Spaces:
Paused
Paused
File size: 26,218 Bytes
ed290ee 5df9ee2 ed290ee 96bf80c ab257e2 ed290ee ab257e2 ed290ee 1daf416 1b73690 ed290ee 96bf80c ed290ee ab257e2 ed290ee 774840a ed290ee ab257e2 ed290ee ab257e2 ed290ee ab257e2 ed290ee ab257e2 ed290ee ab257e2 ed290ee da07fc5 1b73690 af2d743 1b73690 fbf03ad 1b73690 ab257e2 1b73690 1daf416 ed290ee ab257e2 ed290ee 1daf416 ed290ee ab257e2 ed290ee ab257e2 ed290ee ab257e2 ed290ee ab257e2 ed290ee ab257e2 f40111a ab257e2 f40111a ab257e2 ed290ee ab257e2 ed290ee ab257e2 f40111a ab257e2 f40111a ab257e2 f40111a ab257e2 f40111a ab257e2 f40111a ab257e2 f40111a ab257e2 f40111a ab257e2 f40111a ab257e2 ed290ee ab257e2 ed290ee ab257e2 da07fc5 ab257e2 da07fc5 ed290ee ab257e2 ed290ee ab257e2 ed290ee ab257e2 ed290ee ab257e2 ed290ee ab257e2 ed290ee ab257e2 ed290ee ab257e2 1b73690 ab257e2 ed290ee ab257e2 ed290ee ab257e2 ed290ee ab257e2 ed290ee 1b73690 ab257e2 1b73690 ed290ee ab257e2 ed290ee ab257e2 ed290ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 |
#!/usr/bin/env python3
"""
ZipVoice Gradio Web Interface for HuggingFace Spaces
Updated for Gradio 5.47.0 compatibility
"""
import os
import sys
import json
import tempfile
import gradio as gr
import torch
from pathlib import Path
import spaces
import whisper
# Add current directory to Python path for local zipvoice package
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
# Import ZipVoice components
from zipvoice.models.zipvoice import ZipVoice
from zipvoice.models.zipvoice_distill import ZipVoiceDistill
from zipvoice.tokenizer.tokenizer import EmiliaTokenizer
from zipvoice.utils.checkpoint import load_checkpoint
from zipvoice.utils.feature import VocosFbank
from zipvoice.bin.infer_zipvoice import generate_sentence
from lhotse.utils import fix_random_seed
# Global caches for lazy loading
_models_cache: dict[str, dict[str, object]] = {}
_tokenizer_cache: EmiliaTokenizer | None = None
_vocoder_cache = None
_feature_extractor_cache = None
def load_models_and_components(model_name: str):
"""Load and cache models, tokenizer, vocoder, and feature extractor."""
global _models_cache, _tokenizer_cache, _vocoder_cache, _feature_extractor_cache
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if model_name not in _models_cache:
print(f"Loading {model_name} model…")
model_dir_map = {
"zipvoice": "zipvoice",
"zipvoice_distill": "zipvoice_distill",
}
huggingface_repo = "k2-fsa/ZipVoice"
from huggingface_hub import hf_hub_download
model_ckpt = hf_hub_download(huggingface_repo, filename=f"{model_dir_map[model_name]}/model.pt")
model_config_path = hf_hub_download(huggingface_repo, filename=f"{model_dir_map[model_name]}/model.json")
token_file = hf_hub_download(huggingface_repo, filename=f"{model_dir_map[model_name]}/tokens.txt")
if _tokenizer_cache is None:
_tokenizer_cache = EmiliaTokenizer(token_file=token_file)
tokenizer = _tokenizer_cache
tokenizer_config = {"vocab_size": tokenizer.vocab_size, "pad_id": tokenizer.pad_id}
with open(model_config_path, "r") as f:
model_config = json.load(f)
if model_name == "zipvoice":
model = ZipVoice(**model_config["model"], **tokenizer_config)
else:
model = ZipVoiceDistill(**model_config["model"], **tokenizer_config)
load_checkpoint(filename=model_ckpt, model=model, strict=True)
model = model.to(device)
model.eval()
_models_cache[model_name] = {
"model": model,
"sampling_rate": model_config["feature"]["sampling_rate"],
}
if _vocoder_cache is None:
from vocos import Vocos
_vocoder_cache = Vocos.from_pretrained("charactr/vocos-mel-24khz")
_vocoder_cache = _vocoder_cache.to(device)
_vocoder_cache.eval()
if _feature_extractor_cache is None:
_feature_extractor_cache = VocosFbank()
entry = _models_cache[model_name]
return (
entry["model"],
_tokenizer_cache,
_vocoder_cache,
_feature_extractor_cache,
entry["sampling_rate"],
)
@spaces.GPU
def transcribe_audio_whisper(audio_file):
"""Transcribe audio file using Whisper."""
