Spaces:
Paused
Paused
Commit
·
ed290ee
0
Parent(s):
Clean Spaces deployment - Gradio interface only
Browse filesContains only the essential files for HuggingFace Spaces:
- app.py: Gradio web interface
- requirements.txt: Python dependencies
- README.md: Spaces documentation
Removed all training code, examples, and binary files for clean deployment.
- README.md +52 -0
- app.py +304 -0
- requirements.txt +22 -0
README.md
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: ZipVoice
|
| 3 |
+
emoji: 🎵
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: green
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: "4.0.0"
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# ZipVoice - Zero-Shot Text-to-Speech
|
| 14 |
+
|
| 15 |
+
A Gradio web interface for ZipVoice, enabling easy voice cloning and text-to-speech synthesis through your browser.
|
| 16 |
+
|
| 17 |
+
## Features
|
| 18 |
+
|
| 19 |
+
- 🎵 Zero-shot voice cloning with audio prompts
|
| 20 |
+
- 🌐 Multi-lingual support (Chinese & English)
|
| 21 |
+
- ⚡ Fast inference with flow matching
|
| 22 |
+
- 🎛️ Interactive web UI
|
| 23 |
+
- 📱 Mobile-friendly interface
|
| 24 |
+
|
| 25 |
+
## Usage
|
| 26 |
+
|
| 27 |
+
1. Enter text to synthesize
|
| 28 |
+
2. Upload a short audio prompt (1-3 seconds recommended)
|
| 29 |
+
3. Provide the transcription of the prompt audio
|
| 30 |
+
4. Choose your preferred model and speed
|
| 31 |
+
5. Click "Generate Speech"!
|
| 32 |
+
|
| 33 |
+
## Models
|
| 34 |
+
|
| 35 |
+
- **zipvoice**: Higher quality synthesis
|
| 36 |
+
- **zipvoice_distill**: Faster inference
|
| 37 |
+
|
| 38 |
+
## Tips for Best Results
|
| 39 |
+
|
| 40 |
+
- Use short, clear audio prompts (1-3 seconds)
|
| 41 |
+
- Ensure transcription exactly matches the audio
|
| 42 |
+
- Try different speed settings
|
| 43 |
+
- Both Chinese and English text supported
|
| 44 |
+
|
| 45 |
+
## Technical Details
|
| 46 |
+
|
| 47 |
+
- **Backend**: PyTorch with HuggingFace integration
|
| 48 |
+
- **Vocoder**: Vocos for high-quality audio
|
| 49 |
+
- **Architecture**: Flow matching for fast TTS
|
| 50 |
+
- **Models**: Automatically downloaded from HuggingFace
|
| 51 |
+
|
| 52 |
+
For more information, visit the [GitHub repository](https://github.com/k2-fsa/ZipVoice).
|
app.py
ADDED
|
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
ZipVoice Gradio Web Interface for HuggingFace Spaces
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
import tempfile
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import torch
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
|
| 12 |
+
# Import ZipVoice components
|
| 13 |
+
from zipvoice.models.zipvoice import ZipVoice
|
| 14 |
+
from zipvoice.models.zipvoice_distill import ZipVoiceDistill
|
| 15 |
+
from zipvoice.tokenizer.tokenizer import EmiliaTokenizer
|
| 16 |
+
from zipvoice.utils.checkpoint import load_checkpoint
|
| 17 |
+
from zipvoice.utils.feature import VocosFbank
|
| 18 |
+
from zipvoice.bin.infer_zipvoice import generate_sentence
|
| 19 |
+
from lhotse.utils import fix_random_seed
|
| 20 |
+
|
| 21 |
+
# Global variables for caching models
|
| 22 |
+
_models_cache = {}
|
| 23 |
+
_tokenizer_cache = None
|
| 24 |
+
_vocoder_cache = None
|
| 25 |
+
_feature_extractor_cache = None
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def load_models_and_components(model_name: str):
|
| 29 |
+
"""Load and cache models, tokenizer, vocoder, and feature extractor."""
|
| 30 |
+
global _models_cache, _tokenizer_cache, _vocoder_cache, _feature_extractor_cache
|
| 31 |
+
|
| 32 |
+
# Set device (CPU for Spaces, but could be adapted for GPU)
|
| 33 |
+
device = torch.device("cpu")
|
| 34 |
+
|
| 35 |
+
if model_name not in _models_cache:
|
| 36 |
+
print(f"Loading {model_name} model...")
