ZipVoice-DEMO / app.py
Luigi's picture
Localize UI and restore Whisper transcription
ab257e2
#!/usr/bin/env python3
"""
ZipVoice Gradio Web Interface for HuggingFace Spaces
Updated for Gradio 5.47.0 compatibility
"""
import os
import sys
import json
import tempfile
import gradio as gr
import torch
from pathlib import Path
import spaces
import whisper
# Add current directory to Python path for local zipvoice package
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
# Import ZipVoice components
from zipvoice.models.zipvoice import ZipVoice
from zipvoice.models.zipvoice_distill import ZipVoiceDistill
from zipvoice.tokenizer.tokenizer import EmiliaTokenizer
from zipvoice.utils.checkpoint import load_checkpoint
from zipvoice.utils.feature import VocosFbank
from zipvoice.bin.infer_zipvoice import generate_sentence
from lhotse.utils import fix_random_seed
# Global caches for lazy loading
_models_cache: dict[str, dict[str, object]] = {}
_tokenizer_cache: EmiliaTokenizer | None = None
_vocoder_cache = None
_feature_extractor_cache = None
def load_models_and_components(model_name: str):
"""Load and cache models, tokenizer, vocoder, and feature extractor."""
global _models_cache, _tokenizer_cache, _vocoder_cache, _feature_extractor_cache
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if model_name not in _models_cache:
print(f"Loading {model_name} model…")
model_dir_map = {
"zipvoice": "zipvoice",
"zipvoice_distill": "zipvoice_distill",
}
huggingface_repo = "k2-fsa/ZipVoice"
from huggingface_hub import hf_hub_download
model_ckpt = hf_hub_download(huggingface_repo, filename=f"{model_dir_map[model_name]}/model.pt")
model_config_path = hf_hub_download(huggingface_repo, filename=f"{model_dir_map[model_name]}/model.json")
token_file = hf_hub_download(huggingface_repo, filename=f"{model_dir_map[model_name]}/tokens.txt")
if _tokenizer_cache is None:
_tokenizer_cache = EmiliaTokenizer(token_file=token_file)
tokenizer = _tokenizer_cache
tokenizer_config = {"vocab_size": tokenizer.vocab_size, "pad_id": tokenizer.pad_id}
with open(model_config_path, "r") as f:
model_config = json.load(f)
if model_name == "zipvoice":
model = ZipVoice(**model_config["model"], **tokenizer_config)
else:
model = ZipVoiceDistill(**model_config["model"], **tokenizer_config)
load_checkpoint(filename=model_ckpt, model=model, strict=True)
model = model.to(device)
model.eval()
_models_cache[model_name] = {
"model": model,
"sampling_rate": model_config["feature"]["sampling_rate"],
}
if _vocoder_cache is None:
from vocos import Vocos
_vocoder_cache = Vocos.from_pretrained("charactr/vocos-mel-24khz")
_vocoder_cache = _vocoder_cache.to(device)
_vocoder_cache.eval()
if _feature_extractor_cache is None:
_feature_extractor_cache = VocosFbank()
entry = _models_cache[model_name]
return (
entry["model"],
_tokenizer_cache,
_vocoder_cache,
_feature_extractor_cache,
entry["sampling_rate"],
)
@spaces.GPU
def transcribe_audio_whisper(audio_file):
"""Transcribe audio file using Whisper."""
if audio_file is None:
return "Error: Please upload an audio file first."
try:
model = whisper.load_model("small")
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio:
temp_audio_path = temp_audio.name
with open(temp_audio_path, "wb") as f:
f.write(audio_file)
result = model.transcribe(temp_audio_path)
os.unlink(temp_audio_path)
return result["text"].strip()
except Exception as exc: # pylint: disable=broad-except
return f"Error during transcription: {exc}"
@spaces.GPU
def synthesize_speech_gradio(
text: str,
prompt_audio_file,
prompt_text: str,
model_name: str,
speed: float,
):
"""Synthesize speech using ZipVoice for Gradio interface."""
if not text.strip():
return None, "Error: Please enter text to synthesize."
if prompt_audio_file is None:
return None, "Error: Please upload a prompt audio file."
if not prompt_text.strip():
return None, "Error: Please enter the transcription of the prompt audio."