if audio_file is None:
return "Error: Please upload an audio file first."
try:
model = whisper.load_model("small")
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio:
temp_audio_path = temp_audio.name
with open(temp_audio_path, "wb") as f:
f.write(audio_file)
result = model.transcribe(temp_audio_path)
os.unlink(temp_audio_path)
return result["text"].strip()
except Exception as exc: # pylint: disable=broad-except
return f"Error during transcription: {exc}"
@spaces.GPU
def synthesize_speech_gradio(
text: str,
prompt_audio_file,
prompt_text: str,
model_name: str,
speed: float,
):
"""Synthesize speech using ZipVoice for Gradio interface."""
if not text.strip():
return None, "Error: Please enter text to synthesize."
if prompt_audio_file is None:
return None, "Error: Please upload a prompt audio file."
if not prompt_text.strip():
return None, "Error: Please enter the transcription of the prompt audio."
try:
fix_random_seed(666)
model, tokenizer, vocoder, feature_extractor, sampling_rate = load_models_and_components(model_name)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio:
temp_audio_path = temp_audio.name
with open(temp_audio_path, "wb") as f:
f.write(prompt_audio_file)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_output:
output_path = temp_output.name
print(f"Synthesizing: '{text}' using {model_name}")
print(f"Prompt: {prompt_text}")
print(f"Speed: {speed}")
with torch.inference_mode():
metrics = generate_sentence(
save_path=output_path,
prompt_text=prompt_text,
prompt_wav=temp_audio_path,
text=text,
model=model,
vocoder=vocoder,
tokenizer=tokenizer,
feature_extractor=feature_extractor,
device=device,
num_step=16 if model_name == "zipvoice" else 8,
guidance_scale=1.0 if model_name == "zipvoice" else 3.0,
speed=speed,
t_shift=0.5,
target_rms=0.1,
feat_scale=0.1,
sampling_rate=sampling_rate,
max_duration=100,
remove_long_sil=False,
)
with open(output_path, "rb") as f:
audio_data = f.read()
os.unlink(temp_audio_path)
os.unlink(output_path)
success_msg = f"Synthesis completed! Duration: {metrics['wav_seconds']:.2f}s, RTF: {metrics['rtf']:.2f}"
return audio_data, success_msg
except Exception as exc: # pylint: disable=broad-except
error_msg = f"Error during synthesis: {exc}"
print(error_msg)
return None, error_msg
def create_gradio_interface():
"""Create the Gradio web interface."""
