Spaces:
Paused
Paused
File size: 10,723 Bytes
ed290ee 181e3aa ed290ee 96bf80c ed290ee 1daf416 ed290ee 96bf80c ed290ee 774840a ed290ee 1daf416 ed290ee 1daf416 ed290ee 3e6f1e9 ed290ee 3e6f1e9 ed290ee 3e6f1e9 ed290ee 3e6f1e9 ed290ee eafac89 ed290ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
#!/usr/bin/env python3
"""
ZipVoice Gradio Web Interface for HuggingFace Spaces
Updated for Gradio 4.44.1 compatibility
"""
import os
import sys
import tempfile
import gradio as gr
import torch
from pathlib import Path
import spaces
# Add current directory to Python path for local zipvoice package
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
# Import ZipVoice components
from zipvoice.models.zipvoice import ZipVoice
from zipvoice.models.zipvoice_distill import ZipVoiceDistill
from zipvoice.tokenizer.tokenizer import EmiliaTokenizer
from zipvoice.utils.checkpoint import load_checkpoint
from zipvoice.utils.feature import VocosFbank
from zipvoice.bin.infer_zipvoice import generate_sentence
from lhotse.utils import fix_random_seed
# Global variables for caching models
_models_cache = {}
_tokenizer_cache = None
_vocoder_cache = None
_feature_extractor_cache = None
def load_models_and_components(model_name: str):
"""Load and cache models, tokenizer, vocoder, and feature extractor."""
global _models_cache, _tokenizer_cache, _vocoder_cache, _feature_extractor_cache
# Set device (GPU if available for Spaces GPU acceleration)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if model_name not in _models_cache:
print(f"Loading {model_name} model...")
# Model directory mapping
model_dir_map = {
"zipvoice": "zipvoice",
"zipvoice_distill": "zipvoice_distill",
}
huggingface_repo = "k2-fsa/ZipVoice"
# Download model files from HuggingFace
from huggingface_hub import hf_hub_download
model_ckpt = hf_hub_download(
huggingface_repo, filename=f"{model_dir_map[model_name]}/model.pt"
)
model_config_path = hf_hub_download(
huggingface_repo, filename=f"{model_dir_map[model_name]}/model.json"
)
token_file = hf_hub_download(
huggingface_repo, filename=f"{model_dir_map[model_name]}/tokens.txt"
)
# Load tokenizer (cache it)
if _tokenizer_cache is None:
_tokenizer_cache = EmiliaTokenizer(token_file=token_file)
tokenizer = _tokenizer_cache
tokenizer_config = {"vocab_size": tokenizer.vocab_size, "pad_id": tokenizer.pad_id}
# Load model configuration
import json
with open(model_config_path, "r") as f:
model_config = json.load(f)
# Create model
if model_name == "zipvoice":
model = ZipVoice(**model_config["model"], **tokenizer_config)
else:
model = ZipVoiceDistill(**model_config["model"], **tokenizer_config)
# Load model weights
load_checkpoint(filename=model_ckpt, model=model, strict=True)
model = model.to(device)
model.eval()
_models_cache[model_name] = model
# Load vocoder (cache it)
if _vocoder_cache is None:
from vocos import Vocos
_vocoder_cache = Vocos.from_pretrained("charactr/vocos-mel-24khz")
_vocoder_cache = _vocoder_cache.to(device)
_vocoder_cache.eval()
# Load feature extractor (cache it)
if _feature_extractor_cache is None:
_feature_extractor_cache = VocosFbank()
return (_models_cache[model_name], _tokenizer_cache,
_vocoder_cache, _feature_extractor_cache,
model_config["feature"]["sampling_rate"])
@spaces.GPU
def synthesize_speech_gradio(
text: str,
prompt_audio_file,
prompt_text: str,
model_name: str,
speed: float
):
"""Synthesize speech using ZipVoice for Gradio interface."""
if not text.strip():
return None, "Error: Please enter text to synthesize."
if prompt_audio_file is None:
return None, "Error: Please upload a prompt audio file."
if not prompt_text.strip():
return None, "Error: Please enter the transcription of the prompt audio."
