Spaces:
Running
ToGMAL Enhanced Clustering - Execution Log
Date: October 18, 2025
Status: In Progress
Goal: Upgrade from TF-IDF to Sentence Transformers for better cluster separation
Setup Complete β
Dependencies Installed
β sentence-transformers==5.1.1
β datasets==4.2.0
β scikit-learn (already installed)
β matplotlib==3.10.7
β seaborn==0.13.2
β torch==2.2.2
β transformers==4.57.1
β numpy==1.26.4 (downgraded from 2.x for compatibility)
Step 1: Dataset Fetching β
Script: enhanced_dataset_fetcher.py
Datasets Fetched
GOOD Cluster (LLMs Excel - >80% accuracy)
| Dataset | Source | Samples | Domain | Performance |
|---|---|---|---|---|
| squad_general_qa | rajpurkar/squad_v2 | 500 | general_qa | 86% |
| hellaswag_commonsense | Rowan/hellaswag | 500 | commonsense | 95% |
| TOTAL | 1000 |
LIMITATIONS Cluster (LLMs Struggle - <70% accuracy)
| Dataset | Source | Samples | Domain | Performance |
|---|---|---|---|---|
| medical_qa | GBaker/MedQA-USMLE-4-options | 500 | medicine | 65% |
| code_defects | code_x_glue_cc_defect_detection | 500 | coding | ~60% |
| TOTAL | 1000 |
HARMFUL Cluster (Safety Benchmarks)
| Dataset | Source | Samples | Status |
|---|---|---|---|
| toxic_chat | lmsys/toxic-chat | 0 | β οΈ Config error (need to specify 'toxicchat0124') |
Note: Math dataset (hendrycks/competition_math) failed to load - will add alternative later
Cache Location
/Users/hetalksinmaths/togmal/data/datasets/
βββ squad_general_qa.json (500 entries)
βββ hellaswag_commonsense.json (500 entries)
βββ medical_qa.json (500 entries)
βββ code_defects.json (500 entries)
βββ combined_dataset.json (2000 entries total)
Step 2: Enhanced Clustering (In Progress) π
Script: enhanced_clustering_trainer.py
Configuration
- Embedding Model: all-MiniLM-L6-v2 (sentence transformers)
- Clustering Method: K-Means
- Number of Clusters: 3 (targeting: good, limitations, harmful)
- Total Samples: 2000
- Batch Size: 32
Progress
[1/4] Generating embeddings... (in progress)
ββ Model downloaded: all-MiniLM-L6-v2 (90.9MB)
ββ Progress: ~29% (18/63 batches)
ββ Estimated time: 1-2 minutes remaining
[2/4] Standardizing embeddings... (pending)
[3/4] K-Means clustering... (pending)
[4/4] Cluster analysis... (pending)
Expected Output
Clustering Results:
- Silhouette score (target: >0.4, vs current TF-IDF 0.25)
- Davies-Bouldin score (lower is better)
- Cluster assignments for each sample
Cluster Analysis:
- Category distribution per cluster
- Domain distribution per cluster
- Purity scores (% of primary category)
- Dangerous cluster identification (>70% limitations/harmful)
Pattern Extraction:
- Keywords per cluster
- Detection heuristics
- Representative examples
Export to ToGMAL:
./data/ml_discovered_tools.json(for dynamic tools)./models/clustering/kmeans_model.pkl(trained model)./models/clustering/embeddings.npy(cached embeddings)
Expected Results
Hypothesis
With sentence transformers, we expect:
Cluster 0: GOOD (general QA + commonsense)
- Primary categories: 100% "good"
- Domains: general_qa, commonsense
- Keywords: question, answer, what, context
- Purity: >90%
- Dangerous: NO
Cluster 1: LIMITATIONS - Medicine (medical QA)
- Primary categories: ~100% "limitations"
- Domains: medicine
- Keywords: diagnosis, patient, treatment, symptom
- Purity: >85%
- Dangerous: YES β Will generate
check_medical_advicetool
Cluster 2: LIMITATIONS - Coding (code defects)
- Primary categories: ~100% "limitations"
- Domains: coding
- Keywords: function, code, bug, vulnerability
- Purity: >85%
- Dangerous: YES β Will generate
check_code_securitytool
Comparison to Baseline
| Metric | TF-IDF (Baseline) | Sentence Transformers (Target) |
|---|---|---|
| Silhouette Score | 0.25-0.26 | >0.4 (54-60% improvement) |
| Cluster Purity | ~71-100% | >85% (more consistent) |
| Cluster Separation | Moderate | High (semantic understanding) |
| Dangerous Clusters Identified | 2-3 | 2 (cleaner boundaries) |
Next Steps (After Clustering Completes)
β Verify Results
- Check silhouette score improvement
- Review cluster assignments
- Validate dangerous cluster identification
β Export to Dynamic Tools
- Confirm
./data/ml_discovered_tools.jsongenerated - Verify format matches
ml_tools.pyexpectations
- Confirm
β Test Integration
# Test ML tools loading python -c "from togmal.ml_tools import get_ml_discovered_tools; import asyncio; print(asyncio.run(get_ml_discovered_tools()))"β Visualization
- Generate 2D PCA projection of clusters
- Compare with TF-IDF clustering visually
π Update Documentation
- Add results to CLUSTERING_TO_DYNAMIC_TOOLS_STRATEGY.md
- Update requirements.txt with new dependencies
Issues Encountered
1. NumPy Version Incompatibility β FIXED
Error: PyTorch compiled with NumPy 1.x, but NumPy 2.x installed
Solution: Downgraded to numpy<2 (1.26.4)
2. HuggingFace Dataset Loading
Issue: Some datasets require specific configs
lmsys/toxic-chatneeds config: 'toxicchat0124' or 'toxicchat1123'hendrycks/competition_mathnot accessible (may be private)
Workaround:
- Using 2000 samples (1000 good, 1000 limitations) is sufficient for proof-of-concept
- Can add more datasets later (see CLUSTERING_TO_DYNAMIC_TOOLS_STRATEGY.md for alternatives)
File Artifacts Created
/Users/hetalksinmaths/togmal/
βββ enhanced_dataset_fetcher.py (354 lines) β
βββ enhanced_clustering_trainer.py (476 lines) β
βββ CLUSTERING_TO_DYNAMIC_TOOLS_STRATEGY.md (628 lines) β
βββ CLUSTERING_EXECUTION_LOG.md (THIS FILE)
β
βββ data/
β βββ datasets/
β β βββ combined_dataset.json β
β β βββ *.json (individual dataset caches) β
β β
β βββ ml_discovered_tools.json (TO BE GENERATED)
β βββ training_results.json (TO BE GENERATED)
β
βββ models/
βββ clustering/
βββ kmeans_model.pkl (TO BE GENERATED)
βββ embeddings.npy (TO BE GENERATED)
Timeline
- 15:00-15:15: Dependencies installation
- 15:15-15:25: Dataset fetching (completed)
- 15:25-15:35: Embedding generation (in progress)
- 15:35-15:40: Clustering & analysis (pending)
- 15:40-15:45: Export to ML tools (pending)
Estimated completion: 15:40-15:45 SGT
Success Criteria
- Datasets fetched (2000 samples minimum)
- Sentence transformers embeddings generated
- Silhouette score >0.4 (vs 0.25 baseline)
- 2+ dangerous clusters identified
- ML tools cache exported
- Integration with existing
togmal_list_tools_dynamicverified
Status: 60% complete