gpu_available = torch.cuda.is_available()
css = """
:root {
--primary-gradient: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
--accent-gradient: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
--success-gradient: linear-gradient(135deg, #4facfe 0%, #00f2fe 100%);
--warning-gradient: linear-gradient(135deg, #fa709a 0%, #fee140 100%);
--surface: #ffffff;
--surface-muted: #f8fafc;
--surface-soft: #f1f5f9;
--text-strong: #0f172a;
--text: #1f2937;
--text-muted: #64748b;
--border: #e2e8f0;
--shadow-sm: 0 1px 3px rgba(15, 23, 42, 0.08);
--shadow-md: 0 8px 24px rgba(15, 23, 42, 0.08);
--radius-sm: 8px;
--radius-md: 14px;
--radius-lg: 20px;
}
body {
background: var(--surface-muted);
}
.gradio-container {
max-width: 1180px;
margin: 0 auto;
padding: 0 24px 48px;
font-family: "Inter", -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, sans-serif;
color: var(--text-strong);
}
.header-section {
background: var(--surface);
border-radius: var(--radius-lg);
padding: 2.4rem;
margin: 2.5rem 0 2rem;
box-shadow: var(--shadow-md);
border: 1px solid var(--border);
}
.logo-section {
display: flex;
align-items: center;
gap: 1rem;
}
.logo-icon {
font-size: 3rem;
background: var(--primary-gradient);
-webkit-background-clip: text;
color: transparent;
}
.title {
font-size: 2.6rem;
font-weight: 800;
background: var(--primary-gradient);
-webkit-background-clip: text;
color: transparent;
margin: 0;
letter-spacing: -0.03em;
}
.subtitle {
margin: 0.35rem 0 0;
font-size: 1.05rem;
color: var(--text-muted);
font-weight: 500;
}
.status-badge {
display: inline-flex;
align-items: center;
gap: 0.5rem;
padding: 0.55rem 1.2rem;
border-radius: 999px;
font-size: 0.85rem;
font-weight: 600;
text-transform: uppercase;
letter-spacing: 0.08em;
color: #fff;
box-shadow: var(--shadow-sm);
}
.status-badge.gpu {
background: var(--success-gradient);
}
.status-badge.cpu {
background: var(--warning-gradient);
}
.steps-row {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(220px, 1fr));
gap: 1rem;
margin-bottom: 2rem;
}
.step-chip {
background: var(--surface);
border-radius: var(--radius-md);
padding: 1rem 1.2rem;
display: flex;
flex-direction: column;
gap: 0.35rem;
box-shadow: var(--shadow-sm);
border: 1px solid var(--border);
}
.step-chip span {
font-size: 0.75rem;
font-weight: 700;
text-transform: uppercase;
letter-spacing: 0.12em;
color: var(--text-muted);
}
.step-chip strong {
font-size: 0.95rem;
color: var(--text-strong);
}
.layout-grid {
display: grid;
grid-template-columns: minmax(0, 3fr) minmax(0, 2fr);
gap: 2rem;
align-items: start;
margin-bottom: 2.5rem;
}
.input-card,
.output-card {
background: var(--surface);
border-radius: var(--radius-lg);
padding: 1.8rem;
box-shadow: var(--shadow-md);
border: 1px solid var(--border);
display: flex;
flex-direction: column;
gap: 1.25rem;
}
.section-title {
font-size: 1.2rem;
font-weight: 700;
display: flex;
align-items: center;
gap: 0.6rem;
color: var(--text-strong);
}
.section-subtitle {
font-size: 0.95rem;
font-weight: 600;
text-transform: uppercase;
letter-spacing: 0.1em;
color: var(--text-muted);
}
.helper-text {
font-size: 0.85rem;
color: var(--text-muted);
margin-top: -0.35rem;
}
.file-drop {
border: 2px dashed var(--border) !important;
border-radius: var(--radius-md) !important;
background: var(--surface-soft) !important;
transition: all 0.25s ease;
padding: 1rem;
}
.file-drop:hover {
border-color: #667eea !important;