try:
fix_random_seed(666)
model, tokenizer, vocoder, feature_extractor, sampling_rate = load_models_and_components(model_name)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio:
temp_audio_path = temp_audio.name
with open(temp_audio_path, "wb") as f:
f.write(prompt_audio_file)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_output:
output_path = temp_output.name
print(f"Synthesizing: '{text}' using {model_name}")
print(f"Prompt: {prompt_text}")
print(f"Speed: {speed}")
with torch.inference_mode():
metrics = generate_sentence(
save_path=output_path,
prompt_text=prompt_text,
prompt_wav=temp_audio_path,
text=text,
model=model,
vocoder=vocoder,
tokenizer=tokenizer,
feature_extractor=feature_extractor,
device=device,
num_step=16 if model_name == "zipvoice" else 8,
guidance_scale=1.0 if model_name == "zipvoice" else 3.0,
speed=speed,
t_shift=0.5,
target_rms=0.1,
feat_scale=0.1,
sampling_rate=sampling_rate,
max_duration=100,
remove_long_sil=False,
)
with open(output_path, "rb") as f:
audio_data = f.read()
os.unlink(temp_audio_path)
os.unlink(output_path)
success_msg = f"Synthesis completed! Duration: {metrics['wav_seconds']:.2f}s, RTF: {metrics['rtf']:.2f}"
return audio_data, success_msg
except Exception as exc: # pylint: disable=broad-except
error_msg = f"Error during synthesis: {exc}"
print(error_msg)
return None, error_msg
def create_gradio_interface():
"""Create the Gradio web interface."""
gpu_available = torch.cuda.is_available()
css = """
:root {
--primary-gradient: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
--accent-gradient: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
--success-gradient: linear-gradient(135deg, #4facfe 0%, #00f2fe 100%);
--warning-gradient: linear-gradient(135deg, #fa709a 0%, #fee140 100%);
--surface: #ffffff;
--surface-muted: #f8fafc;
--surface-soft: #f1f5f9;
--text-strong: #0f172a;
--text: #1f2937;
--text-muted: #64748b;
--border: #e2e8f0;
--shadow-sm: 0 1px 3px rgba(15, 23, 42, 0.08);
--shadow-md: 0 8px 24px rgba(15, 23, 42, 0.08);
--radius-sm: 8px;
--radius-md: 14px;
--radius-lg: 20px;
}
body {
background: var(--surface-muted);
}
.gradio-container {
max-width: 1180px;
margin: 0 auto;
padding: 0 24px 48px;
font-family: "Inter", -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, sans-serif;
color: var(--text-strong);
}
.header-section {
background: var(--surface);
border-radius: var(--radius-lg);
padding: 2.4rem;
margin: 2.5rem 0 2rem;
box-shadow: var(--shadow-md);
border: 1px solid var(--border);
}
.logo-section {
display: flex;
align-items: center;
gap: 1rem;
}
.logo-icon {
font-size: 3rem;
background: var(--primary-gradient);
-webkit-background-clip: text;
color: transparent;
}
.title {
font-size: 2.6rem;
font-weight: 800;
background: var(--primary-gradient);
-webkit-background-clip: text;
color: transparent;
margin: 0;
letter-spacing: -0.03em;
}
.subtitle {
margin: 0.35rem 0 0;
font-size: 1.05rem;
color: var(--text-muted);
font-weight: 500;
}
.status-badge {
display: inline-flex;
align-items: center;
gap: 0.5rem;
padding: 0.55rem 1.2rem;
border-radius: 999px;
font-size: 0.85rem;
font-weight: 600;
text-transform: uppercase;
letter-spacing: 0.08em;
color: #fff;
box-shadow: var(--shadow-sm);
}
.status-badge.gpu {
background: var(--success-gradient);
}
.status-badge.cpu {
background: var(--warning-gradient);
}
.steps-row {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(220px, 1fr));
gap: 1rem;
margin-bottom: 2rem;
}
.step-chip {
background: var(--surface);
border-radius: var(--radius-md);
padding: 1rem 1.2rem;
display: flex;
flex-direction: column;
gap: 0.35rem;
box-shadow: var(--shadow-sm);
border: 1px solid var(--border);
}
.step-chip span {
font-size: 0.75rem;
font-weight: 700;
text-transform: uppercase;
letter-spacing: 0.12em;
color: var(--text-muted);
