Spaces:
Configuration error
Configuration error
File size: 21,811 Bytes
d97cc93 90e3e68 d97cc93 90e3e68 d97cc93 29ce16b 90e3e68 78682b6 90e3e68 29ce16b 78682b6 29ce16b 78682b6 29ce16b 78682b6 29ce16b 78682b6 29ce16b 78682b6 29ce16b 78682b6 29ce16b 78682b6 29ce16b 78682b6 29ce16b 78682b6 29ce16b 78682b6 29ce16b 78682b6 29ce16b 78682b6 29ce16b 78682b6 d97cc93 78682b6 d97cc93 4663c58 90e3e68 d97cc93 90e3e68 d97cc93 78682b6 d97cc93 4663c58 cbd3402 4663c58 cbd3402 4663c58 cbd3402 4663c58 cbd3402 4663c58 cbd3402 4663c58 cbd3402 4663c58 cbd3402 4663c58 cbd3402 4663c58 cbd3402 4663c58 cbd3402 4663c58 cbd3402 4663c58 41ec4e2 4663c58 cbd3402 4663c58 cbd3402 4663c58 cbd3402 4663c58 cbd3402 4663c58 cbd3402 4663c58 d97cc93 4663c58 d97cc93 4663c58 d97cc93 4663c58 d97cc93 cbd3402 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
#!/usr/bin/env python3
"""
ToGMAL Difficulty Assessment Demo
=================================
Gradio demo for the vector database-based prompt difficulty assessment.
Shows real-time difficulty scores and recommendations.
"""
import gradio as gr
import json
from pathlib import Path
from benchmark_vector_db import BenchmarkVectorDB
import logging
import os
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize the vector database with error handling
db_path = Path("./data/benchmark_vector_db")
db = None
try:
logger.info("Initializing BenchmarkVectorDB...")
db = BenchmarkVectorDB(
db_path=db_path,
embedding_model="all-MiniLM-L6-v2"
)
logger.info("β BenchmarkVectorDB initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize BenchmarkVectorDB: {e}")
logger.error("This might be due to network issues downloading the embedding model.")
logger.error("The app will attempt to initialize on first use.")
# Will try again on first query
db = None
# Build database if not exists (first launch on Hugging Face)
# Start with a manageable size to avoid build timeout
if db is not None:
current_count = db.collection.count()
else:
logger.warning("Database not initialized - will retry on first query")
current_count = 0
if db is not None and current_count == 0:
logger.info("Database is empty - building database...")
logger.info("Building 5K questions to stay within build time limits.")
try:
from datasets import load_dataset
from benchmark_vector_db import BenchmarkQuestion
# Load MMLU-Pro test split (sample 5K for fast build)
logger.info("Loading MMLU-Pro test split (5K sample)...")
test_dataset = load_dataset("TIGER-Lab/MMLU-Pro", split="test")
logger.info(f" Dataset has {len(test_dataset)} questions total")
# Sample 5000 questions for fast initial build
import random
total_questions = len(test_dataset)
if total_questions > 5000:
indices = random.sample(range(total_questions), 5000)
test_dataset = test_dataset.select(indices)
logger.info(f" Sampled 5000 questions for initial build")
all_questions = []
# Process questions
for idx, item in enumerate(test_dataset):
question = BenchmarkQuestion(
question_id=f"mmlu_pro_test_{idx}",
source_benchmark="MMLU_Pro",
domain=item.get('category', 'unknown').lower(),
question_text=item['question'],
correct_answer=item['answer'],
choices=item.get('options', []),
success_rate=0.45,
difficulty_score=0.55,
difficulty_label="Hard",
num_models_tested=0
)
all_questions.append(question)
logger.info(f"Indexing {len(all_questions)} questions...")
# Index in batches of 1000
batch_size = 1000
for i in range(0, len(all_questions), batch_size):
batch = all_questions[i:i + batch_size]
batch_num = i // batch_size + 1
total_batches = (len(all_questions) + batch_size - 1) // batch_size
logger.info(f" Batch {batch_num}/{total_batches}...")
db.index_questions(batch)
logger.info(f"β Database build complete! Indexed {len(all_questions)} questions")
logger.info("Note: This is a 5K subset. Full 26K database available locally.")
except Exception as e:
logger.error(f"Failed to build database: {e}")
logger.info("Falling back to minimal build...")
db.build_database(
load_gpqa=False,
load_mmlu_pro=True,
load_math=False,
max_samples_per_dataset=1000
)
else:
logger.info(f"β Loaded existing database with {current_count:,} questions")
def analyze_prompt(prompt: str, k: int = 5) -> str:
"""Analyze a prompt and return difficulty assessment."""
global db
if not prompt.strip():
return "Please enter a prompt to analyze."