background: rgba(102, 126, 234, 0.08) !important;
}
.button-row {
display: flex;
gap: 0.6rem;
flex-wrap: wrap;
}
.btn-primary {
background: var(--primary-gradient) !important;
color: #fff !important;
border: none !important;
border-radius: var(--radius-md) !important;
font-weight: 600 !important;
letter-spacing: 0.05em;
padding: 0.9rem 1.6rem !important;
box-shadow: var(--shadow-md);
transition: transform 0.2s ease, box-shadow 0.2s ease;
}
.btn-secondary {
background: var(--surface-soft) !important;
color: var(--text-strong) !important;
border-radius: var(--radius-md) !important;
border: 1px solid var(--border) !important;
font-weight: 600 !important;
padding: 0.75rem 1.4rem !important;
transition: transform 0.2s ease, box-shadow 0.2s ease;
}
.btn-danger {
background: var(--warning-gradient) !important;
color: #fff !important;
border-radius: var(--radius-md) !important;
border: none !important;
font-weight: 600 !important;
padding: 0.75rem 1.2rem !important;
transition: transform 0.2s ease, box-shadow 0.2s ease;
}
.btn-primary:hover,
.btn-secondary:hover,
.btn-danger:hover {
transform: translateY(-1px);
box-shadow: var(--shadow-md);
}
.divider {
height: 1px;
width: 100%;
background: var(--border);
margin: 0.5rem 0 0.75rem;
}
.text-area textarea,
.text-input textarea,
.text-input input {
background: var(--surface-soft);
border: 1.5px solid var(--border);
border-radius: var(--radius-md);
transition: border-color 0.25s ease, box-shadow 0.25s ease;
font-size: 1rem;
}
.text-area textarea:focus,
.text-input textarea:focus,
.text-input input:focus {
border-color: #667eea;
box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.15);
background: var(--surface);
}
.advanced-settings {
border-radius: var(--radius-md);
background: var(--surface-soft);
border: 1px solid var(--border);
box-shadow: var(--shadow-sm);
}
.status-box {
background: var(--surface-soft);
border: 1px solid rgba(102, 126, 234, 0.25);
border-radius: var(--radius-md);
padding: 1rem;
font-size: 0.95rem;
color: #334155;
box-shadow: inset 0 1px 2px rgba(15, 23, 42, 0.05);
min-height: 82px;
}
.status-box pre {
white-space: pre-wrap;
}
.progress-indicator {
display: none;
}
.progress-indicator.active {
display: flex;
align-items: center;
gap: 0.85rem;
background: rgba(102, 126, 234, 0.1);
border: 1px solid rgba(102, 126, 234, 0.25);
border-radius: var(--radius-md);
padding: 0.85rem 1.1rem;
color: #4c51bf;
font-weight: 600;
}
.progress-indicator .spinner {
width: 18px;
height: 18px;
border-radius: 50%;
border: 3px solid rgba(102, 126, 234, 0.25);
border-top-color: #6366f1;
animation: spin 1s linear infinite;
}
@keyframes spin {
to { transform: rotate(360deg); }
}
.audio-player {
background: var(--surface-soft);
border-radius: var(--radius-md);
border: 1px solid var(--border);
padding: 1rem;
}
.audio-player button.download {
background: var(--primary-gradient) !important;
color: #fff !important;
border-radius: var(--radius-sm) !important;
border: none !important;
font-weight: 600 !important;
margin-top: 0.75rem;
box-shadow: var(--shadow-sm);
}
.examples-deck {
background: var(--surface);
border-radius: var(--radius-lg);
padding: 1.6rem;
box-shadow: var(--shadow-md);
border: 1px solid var(--border);
}
.examples-deck .section-title {
margin-bottom: 1rem;
}
.footer {
text-align: center;
margin-top: 2.5rem;
padding: 1.5rem;
background: var(--surface);
border-radius: var(--radius-lg);
border: 1px solid var(--border);