|
| 37 |
+
|
| 38 |
+
# Model directory mapping
|
| 39 |
+
model_dir_map = {
|
| 40 |
+
"zipvoice": "zipvoice",
|
| 41 |
+
"zipvoice_distill": "zipvoice_distill",
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
huggingface_repo = "k2-fsa/ZipVoice"
|
| 45 |
+
|
| 46 |
+
# Download model files from HuggingFace
|
| 47 |
+
from huggingface_hub import hf_hub_download
|
| 48 |
+
|
| 49 |
+
model_ckpt = hf_hub_download(
|
| 50 |
+
huggingface_repo, filename=f"{model_dir_map[model_name]}/model.pt"
|
| 51 |
+
)
|
| 52 |
+
model_config_path = hf_hub_download(
|
| 53 |
+
huggingface_repo, filename=f"{model_dir_map[model_name]}/model.json"
|
| 54 |
+
)
|
| 55 |
+
token_file = hf_hub_download(
|
| 56 |
+
huggingface_repo, filename=f"{model_dir_map[model_name]}/tokens.txt"
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# Load tokenizer (cache it)
|
| 60 |
+
if _tokenizer_cache is None:
|
| 61 |
+
_tokenizer_cache = EmiliaTokenizer(token_file=token_file)
|
| 62 |
+
tokenizer = _tokenizer_cache
|
| 63 |
+
tokenizer_config = {"vocab_size": tokenizer.vocab_size, "pad_id": tokenizer.pad_id}
|
| 64 |
+
|
| 65 |
+
# Load model configuration
|
| 66 |
+
import json
|
| 67 |
+
with open(model_config_path, "r") as f:
|
| 68 |
+
model_config = json.load(f)
|
| 69 |
+
|
| 70 |
+
# Create model
|
| 71 |
+
if model_name == "zipvoice":
|
| 72 |
+
model = ZipVoice(**model_config["model"], **tokenizer_config)
|
| 73 |
+
else:
|
| 74 |
+
model = ZipVoiceDistill(**model_config["model"], **tokenizer_config)
|
| 75 |
+
|
| 76 |
+
# Load model weights
|
| 77 |
+
load_checkpoint(filename=model_ckpt, model=model, strict=True)
|
| 78 |
+
model = model.to(device)
|
| 79 |
+
model.eval()
|
| 80 |
+
|
| 81 |
+
_models_cache[model_name] = model
|
| 82 |
+
|
| 83 |
+
# Load vocoder (cache it)
|
| 84 |
+
if _vocoder_cache is None:
|
| 85 |
+
from vocos import Vocos
|
| 86 |
+
_vocoder_cache = Vocos.from_pretrained("charactr/vocos-mel-24khz")
|
| 87 |
+
_vocoder_cache = _vocoder_cache.to(device)
|
| 88 |
+
_vocoder_cache.eval()
|
| 89 |
+
|
| 90 |
+
# Load feature extractor (cache it)
|
| 91 |
+
if _feature_extractor_cache is None:
|
| 92 |
+
_feature_extractor_cache = VocosFbank()
|
| 93 |
+
|
| 94 |
+
return (_models_cache[model_name], _tokenizer_cache,
|
| 95 |
+
_vocoder_cache, _feature_extractor_cache,
|
| 96 |
+
model_config["feature"]["sampling_rate"])
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def synthesize_speech_gradio(
|
| 100 |
+
text: str,
|
| 101 |
+
prompt_audio_file,
|
| 102 |
+
prompt_text: str,
|
| 103 |
+
model_name: str,
|
| 104 |
+
speed: float
|
| 105 |
+
):
|
| 106 |
+
"""Synthesize speech using ZipVoice for Gradio interface."""
|
| 107 |
+
if not text.strip():
|
| 108 |
+
return None, "Error: Please enter text to synthesize."
|
| 109 |
+
|
| 110 |
+
if prompt_audio_file is None:
|
| 111 |
+
return None, "Error: Please upload a prompt audio file."
|
| 112 |
+
|
| 113 |
+
if not prompt_text.strip():
|
| 114 |
+
return None, "Error: Please enter the transcription of the prompt audio."