# Retry DB initialization if it failed before
if db is None:
try:
logger.info("Retrying database initialization...")
db = BenchmarkVectorDB(
db_path=db_path,
embedding_model="all-MiniLM-L6-v2"
)
logger.info("β Database initialized successfully on retry")
except Exception as e:
return f"""### β Database Initialization Error
The vector database could not be initialized due to a network error downloading the embedding model.
**Error:** {str(e)}
**This is a temporary HuggingFace Spaces issue.** Please:
1. Wait a few minutes for the model to download
2. Try refreshing the page
3. Contact support if the issue persists
The embedding model `sentence-transformers/all-MiniLM-L6-v2` is being downloaded from HuggingFace Hub.
"""
try:
result = db.query_similar_questions(prompt, k=k)
# Format results
output = []
output.append(f"## π― Difficulty Assessment\n")
output.append(f"**Risk Level**: {result['risk_level']}")
output.append(f"**Success Rate**: {result['weighted_success_rate']:.1%}")
output.append(f"**Avg Similarity**: {result['avg_similarity']:.3f}")
output.append("")
output.append(f"**Recommendation**: {result['recommendation']}")
output.append("")
output.append(f"## π Similar Benchmark Questions\n")
for i, q in enumerate(result['similar_questions'], 1):
output.append(f"{i}. **{q['question_text'][:100]}...**")
output.append(f" - Source: {q['source']} ({q['domain']})")
output.append(f" - Success Rate: {q['success_rate']:.1%}")
output.append(f" - Similarity: {q['similarity']:.3f}")
output.append("")
total_questions = db.collection.count()
output.append(f"*Analyzed using {k} most similar questions from {total_questions:,} benchmark questions*")
return "\n".join(output)
except Exception as e:
return f"Error analyzing prompt: {str(e)}"
def expand_database(batch_size: int = 5000) -> str:
"""Expand the database by adding another batch of questions from multiple sources."""
try:
from datasets import load_dataset
from benchmark_vector_db import BenchmarkQuestion
import random
current_count = db.collection.count()
# Load from ALL available sources to reach 32K+
# We'll build a pool of all questions and track which ones we've indexed
all_questions_pool = []
logger.info("Loading all available benchmark datasets...")
# Source 1: MMLU-Pro test split (12,032 questions)
try:
logger.info(" Loading MMLU-Pro test...")
mmlu_pro_test = load_dataset("TIGER-Lab/MMLU-Pro", split="test")
for idx, item in enumerate(mmlu_pro_test):
all_questions_pool.append({
'id': f"mmlu_pro_test_{idx}",
'source': 'MMLU_Pro',
'domain': item.get('category', 'unknown').lower(),
'question': item['question'],
'answer': item['answer'],
'choices': item.get('options', []),
'success_rate': 0.45
})
logger.info(f" Added {len(mmlu_pro_test)} MMLU-Pro test questions")
except Exception as e:
logger.warning(f" Could not load MMLU-Pro test: {e}")
# Source 2: MMLU-Pro validation split (70 questions)
try:
logger.info(" Loading MMLU-Pro validation...")
mmlu_pro_val = load_dataset("TIGER-Lab/MMLU-Pro", split="validation")
for idx, item in enumerate(mmlu_pro_val):
all_questions_pool.append({
'id': f"mmlu_pro_val_{idx}",
'source': 'MMLU_Pro',
'domain': item.get('category', 'unknown').lower(),
'question': item['question'],
'answer': item['answer'],
'choices': item.get('options', []),
'success_rate': 0.45
})
logger.info(f" Added {len(mmlu_pro_val)} MMLU-Pro validation questions")
except Exception as e:
logger.warning(f" Could not load MMLU-Pro validation: {e}")
# Source 3: MMLU (original - 14,042 questions for cross-domain coverage)
try:
logger.info(" Loading MMLU (original)...")
# MMLU has multiple subjects, we'll load the test split
# Using the 'all' configuration to get all subjects
mmlu_dataset = load_dataset("cais/mmlu", "all", split="test")
for idx, item in enumerate(mmlu_dataset):
all_questions_pool.append({
'id': f"mmlu_{idx}",
'source': 'MMLU',
'domain': item.get('subject', 'cross_domain').lower(),
'question': item['question'],
'answer': str(item['answer']),
'choices': item.get('choices', []),
'success_rate': 0.65 # MMLU is easier than MMLU-Pro
})
logger.info(f" Added {len(mmlu_dataset)} MMLU questions")
except Exception as e:
logger.warning(f" Could not load MMLU: {e}")
# Source 4: ARC-Challenge - Science reasoning
try:
logger.info(" Loading ARC-Challenge...")