box-shadow: var(--shadow-sm);
color: var(--text-muted);
font-size: 0.9rem;
}
.footer-links {
margin-top: 0.75rem;
display: flex;
justify-content: center;
gap: 1.75rem;
}
.footer-link {
color: var(--text-muted);
text-decoration: none;
font-weight: 600;
}
.footer-link:hover {
color: #6366f1;
}
@media (max-width: 1024px) {
.layout-grid {
grid-template-columns: 1fr;
}
}
@media (max-width: 768px) {
.gradio-container {
padding: 0 16px 32px;
}
.header-section {
padding: 1.8rem;
}
.logo-section {
flex-direction: column;
text-align: center;
gap: 0.6rem;
}
.title {
font-size: 2.1rem;
}
.steps-row {
grid-template-columns: 1fr;
}
.button-row {
flex-direction: column;
}
}
@media (prefers-color-scheme: dark) {
:root {
--surface: #1f2937;
--surface-muted: #0f172a;
--surface-soft: #273549;
--text-strong: #f8fafc;
--text: #e2e8f0;
--text-muted: #94a3b8;
--border: #324155;
}
.status-box {
border-color: rgba(99, 102, 241, 0.45);
color: #cbd5f5;
}
.progress-indicator.active {
background: rgba(99, 102, 241, 0.2);
border-color: rgba(99, 102, 241, 0.4);
color: #cbd5f5;
}
}
"""
with gr.Blocks(title="ZipVoice — Zero-Shot TTS", css=css, theme=gr.themes.Soft()) as interface:
with gr.Column(elem_classes="header-section"):
with gr.Row():
with gr.Column(scale=3):
gr.HTML("""
<div class='logo-section'>
<div class='logo-icon'>🎵</div>
<div>
<h1 class='title'>ZipVoice</h1>
<p class='subtitle'>Zero-shot text-to-speech with instant voice cloning</p>
</div>
</div>
""")
with gr.Column(scale=1, min_width=160):
if gpu_available:
gr.HTML("<div class='status-badge gpu'>⚡ GPU Ready</div>")
else:
gr.HTML("<div class='status-badge cpu'>💻 CPU Mode</div>")
gr.HTML("""
<div class='steps-row'>
<div class='step-chip'>
<span>Step 1 / 步驟一</span>
<strong>Drop your reference voice (1–3 s) / 拖放 1–3 秒的參考語音</strong>
</div>
<div class='step-chip'>
<span>Step 2 / 步驟二</span>
<strong>Transcribe the prompt or let ZipVoice auto-transcribe / 手動或自動生成轉寫</strong>
</div>
<div class='step-chip'>
<span>Step 3 / 步驟三</span>
<strong>Write the target text and generate / 輸入目標文本並開始合成</strong>
</div>
</div>
""")
with gr.Row(elem_classes="layout-grid"):
with gr.Column(elem_classes="input-card"):
gr.HTML("<div class='section-title'>🎤 Voice Prompt / 參考語音</div>")
prompt_audio = gr.File(
label="Drop or select an audio file / 拖放或選擇音頻文件",
file_types=["audio"],
type="binary",
elem_classes="file-drop"
)
with gr.Row(elem_classes="button-row"):
transcribe_btn = gr.Button(
"🎧 Auto Transcribe / 自動轉寫",
variant="secondary",
size="sm",
elem_classes="btn-secondary"
)
clear_prompt = gr.Button(
"🧹 Reset / 重置",
size="sm",
elem_classes="btn-danger"
)
gr.HTML("<p class='helper-text'>Tip: use a clear 1–3 second sample for best results. 提示:請使用 1–3 秒的清晰語音,以獲得最佳效果。</p>")
gr.HTML("<div class='section-subtitle'>📝 Prompt transcription / 提示文本</div>")
prompt_text = gr.Textbox(
placeholder="Type the exact words from the prompt audio or run auto-transcribe… / 輸入參考語音的原文或使用自動轉寫",
lines=3,
elem_classes="text-area"
)
gr.HTML("<div class='divider'></div>")
gr.HTML("<div class='section-title'>✍️ Text to Synthesize / 合成文本</div>")
text_input = gr.Textbox(
placeholder="Enter the text you want to speak (English, Chinese, etc.) / 輸入需要朗讀的文本(支援英文、中文等)",
lines=5,
value="Hello, this is a ZipVoice demo showing instant zero-shot voice cloning.",
elem_classes="text-area"
)
with gr.Row(elem_classes="button-row"):
generate_btn = gr.Button(
"🎵 Generate Voice / 開始合成",
variant="primary",
size="lg",