|
| 115 |
+
|
| 116 |
+
try:
|
| 117 |
+
# Set random seed for reproducibility
|
| 118 |
+
fix_random_seed(666)
|
| 119 |
+
|
| 120 |
+
# Load models and components
|
| 121 |
+
model, tokenizer, vocoder, feature_extractor, sampling_rate = load_models_and_components(model_name)
|
| 122 |
+
|
| 123 |
+
device = torch.device("cpu")
|
| 124 |
+
|
| 125 |
+
# Save uploaded audio to temporary file
|
| 126 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio:
|
| 127 |
+
temp_audio_path = temp_audio.name
|
| 128 |
+
with open(temp_audio_path, "wb") as f:
|
| 129 |
+
f.write(prompt_audio_file)
|
| 130 |
+
|
| 131 |
+
# Create temporary output file
|
| 132 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_output:
|
| 133 |
+
output_path = temp_output.name
|
| 134 |
+
|
| 135 |
+
print(f"Synthesizing: '{text}' using {model_name}")
|
| 136 |
+
print(f"Prompt: {prompt_text}")
|
| 137 |
+
print(f"Speed: {speed}")
|
| 138 |
+
|
| 139 |
+
# Generate speech
|
| 140 |
+
with torch.inference_mode():
|
| 141 |
+
metrics = generate_sentence(
|
| 142 |
+
save_path=output_path,
|
| 143 |
+
prompt_text=prompt_text,
|
| 144 |
+
prompt_wav=temp_audio_path,
|
| 145 |
+
text=text,
|
| 146 |
+
model=model,
|
| 147 |
+
vocoder=vocoder,
|
| 148 |
+
tokenizer=tokenizer,
|
| 149 |
+
feature_extractor=feature_extractor,
|
| 150 |
+
device=device,
|
| 151 |
+
num_step=16 if model_name == "zipvoice" else 8,
|
| 152 |
+
guidance_scale=1.0 if model_name == "zipvoice" else 3.0,
|
| 153 |
+
speed=speed,
|
| 154 |
+
t_shift=0.5,
|
| 155 |
+
target_rms=0.1,
|
| 156 |
+
feat_scale=0.1,
|
| 157 |
+
sampling_rate=sampling_rate,
|
| 158 |
+
max_duration=100,
|
| 159 |
+
remove_long_sil=False,
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
# Read the generated audio file
|
| 163 |
+
with open(output_path, "rb") as f:
|
| 164 |
+
audio_data = f.read()
|
| 165 |
+
|
| 166 |
+
# Clean up temporary files
|
| 167 |
+
os.unlink(temp_audio_path)
|
| 168 |
+
os.unlink(output_path)
|
| 169 |
+
|
| 170 |
+
success_msg = f"Synthesis completed! Duration: {metrics['wav_seconds']:.2f}s, RTF: {metrics['rtf']:.2f}"
|
| 171 |
+
return audio_data, success_msg
|
| 172 |
+
|
| 173 |
+
except Exception as e:
|
| 174 |
+
error_msg = f"Error during synthesis: {str(e)}"
|
| 175 |
+
print(error_msg)
|
| 176 |
+
return None, error_msg
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
def create_gradio_interface():
|
| 180 |
+
"""Create the Gradio web interface."""
|
| 181 |
+
|
| 182 |
+
# Custom CSS for better styling
|
| 183 |
+
css = """
|
| 184 |
+
.gradio-container {
|
| 185 |
+
max-width: 1200px;
|
| 186 |
+
margin: auto;
|
| 187 |
+
}
|
| 188 |
+
.title {
|
| 189 |
+
text-align: center;
|
| 190 |
+
color: #2563eb;
|
| 191 |
+
font-size: 2.5em;
|
| 192 |
+
font-weight: bold;
|
| 193 |
+
margin-bottom: 1em;
|
| 194 |
+
}
|
| 195 |
+
.subtitle {
|
| 196 |
+
text-align: center;
|
| 197 |
+
color: #64748b;
|
| 198 |
+
font-size: 1.2em;
|
| 199 |
+
margin-bottom: 2em;
|
| 200 |
+
}
|
| 201 |
+
"""
|
| 202 |
+
|
| 203 |
+
with gr.Blocks(title="ZipVoice - Zero-Shot Text-to-Speech", css=css) as interface:
|
| 204 |
+
|
| 205 |
+
gr.HTML("""
|
| 206 |
+
<div class="title">🎵 ZipVoice</div>
|
| 207 |
+
<div class="subtitle">Fast and High-Quality Zero-Shot Text-to-Speech with Flow Matching</div>
|
| 208 |
+
""")
|
| 209 |
+
|
| 210 |
+
with gr.Row():
|
| 211 |
+
with gr.Column(scale=2):
|
| 212 |
+
text_input = gr.Textbox(
|
| 213 |
+
label="Text to Synthesize",
|
| 214 |
+
placeholder="Enter the text you want to convert to speech...",
|
| 215 |
+
lines=3,
|
| 216 |
+
value="這是一則語音測試"
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
with gr.Row():
|
| 220 |
+
model_dropdown = gr.Dropdown(
|
| 221 |
+
choices=["zipvoice", "zipvoice_distill"],