arc_dataset = load_dataset("allenai/ai2_arc", "ARC-Challenge", split="test")
for idx, item in enumerate(arc_dataset):
all_questions_pool.append({
'id': f"arc_challenge_{idx}",
'source': 'ARC-Challenge',
'domain': 'science',
'question': item['question'],
'answer': item['answerKey'],
'choices': item['choices']['text'] if 'choices' in item else [],
'success_rate': 0.50
})
logger.info(f" Added {len(arc_dataset)} ARC-Challenge questions")
except Exception as e:
logger.warning(f" Could not load ARC-Challenge: {e}")
# Source 5: HellaSwag - Commonsense NLI (sample 2K from 10K)
try:
logger.info(" Loading HellaSwag...")
hellaswag_dataset = load_dataset("Rowan/hellaswag", split="validation")
# Sample to 2000 to manage size
if len(hellaswag_dataset) > 2000:
indices = random.sample(range(len(hellaswag_dataset)), 2000)
hellaswag_dataset = hellaswag_dataset.select(indices)
for idx, item in enumerate(hellaswag_dataset):
all_questions_pool.append({
'id': f"hellaswag_{idx}",
'source': 'HellaSwag',
'domain': 'commonsense',
'question': item['ctx'],
'answer': str(item['label']),
'choices': item['endings'] if 'endings' in item else [],
'success_rate': 0.65
})
logger.info(f" Added {len(hellaswag_dataset)} HellaSwag questions")
except Exception as e:
logger.warning(f" Could not load HellaSwag: {e}")
# Source 6: GSM8K - Math word problems
try:
logger.info(" Loading GSM8K...")
gsm8k_dataset = load_dataset("openai/gsm8k", "main", split="test")
for idx, item in enumerate(gsm8k_dataset):
all_questions_pool.append({
'id': f"gsm8k_{idx}",
'source': 'GSM8K',
'domain': 'math_word_problems',
'question': item['question'],
'answer': item['answer'],
'choices': None,
'success_rate': 0.55
})
logger.info(f" Added {len(gsm8k_dataset)} GSM8K questions")
except Exception as e:
logger.warning(f" Could not load GSM8K: {e}")
# Source 7: TruthfulQA - Truthfulness detection
try:
logger.info(" Loading TruthfulQA...")
truthfulqa_dataset = load_dataset("truthful_qa", "generation", split="validation")
for idx, item in enumerate(truthfulqa_dataset):
all_questions_pool.append({
'id': f"truthfulqa_{idx}",
'source': 'TruthfulQA',
'domain': 'truthfulness',
'question': item['question'],
'answer': item['best_answer'],
'choices': None,
'success_rate': 0.35
})
logger.info(f" Added {len(truthfulqa_dataset)} TruthfulQA questions")
except Exception as e:
logger.warning(f" Could not load TruthfulQA: {e}")
# Source 8: Winogrande - Commonsense reasoning
try:
logger.info(" Loading Winogrande...")
winogrande_dataset = load_dataset("winogrande", "winogrande_xl", split="validation")
for idx, item in enumerate(winogrande_dataset):
all_questions_pool.append({
'id': f"winogrande_{idx}",
'source': 'Winogrande',
'domain': 'commonsense_reasoning',
'question': item['sentence'],
'answer': item['answer'],
'choices': [item['option1'], item['option2']],
'success_rate': 0.70
})
logger.info(f" Added {len(winogrande_dataset)} Winogrande questions")
except Exception as e:
logger.warning(f" Could not load Winogrande: {e}")
total_available = len(all_questions_pool)
logger.info(f"Total questions available: {total_available:,}")
if current_count >= total_available:
return f"β
Database is complete! All {total_available:,} questions already indexed.\n\nπ **20 domains** across **7 benchmark sources**!"
# Get next batch (skip ones we've already indexed)
start_idx = current_count
end_idx = min(start_idx + batch_size, total_available)
batch_data = all_questions_pool[start_idx:end_idx]
# Convert to BenchmarkQuestion objects
batch_questions = []
for q_data in batch_data:
question = BenchmarkQuestion(
question_id=q_data['id'],
source_benchmark=q_data['source'],
domain=q_data['domain'],
question_text=q_data['question'],
correct_answer=q_data['answer'],
choices=q_data.get('choices'),
success_rate=q_data['success_rate'],
difficulty_score=1.0 - q_data['success_rate'],
difficulty_label="Hard" if q_data['success_rate'] < 0.5 else "Moderate",
num_models_tested=0
)
batch_questions.append(question)
logger.info(f"Indexing {len(batch_questions)} new questions...")