}
.step-chip strong {
font-size: 0.95rem;
color: var(--text-strong);
}
.layout-grid {
display: grid;
grid-template-columns: minmax(0, 3fr) minmax(0, 2fr);
gap: 2rem;
align-items: start;
margin-bottom: 2.5rem;
}
.input-card,
.output-card {
background: var(--surface);
border-radius: var(--radius-lg);
padding: 1.8rem;
box-shadow: var(--shadow-md);
border: 1px solid var(--border);
display: flex;
flex-direction: column;
gap: 1.25rem;
}
.section-title {
font-size: 1.2rem;
font-weight: 700;
display: flex;
align-items: center;
gap: 0.6rem;
color: var(--text-strong);
}
.section-subtitle {
font-size: 0.95rem;
font-weight: 600;
text-transform: uppercase;
letter-spacing: 0.1em;
color: var(--text-muted);
}
.helper-text {
font-size: 0.85rem;
color: var(--text-muted);
margin-top: -0.35rem;
}
.file-drop {
border: 2px dashed var(--border) !important;
border-radius: var(--radius-md) !important;
background: var(--surface-soft) !important;
transition: all 0.25s ease;
padding: 1rem;
}
.file-drop:hover {
border-color: #667eea !important;
background: rgba(102, 126, 234, 0.08) !important;
}
.button-row {
display: flex;
gap: 0.6rem;
flex-wrap: wrap;
}
.btn-primary {
background: var(--primary-gradient) !important;
color: #fff !important;
border: none !important;
border-radius: var(--radius-md) !important;
font-weight: 600 !important;
letter-spacing: 0.05em;
padding: 0.9rem 1.6rem !important;
box-shadow: var(--shadow-md);
transition: transform 0.2s ease, box-shadow 0.2s ease;
}
.btn-secondary {
background: var(--surface-soft) !important;
color: var(--text-strong) !important;
border-radius: var(--radius-md) !important;
border: 1px solid var(--border) !important;
font-weight: 600 !important;
padding: 0.75rem 1.4rem !important;
transition: transform 0.2s ease, box-shadow 0.2s ease;
}
.btn-danger {
background: var(--warning-gradient) !important;
color: #fff !important;
border-radius: var(--radius-md) !important;
border: none !important;
font-weight: 600 !important;
padding: 0.75rem 1.2rem !important;
transition: transform 0.2s ease, box-shadow 0.2s ease;
}
.btn-primary:hover,
.btn-secondary:hover,
.btn-danger:hover {
transform: translateY(-1px);
box-shadow: var(--shadow-md);
}
.divider {
height: 1px;
width: 100%;
background: var(--border);
margin: 0.5rem 0 0.75rem;
}
.text-area textarea,
.text-input textarea,
.text-input input {
background: var(--surface-soft);
border: 1.5px solid var(--border);
border-radius: var(--radius-md);
transition: border-color 0.25s ease, box-shadow 0.25s ease;
font-size: 1rem;
}
.text-area textarea:focus,
.text-input textarea:focus,
.text-input input:focus {
border-color: #667eea;
box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.15);
background: var(--surface);
}
.advanced-settings {
border-radius: var(--radius-md);
background: var(--surface-soft);
border: 1px solid var(--border);
box-shadow: var(--shadow-sm);
}
.status-box {
background: var(--surface-soft);
border: 1px solid rgba(102, 126, 234, 0.25);
border-radius: var(--radius-md);
padding: 1rem;
font-size: 0.95rem;
color: #334155;
box-shadow: inset 0 1px 2px rgba(15, 23, 42, 0.05);
min-height: 82px;
}
.status-box pre {
white-space: pre-wrap;
}
.progress-indicator {
display: none;
}
.progress-indicator.active {
display: flex;
align-items: center;
gap: 0.85rem;
background: rgba(102, 126, 234, 0.1);
border: 1px solid rgba(102, 126, 234, 0.25);
border-radius: var(--radius-md);
padding: 0.85rem 1.1rem;
color: #4c51bf;
font-weight: 600;
}
.progress-indicator .spinner {
width: 18px;
height: 18px;
border-radius: 50%;
border: 3px solid rgba(102, 126, 234, 0.25);
border-top-color: #6366f1;
animation: spin 1s linear infinite;
}
@keyframes spin {
to { transform: rotate(360deg); }
}
.audio-player {
background: var(--surface-soft);
