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
dataset_specific_models.append(model)
|
| 50 |
+
except Exception:
|
| 51 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
+
return dataset_specific_models
|
| 54 |
|
| 55 |
def get_metadata(model_id):
|
| 56 |
+
"""Load model metadata safely"""
|
| 57 |
+
try:
|
| 58 |
+
readme_path = hf_hub_download(model_id, filename="README.md", token=HF_TOKEN)
|
| 59 |
+
return metadata_load(readme_path)
|
| 60 |
+
except requests.exceptions.HTTPError:
|
| 61 |
+
return None
|
| 62 |
+
except Exception:
|
| 63 |
+
return None
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
def extract_metric(model_card_content, task):
|
| 66 |
+
"""Extract metric from model card content"""
|
|
|
|
|
|
|
|
|
|
| 67 |
accuracy_pattern = r"(?:Accuracy|eval_accuracy): (\d+\.\d+)"
|
| 68 |
wer_pattern = r"Wer: (\d+\.\d+)"
|
| 69 |
+
pattern = accuracy_pattern if task == "audio-classification" else wer_pattern
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
match = re.search(pattern, model_card_content)
|
| 71 |
+
return float(match.group(1)) if match else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
def parse_metrics(model, task):
|
| 74 |
+
try:
|
| 75 |
+
card = ModelCard.load(model)
|
| 76 |
+
return extract_metric(card.content, task)
|
| 77 |
+
except Exception:
|
| 78 |
+
return None
|
|
|
|
|
|
|
| 79 |
|
| 80 |
+
def calculate_best_result(user_models, task):
|
| 81 |
+
"""Calculate best result for a task"""
|
| 82 |
+
best_model = ""
|
| 83 |
+
best_result = -100 if task == "audio-classification" else 100
|
| 84 |
+
larger_is_better = task == "audio-classification"
|
| 85 |
+
|
| 86 |
+
for model in user_models:
|
| 87 |
+
metric = parse_metrics(model, task)
|
| 88 |
+
if metric is None:
|
| 89 |
+
continue
|
| 90 |
+
if (larger_is_better and metric > best_result) or (not larger_is_better and metric < best_result):
|
| 91 |
+
best_result = metric
|
| 92 |
+
meta = get_metadata(model)
|
| 93 |
+
if meta:
|
| 94 |
+
best_model = meta.get('model-index', [{}])[0].get("name", model)
|
| 95 |
+
return best_result, best_model
|
| 96 |
+
|
| 97 |
+
# --------------------
|
| 98 |
+
# Certification logic
|
| 99 |
+
# --------------------
|
| 100 |
def certification(hf_username):
|
| 101 |
+
results_certification = [
|
| 102 |
+
{"unit": "Unit 4: Audio Classification", "task": "audio-classification", "baseline_metric": 0.87, "best_result": 0, "best_model_id": "", "passed_": False},
|
| 103 |
+
{"unit": "Unit 5: Automatic Speech Recognition", "task": "automatic-speech-recognition", "baseline_metric": 0.37, "best_result": 0, "best_model_id": "", "passed_": False},
|
| 104 |
+
{"unit": "Unit 6: Text-to-Speech", "task": "text-to-speech", "baseline_metric": 0, "best_result": 0, "best_model_id": "", "passed_": False},
|
| 105 |
+
{"unit": "Unit 7: Audio applications", "task": "demo", "baseline_metric": 0, "best_result": 0, "best_model_id": "", "passed_": False},
|
| 106 |
+
]
|
| 107 |
+
|
| 108 |
+
for unit in results_certification:
|
| 109 |
+
task = unit["task"]
|
| 110 |
+
if task == "audio-classification":
|
| 111 |
+
try:
|
| 112 |
+
models = get_user_models(hf_username, task)
|
| 113 |
+
best_result, best_model_id = calculate_best_result(models, task)
|
| 114 |
+
unit["best_result"] = best_result
|
| 115 |
+
unit["best_model_id"] = best_model_id
|
| 116 |
+
unit["passed_"] = best_result >= unit["baseline_metric"]
|
| 117 |
+
except Exception:
|
| 118 |
+
pass
|
| 119 |
+
elif task == "automatic-speech-recognition":
|
| 120 |
+
try:
|
| 121 |
+
models = get_user_models(hf_username, task)
|
| 122 |
+
best_result, best_model_id = calculate_best_result(models, task)
|
| 123 |
+
unit["best_result"] = best_result
|
| 124 |
+
unit["best_model_id"] = best_model_id
|
| 125 |
+
unit["passed_"] = best_result <= unit["baseline_metric"]
|
| 126 |
+
except Exception:
|
| 127 |
+
pass
|
| 128 |
+
elif task == "text-to-speech":
|
| 129 |
+
try:
|
| 130 |
+
models = get_user_models(hf_username, task)
|
| 131 |
+
if models:
|
| 132 |
+
unit["best_result"] = 0
|
| 133 |
+
unit["best_model_id"] = models[0]
|
| 134 |
+
unit["passed_"] = True
|
| 135 |
+
except Exception:
|
| 136 |
+
pass
|
| 137 |
+
elif task == "demo":
|
| 138 |
+
try:
|
| 139 |
+
u7_file = hf_hub_download(USERNAMES_DATASET_ID, repo_type="dataset", filename="usernames.csv", token=HF_TOKEN)
|
| 140 |
+
u7_users = pd.read_csv(u7_file)
|
| 141 |
+
if hf_username in u7_users['username'].tolist():
|
| 142 |
+
unit["best_result"] = 0
|
| 143 |
+
unit["best_model_id"] = "Demo check passed"
|
| 144 |
+
unit["passed_"] = True
|
| 145 |
+
except Exception:
|
| 146 |
+
pass
|
| 147 |
+
|
| 148 |
+
unit["passed"] = pass_emoji(unit["passed_"])
|
| 149 |
+
|
| 150 |
+
df = pd.DataFrame(results_certification)
|
| 151 |
+
df = df[['passed', 'unit', 'task', 'baseline_metric', 'best_result', 'best_model_id']]
|
| 152 |
+
return df
|
| 153 |
+
|
| 154 |
+
# --------------------
|
| 155 |
+
# Gradio UI
|
| 156 |
+
# --------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
with gr.Blocks() as demo:
|
| 158 |
+
gr.Markdown("""
|
| 159 |
# 🏆 Check your progress in the Audio Course 🏆
|
| 160 |
+
- Pass 3 out of 4 assignments for a certificate.
|
| 161 |
+
- Pass 4 out of 4 assignments for honors.
|
| 162 |
+
- For Unit 7, first check your demo with the [Unit 7 assessment space](https://huggingface.co/spaces/huggingface-course/audio-course-u7-assessment).
|
| 163 |
+
- Make sure your models are uploaded to Hub and public.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
""")
|
| 165 |
+
|
| 166 |
+
hf_username_input = gr.Textbox(label="Your Hugging Face Username", placeholder="MariaK")
|
| 167 |
+
check_button = gr.Button("Check my progress")
|
| 168 |
+
output_table = gr.Dataframe()
|
| 169 |
+
|
| 170 |
+
check_button.click(fn=certification, inputs=hf_username_input, outputs=output_table)
|
| 171 |
+
|
| 172 |
+
demo.launch()
|