|
| 222 |
+
value="zipvoice",
|
| 223 |
+
label="Model",
|
| 224 |
+
info="zipvoice_distill is faster but slightly less accurate"
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
speed_slider = gr.Slider(
|
| 228 |
+
minimum=0.5,
|
| 229 |
+
maximum=2.0,
|
| 230 |
+
value=1.0,
|
| 231 |
+
step=0.1,
|
| 232 |
+
label="Speed",
|
| 233 |
+
info="1.0 = normal speed, >1.0 = faster, <1.0 = slower"
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
prompt_audio = gr.File(
|
| 237 |
+
label="Prompt Audio",
|
| 238 |
+
file_types=["audio"],
|
| 239 |
+
type="binary",
|
| 240 |
+
info="Upload a short audio clip (1-3 seconds recommended) to mimic the voice style"
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
prompt_text = gr.Textbox(
|
| 244 |
+
label="Prompt Transcription",
|
| 245 |
+
placeholder="Enter the exact transcription of the prompt audio...",
|
| 246 |
+
lines=2,
|
| 247 |
+
info="This should match what is spoken in the audio file"
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
generate_btn = gr.Button(
|
| 251 |
+
"🎵 Generate Speech",
|
| 252 |
+
variant="primary",
|
| 253 |
+
size="lg"
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
with gr.Column(scale=1):
|
| 257 |
+
output_audio = gr.Audio(
|
| 258 |
+
label="Generated Speech",
|
| 259 |
+
type="filepath"
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
status_text = gr.Textbox(
|
| 263 |
+
label="Status",
|
| 264 |
+
interactive=False,
|
| 265 |
+
lines=3
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
gr.Examples(
|
| 269 |
+
examples=[
|
| 270 |
+
["Hello world! This is a test of ZipVoice.", None, "Hello world! This is a test.", "zipvoice", 1.0],
|
| 271 |
+
["今天天氣真好,我們去公園散步吧!", None, "今天天氣真好", "zipvoice", 1.0],
|
| 272 |
+
["The quick brown fox jumps over the lazy dog.", None, "The quick brown fox", "zipvoice_distill", 1.2],
|
| 273 |
+
],
|
| 274 |
+
inputs=[text_input, prompt_audio, prompt_text, model_dropdown, speed_slider],
|
| 275 |
+
label="Quick Examples"
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
# Event handling
|
| 279 |
+
generate_btn.click(
|
| 280 |
+
fn=synthesize_speech_gradio,
|
| 281 |
+
inputs=[text_input, prompt_audio, prompt_text, model_dropdown, speed_slider],
|
| 282 |
+
outputs=[output_audio, status_text]
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
# Footer
|
| 286 |
+
gr.HTML("""
|
| 287 |
+
<div style="text-align: center; margin-top: 2em; color: #64748b; font-size: 0.9em;">
|
| 288 |
+
<p>Powered by <a href="https://github.com/k2-fsa/ZipVoice" target="_blank">ZipVoice</a> |
|
| 289 |
+
Built with <a href="https://gradio.app" target="_blank">Gradio</a></p>
|
| 290 |
+
<p>Upload a short audio clip as prompt, and ZipVoice will synthesize speech in that voice style!</p>
|
| 291 |
+
</div>
|
| 292 |
+
""")
|
| 293 |
+
|
| 294 |
+
return interface
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
if __name__ == "__main__":
|
| 298 |
+
# Create and launch the interface
|
| 299 |
+
interface = create_gradio_interface()
|
| 300 |
+
interface.launch(
|
| 301 |
+
server_name="0.0.0.0",
|
| 302 |
+
server_port=int(os.environ.get("PORT", 7860)),
|
| 303 |
+
show_error=True
|
| 304 |
+
)
|
requirements.txt
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
--find-links https://k2-fsa.github.io/icefall/piper_phonemize.html
|
| 2 |
+
|
| 3 |
+
torch
|
| 4 |
+
torchaudio
|
| 5 |
+
numpy
|
| 6 |
+
lhotse
|
| 7 |
+
huggingface_hub
|
| 8 |
+
safetensors
|
| 9 |
+
tensorboard
|
| 10 |
+
vocos
|
| 11 |
+
pydub
|
| 12 |
+
gradio
|
| 13 |
+
|
| 14 |
+
# Normalization
|
| 15 |
+
cn2an
|
| 16 |
+
inflect
|
| 17 |
+
|
| 18 |
+
# Tokenization
|
| 19 |
+
jieba
|
| 20 |
+
piper_phonemize
|
| 21 |
+
pypinyin
|
| 22 |
+
setuptools<81
|