try:
# Set random seed for reproducibility
fix_random_seed(666)
# Load models and components
model, tokenizer, vocoder, feature_extractor, sampling_rate = load_models_and_components(model_name)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Save uploaded audio to temporary file
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio:
temp_audio_path = temp_audio.name
with open(temp_audio_path, "wb") as f:
f.write(prompt_audio_file)
# Create temporary output file
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_output:
output_path = temp_output.name
print(f"Synthesizing: '{text}' using {model_name}")
print(f"Prompt: {prompt_text}")
print(f"Speed: {speed}")
# Generate speech
with torch.inference_mode():
metrics = generate_sentence(
save_path=output_path,
prompt_text=prompt_text,
prompt_wav=temp_audio_path,
text=text,
model=model,
vocoder=vocoder,
tokenizer=tokenizer,
feature_extractor=feature_extractor,
device=device,
num_step=16 if model_name == "zipvoice" else 8,
guidance_scale=1.0 if model_name == "zipvoice" else 3.0,
speed=speed,
t_shift=0.5,
target_rms=0.1,
feat_scale=0.1,
sampling_rate=sampling_rate,
max_duration=100,
remove_long_sil=False,
)
# Read the generated audio file
with open(output_path, "rb") as f:
audio_data = f.read()
# Clean up temporary files
os.unlink(temp_audio_path)
os.unlink(output_path)
success_msg = f"Synthesis completed! Duration: {metrics['wav_seconds']:.2f}s, RTF: {metrics['rtf']:.2f}"
return audio_data, success_msg
except Exception as e:
error_msg = f"Error during synthesis: {str(e)}"
print(error_msg)
return None, error_msg
def create_gradio_interface():
"""Create the Gradio web interface."""
# Custom CSS for better styling
css = """
.gradio-container {
max-width: 1200px;
margin: auto;
}
.title {
text-align: center;
color: #2563eb;
font-size: 2.5em;
font-weight: bold;
margin-bottom: 1em;
}
.subtitle {
text-align: center;
color: #64748b;
font-size: 1.2em;
margin-bottom: 2em;
}
"""
with gr.Blocks(title="ZipVoice - Zero-Shot Text-to-Speech", css=css) as interface:
gr.HTML("""
<div class="title">🎵 ZipVoice</div>
<div class="subtitle">Fast and High-Quality Zero-Shot Text-to-Speech with Flow Matching</div>
""")
with gr.Row():
with gr.Column(scale=2):
text_input = gr.Textbox(
label="Text to Synthesize",
placeholder="Enter the text you want to convert to speech...",
lines=3,
value="這是一則語音測試"
)
with gr.Row():
model_dropdown = gr.Dropdown(
choices=["zipvoice", "zipvoice_distill"],
value="zipvoice",
label="Model"
)
speed_slider = gr.Slider(
minimum=0.5,
maximum=2.0,
value=1.0,
step=0.1,
label="Speed"
)
prompt_audio = gr.File(
label="Prompt Audio",
file_types=["audio"],
type="binary"
)
prompt_text = gr.Textbox(
label="Prompt Transcription",
placeholder="Enter the exact transcription of the prompt audio...",
lines=2
)
generate_btn = gr.Button(
"🎵 Generate Speech",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
output_audio = gr.Audio(
label="Generated Speech",
type="filepath"
)
status_text = gr.Textbox(
label="Status",
interactive=False,
lines=3
)
gr.Examples(
examples=[
["I have a dream that one day this nation will rise up and live out the true meaning of its creed.", "https://github.com/ggml-org/whisper.cpp/raw/refs/heads/master/samples/jfk.wav", "ask not what your country can do for you, ask what you can do for your country", "zipvoice", 1.0],
["今天天氣真好,我們去公園散步吧!", "https://github.com/ggml-org/whisper.cpp/raw/refs/heads/master/samples/jfk.wav", "ask not what your country can do for you, ask what you can do for your country", "zipvoice", 1.0],
["The quick brown fox jumps over the lazy dog.", "https://github.com/ggml-org/whisper.cpp/raw/refs/heads/master/samples/jfk.wav", "ask not what your country can do for you, ask what you can do for your country", "zipvoice_distill", 1.2],
],
inputs=[text_input, prompt_audio, prompt_text, model_dropdown, speed_slider],
label="Quick Examples"
)
# Event handling
generate_btn.click(
fn=synthesize_speech_gradio,
inputs=[text_input, prompt_audio, prompt_text, model_dropdown, speed_slider],
outputs=[output_audio, status_text]
)
# Footer
gr.HTML("""
<div style="text-align: center; margin-top: 2em; color: #64748b; font-size: 0.9em;">
<p>Powered by <a href="https://github.com/k2-fsa/ZipVoice" target="_blank">ZipVoice</a> |
Built with <a href="https://gradio.app" target="_blank">Gradio</a></p>
<p>Upload a short audio clip as prompt, and ZipVoice will synthesize speech in that voice style!</p>
</div>
""")
return interface
if __name__ == "__main__":
# Create and launch the interface
interface = create_gradio_interface()
interface.launch(
server_name="0.0.0.0",
server_port=int(os.environ.get("PORT", 7860)),
show_error=True
) |