border-radius: var(--radius-md);
border: 1px solid var(--border);
padding: 1rem;
}
.audio-player button.download {
background: var(--primary-gradient) !important;
color: #fff !important;
border-radius: var(--radius-sm) !important;
border: none !important;
font-weight: 600 !important;
margin-top: 0.75rem;
box-shadow: var(--shadow-sm);
}
.examples-deck {
background: var(--surface);
border-radius: var(--radius-lg);
padding: 1.6rem;
box-shadow: var(--shadow-md);
border: 1px solid var(--border);
}
.examples-deck .section-title {
margin-bottom: 1rem;
}
.footer {
text-align: center;
margin-top: 2.5rem;
padding: 1.5rem;
background: var(--surface);
border-radius: var(--radius-lg);
border: 1px solid var(--border);
box-shadow: var(--shadow-sm);
color: var(--text-muted);
font-size: 0.9rem;
}
.footer-links {
margin-top: 0.75rem;
display: flex;
justify-content: center;
gap: 1.75rem;
}
.footer-link {
color: var(--text-muted);
text-decoration: none;
font-weight: 600;
}
.footer-link:hover {
color: #6366f1;
}
@media (max-width: 1024px) {
.layout-grid {
grid-template-columns: 1fr;
}
}
@media (max-width: 768px) {
.gradio-container {
padding: 0 16px 32px;
}
.header-section {
padding: 1.8rem;
}
.logo-section {
flex-direction: column;
text-align: center;
gap: 0.6rem;
}
.title {
font-size: 2.1rem;
}
.steps-row {
grid-template-columns: 1fr;
}
.button-row {
flex-direction: column;
}
}
@media (prefers-color-scheme: dark) {
:root {
--surface: #1f2937;
--surface-muted: #0f172a;
--surface-soft: #273549;
--text-strong: #f8fafc;
--text: #e2e8f0;
--text-muted: #94a3b8;
--border: #324155;
}
.status-box {
border-color: rgba(99, 102, 241, 0.45);
color: #cbd5f5;
}
.progress-indicator.active {
background: rgba(99, 102, 241, 0.2);
border-color: rgba(99, 102, 241, 0.4);
color: #cbd5f5;
}
}
"""
with gr.Blocks(title="ZipVoice — Zero-Shot TTS", css=css, theme=gr.themes.Soft()) as interface:
with gr.Column(elem_classes="header-section"):
with gr.Row():
with gr.Column(scale=3):
gr.HTML("""
<div class='logo-section'>
<div class='logo-icon'>🎵</div>
<div>
<h1 class='title'>ZipVoice</h1>
<p class='subtitle'>Zero-shot text-to-speech with instant voice cloning</p>
</div>
</div>
""")
with gr.Column(scale=1, min_width=160):
if gpu_available:
gr.HTML("<div class='status-badge gpu'>⚡ GPU Ready</div>")
else:
gr.HTML("<div class='status-badge cpu'>💻 CPU Mode</div>")
gr.HTML("""
<div class='steps-row'>
<div class='step-chip'>
<span>Step 1 / 步驟一</span>
<strong>Drop your reference voice (1–3 s) / 拖放 1–3 秒的參考語音</strong>
</div>
<div class='step-chip'>
<span>Step 2 / 步驟二</span>
<strong>Transcribe the prompt or let ZipVoice auto-transcribe / 手動或自動生成轉寫</strong>
</div>
<div class='step-chip'>
<span>Step 3 / 步驟三</span>
<strong>Write the target text and generate / 輸入目標文本並開始合成</strong>
</div>
</div>
""")
with gr.Row(elem_classes="layout-grid"):
with gr.Column(elem_classes="input-card"):
gr.HTML("<div class='section-title'>🎤 Voice Prompt / 參考語音</div>")
prompt_audio = gr.File(
label="Drop or select an audio file / 拖放或選擇音頻文件",
file_types=["audio"],
type="binary",
elem_classes="file-drop"
)
with gr.Row(elem_classes="button-row"):
transcribe_btn = gr.Button(
"🎧 Auto Transcribe / 自動轉寫",
variant="secondary",
size="sm",
elem_classes="btn-secondary"
)
clear_prompt = gr.Button(
"🧹 Reset / 重置",
size="sm",
elem_classes="btn-danger"
)
gr.HTML("<p class='helper-text'>Tip: use a clear 1–3 second sample for best results. 提示:請使用 1–3 秒的清晰語音,以獲得最佳效果。</p>")
gr.HTML("<div class='section-subtitle'>📝 Prompt transcription / 提示文本</div>")
prompt_text = gr.Textbox(
placeholder="Type the exact words from the prompt audio or run auto-transcribe… / 輸入參考語音的原文或使用自動轉寫",
lines=3,
elem_classes="text-area"
)
gr.HTML("<div class='divider'></div>")
gr.HTML("<div class='section-title'>✍️ Text to Synthesize / 合成文本</div>")