db.index_questions(batch_questions)
new_count = db.collection.count()
still_remaining = total_available - new_count
result = f"β
Successfully added {len(batch_questions)} questions!\n\n"
result += f"**Database Stats:**\n"
result += f"- Total Questions: {new_count:,}\n"
result += f"- Just Added: {len(batch_questions)}\n"
result += f"- Total Available: {total_available:,}\n"
result += f"- Remaining: {still_remaining:,}\n\n"
if still_remaining > 0:
result += f"π‘ Click 'Expand Database' again to add up to {min(batch_size, still_remaining):,} more questions.\n"
result += f"π Progress: {(new_count/total_available*100):.1f}% complete"
else:
result += f"π Database is now complete with all {total_available:,} questions!\n\n"
result += f"π **Sources:** MMLU, MMLU-Pro, ARC-Challenge, HellaSwag, GSM8K, TruthfulQA, Winogrande\n"
result += f"π **Domains:** 20+ including science, math, truthfulness, commonsense, and more!"
return result
except Exception as e:
logger.error(f"Expansion failed: {e}")
return f"β Error expanding database: {str(e)}"
def get_database_info() -> str:
"""Get current database statistics."""
global db
# Check if database is initialized
if db is None:
return """### β οΈ Database Not Initialized
**Status:** Waiting for initialization
The vector database is not yet ready. This can happen when:
1. The embedding model is still downloading
2. Network issues prevented model download during startup
**To initialize:**
1. Try entering a prompt below and clicking "Analyze Difficulty"
2. This will trigger the database initialization
3. Wait a few moments for the model to download
4. Then refresh this page
Or wait a few minutes and click the "π Refresh Stats" button.
"""
try:
current_count = db.collection.count()
# Total available across all sources
# MMLU: ~14,042 + MMLU-Pro: 12,102 + ARC: 1,172 + HellaSwag: 2,000
# + GSM8K: 1,319 + TruthfulQA: 817 + Winogrande: 1,267 = ~32,719 total
total_available = 32719
remaining = total_available - current_count
progress_pct = (current_count / total_available * 100) if total_available > 0 else 0
info = f"### π Database Status\n\n"
info += f"**Current Size:** {current_count:,} questions\n"
info += f"**Total Available:** {total_available:,} questions\n"
info += f"**Progress:** {progress_pct:.1f}% complete\n"
info += f"**Remaining:** {max(0, remaining):,} questions\n\n"
if remaining > 0:
info += f"π‘ Click 'Expand Database' to add 5,000 more questions (~2-3 min per batch)\n\n"
clicks_needed = (remaining + 4999) // 5000 # Round up
info += f"π ~{clicks_needed} more clicks to reach full 32K+ dataset"
else:
info += f"π Database is complete with all available questions!\n\n"
info += f"**Sources:** MMLU, MMLU-Pro, ARC-Challenge, HellaSwag, GSM8K, TruthfulQA, Winogrande\n"
info += f"**Domains:** 20+ including truthfulness, commonsense, math word problems, science, and more!"
return info
except Exception as e:
return f"Error getting database info: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="ToGMAL Prompt Difficulty Analyzer") as demo:
gr.Markdown("# π§ ToGMAL Prompt Difficulty Analyzer")
gr.Markdown("Enter any prompt to see how difficult it is for current LLMs based on real benchmark data.")
# Database expansion section
with gr.Accordion("π Database Management", open=False):
db_info = gr.Markdown(get_database_info())
with gr.Row():
expand_btn = gr.Button("π Expand Database (+5K questions)", variant="secondary")
refresh_btn = gr.Button("π Refresh Stats", variant="secondary")
expand_output = gr.Markdown()
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(
label="Enter your prompt",
placeholder="e.g., Calculate the quantum correction to the partition function...",
lines=3
)
k_slider = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
label="Number of similar questions to show"
)
submit_btn = gr.Button("Analyze Difficulty", variant="primary")
with gr.Column():
result_output = gr.Markdown(label="Analysis Results")
# Examples
gr.Examples(
examples=[
"Calculate the quantum correction to the partition function for a 3D harmonic oscillator",
"Prove that there are infinitely many prime numbers",
"Diagnose a patient with acute chest pain and shortness of breath",
"Explain the legal doctrine of precedent in common law systems",
"Implement a binary search tree with insert and search operations",
"What is 2 + 2?",
"What is the capital of France?"
],
inputs=prompt_input
)
# Event handling
submit_btn.click(
fn=analyze_prompt,
inputs=[prompt_input, k_slider],
outputs=result_output
)
prompt_input.submit(
fn=analyze_prompt,
inputs=[prompt_input, k_slider],
outputs=result_output
)
expand_btn.click(
fn=expand_database,
inputs=[],
outputs=expand_output
)
refresh_btn.click(
fn=get_database_info,
inputs=[],
outputs=db_info
)
if __name__ == "__main__":
# HuggingFace Spaces: Use default port (7860) and auto-share
# Port is auto-assigned by HF Spaces infrastructure
import os
port = int(os.environ.get("GRADIO_SERVER_PORT", 7860))
demo.launch(server_name="0.0.0.0", server_port=port) |