elem_classes="btn-primary"
)
with gr.Accordion("Advanced settings / 高級設定", open=False, elem_classes="advanced-settings"):
model_dropdown = gr.Dropdown(
choices=["zipvoice", "zipvoice_distill"],
value="zipvoice",
label="Model / 模型",
info="zipvoice = highest fidelity · zipvoice_distill = faster generation / zipvoice = 最高音質 · zipvoice_distill = 更快生成"
)
speed_slider = gr.Slider(
minimum=0.5,
maximum=2.0,
value=1.0,
step=0.1,
label="Speaking speed / 語速",
info="0.5 = slower · 1.0 = natural · 2.0 = faster / 0.5 = 慢速 · 1.0 = 自然 · 2.0 = 快速"
)
with gr.Column(elem_classes="output-card"):
gr.HTML("<div class='section-title'>🔊 Result & Status / 輸出與狀態</div>")
progress_bar = gr.HTML(value="", elem_classes="progress-indicator")
output_audio = gr.Audio(
label="Playback / 播放",
type="filepath",
elem_classes="audio-player",
show_download_button=True
)
status_text = gr.Markdown(
value="Ready to synthesize. Please upload a prompt and click generate! / 準備就緒:請上傳參考語音並開始合成。",
elem_classes="status-box"
)
with gr.Column(elem_classes="examples-deck"):
gr.HTML("<div class='section-title'>⚡ Quick Examples / 快速範例</div>")
gr.Examples(
examples=[
["Hello everyone, welcome to ZipVoice.", "jfk.wav", "ask not what your country can do for you, ask what you can do for your country", "zipvoice", 1.0],
["請在會議開始時靜音您的麥克風。", "jfk.wav", "ask not what your country can do for you, ask what you can do for your country", "zipvoice", 1.0],
["Innovation starts with listening carefully to your users.", "jfk.wav", "ask not what your country can do for you, ask what you can do for your country", "zipvoice_distill", 1.2],
],
inputs=[text_input, prompt_audio, prompt_text, model_dropdown, speed_slider],
examples_per_page=3,
label="Try a scenario in one click / 一鍵體驗範例"
)
gr.HTML("""
<div class='footer'>
<p>Created with ❤️ by the ZipVoice team on Gradio / 由 ZipVoice 團隊基於 Gradio 構建</p>
<div class='footer-links'>
<a href='https://github.com/k2-fsa/ZipVoice' class='footer-link' target='_blank'>Source code / 原始碼</a>
<a href='https://huggingface.co/k2-fsa' class='footer-link' target='_blank'>HuggingFace models / HuggingFace 模型</a>
<a href='https://gradio.app' class='footer-link' target='_blank'>Gradio framework / Gradio 框架</a>
</div>
</div>
""")
def show_progress():
return """
<div class='progress-indicator active'>
<div class='spinner'></div>
<span>Generating audio… 音頻合成中…</span>
</div>
"""
def hide_progress():
return ""
transcribe_btn.click(
fn=transcribe_audio_whisper,
inputs=[prompt_audio],
outputs=[prompt_text]
).then(
fn=lambda: "✅ Transcription ready. Review it before synthesis. / 自動轉寫完成,請確認後繼續。",
outputs=[status_text]
)
clear_prompt.click(
fn=lambda: (None, "", "🔄 Prompt cleared. Please upload a new sample. / 提示已清空,請重新上傳樣本。"),
inputs=None,
outputs=[prompt_audio, prompt_text, status_text]
).then(
fn=lambda: "",
outputs=[progress_bar]
)
generate_btn.click(
fn=show_progress,
outputs=[progress_bar]
).then(
fn=lambda: "🎵 Generating now… this may take a few seconds. / 正在合成,請稍候。",
outputs=[status_text]
).then(
fn=synthesize_speech_gradio,
inputs=[text_input, prompt_audio, prompt_text, model_dropdown, speed_slider],
outputs=[output_audio, status_text]
).then(
fn=hide_progress,
outputs=[progress_bar]
)
return interface
if __name__ == "__main__":
# Create and launch the interface
interface = create_gradio_interface()
interface.launch(
server_name="0.0.0.0",
server_port=int(os.environ.get("PORT", 7860)),
show_error=True
) |