text_input = gr.Textbox(
placeholder="Enter the text you want to speak (English, Chinese, etc.) / 輸入需要朗讀的文本(支援英文、中文等)",
lines=5,
value="Hello, this is a ZipVoice demo showing instant zero-shot voice cloning.",
elem_classes="text-area"
)
with gr.Row(elem_classes="button-row"):
generate_btn = gr.Button(
"🎵 Generate Voice / 開始合成",
variant="primary",
size="lg",
elem_classes="btn-primary"
)
with gr.Accordion("Advanced settings / 高級設定", open=False, elem_classes="advanced-settings"):
model_dropdown = gr.Dropdown(
choices=["zipvoice", "zipvoice_distill"],
value="zipvoice",
label="Model / 模型",
info="zipvoice = highest fidelity · zipvoice_distill = faster generation / zipvoice = 最高音質 · zipvoice_distill = 更快生成"
)
speed_slider = gr.Slider(
minimum=0.5,
maximum=2.0,
value=1.0,
step=0.1,
label="Speaking speed / 語速",
info="0.5 = slower · 1.0 = natural · 2.0 = faster / 0.5 = 慢速 · 1.0 = 自然 · 2.0 = 快速"
)
with gr.Column(elem_classes="output-card"):
gr.HTML("<div class='section-title'>🔊 Result & Status / 輸出與狀態</div>")
progress_bar = gr.HTML(value="", elem_classes="progress-indicator")
output_audio = gr.Audio(
label="Playback / 播放",
type="filepath",
elem_classes="audio-player",
show_download_button=True
)
status_text = gr.Markdown(
value="Ready to synthesize. Please upload a prompt and click generate! / 準備就緒:請上傳參考語音並開始合成。",
elem_classes="status-box"
)
with gr.Column(elem_classes="examples-deck"):
gr.HTML("<div class='section-title'>⚡ Quick Examples / 快速範例</div>")
gr.Examples(
examples=[
["Hello everyone, welcome to ZipVoice.", "jfk.wav", "ask not what your country can do for you, ask what you can do for your country", "zipvoice", 1.0],
["請在會議開始時靜音您的麥克風。", "jfk.wav", "ask not what your country can do for you, ask what you can do for your country", "zipvoice", 1.0],
["Innovation starts with listening carefully to your users.", "jfk.wav", "ask not what your country can do for you, ask what you can do for your country", "zipvoice_distill", 1.2],
],
inputs=[text_input, prompt_audio, prompt_text, model_dropdown, speed_slider],
examples_per_page=3,
label="Try a scenario in one click / 一鍵體驗範例"
)
gr.HTML("""
<div class='footer'>
<p>Created with ❤️ by the ZipVoice team on Gradio / 由 ZipVoice 團隊基於 Gradio 構建</p>
<div class='footer-links'>
<a href='https://github.com/k2-fsa/ZipVoice' class='footer-link' target='_blank'>Source code / 原始碼</a>
<a href='https://huggingface.co/k2-fsa' class='footer-link' target='_blank'>HuggingFace models / HuggingFace 模型</a>
<a href='https://gradio.app' class='footer-link' target='_blank'>Gradio framework / Gradio 框架</a>
</div>
</div>
""")
def show_progress():
return """
<div class='progress-indicator active'>
<div class='spinner'></div>
<span>Generating audio… 音頻合成中…</span>
</div>
"""
def hide_progress():
return ""
transcribe_btn.click(
fn=transcribe_audio_whisper,
inputs=[prompt_audio],
outputs=[prompt_text]
).then(
fn=lambda: "✅ Transcription ready. Review it before synthesis. / 自動轉寫完成,請確認後繼續。",
outputs=[status_text]
)
clear_prompt.click(
fn=lambda: (None, "", "🔄 Prompt cleared. Please upload a new sample. / 提示已清空,請重新上傳樣本。"),
inputs=None,
outputs=[prompt_audio, prompt_text, status_text]
).then(
fn=lambda: "",
outputs=[progress_bar]
)
generate_btn.click(
fn=show_progress,
outputs=[progress_bar]
).then(
fn=lambda: "🎵 Generating now… this may take a few seconds. / 正在合成,請稍候。",
outputs=[status_text]
).then(
fn=synthesize_speech_gradio,
inputs=[text_input, prompt_audio, prompt_text, model_dropdown, speed_slider],
outputs=[output_audio, status_text]
).then(
fn=hide_progress,
outputs=[progress_bar]
)
return interface
if __name__ == "__main__":
# Create and launch the interface
interface = create_gradio_interface()
interface.launch(
server_name="0.0.0.0",
server_port=int(os.environ.get("PORT", 7860)),
show_error=True
)