Spaces:
Configuration error
Configuration error
HeTalksInMaths
commited on
Commit
·
29ce16b
1
Parent(s):
78682b6
Reduce to 5K questions for fast HF build
Browse files- Build now takes ~3-5 min instead of timing out
- Samples 5K from MMLU-Pro test split
- Still covers all 14 domains
- Note: Full 26K available locally
app.py
CHANGED
|
@@ -25,46 +25,34 @@ db = BenchmarkVectorDB(
|
|
| 25 |
embedding_model="all-MiniLM-L6-v2"
|
| 26 |
)
|
| 27 |
|
| 28 |
-
# Build
|
|
|
|
| 29 |
current_count = db.collection.count()
|
| 30 |
|
| 31 |
if current_count == 0:
|
| 32 |
-
logger.info("Database is empty - building
|
| 33 |
-
logger.info("
|
| 34 |
|
| 35 |
-
# Load MMLU-Pro test split for comprehensive coverage
|
| 36 |
try:
|
| 37 |
from datasets import load_dataset
|
| 38 |
from benchmark_vector_db import BenchmarkQuestion
|
| 39 |
|
| 40 |
-
# Load MMLU-Pro
|
| 41 |
-
logger.info("Loading MMLU-Pro
|
| 42 |
-
val_dataset = load_dataset("TIGER-Lab/MMLU-Pro", split="validation")
|
| 43 |
-
logger.info(f" Loaded {len(val_dataset)} validation questions")
|
| 44 |
-
|
| 45 |
-
logger.info("Loading MMLU-Pro test split...")
|
| 46 |
test_dataset = load_dataset("TIGER-Lab/MMLU-Pro", split="test")
|
| 47 |
-
logger.info(f"
|
| 48 |
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
|
| 52 |
-
for idx, item in enumerate(val_dataset):
|
| 53 |
-
question = BenchmarkQuestion(
|
| 54 |
-
question_id=f"mmlu_pro_val_{idx}",
|
| 55 |
-
source_benchmark="MMLU_Pro",
|
| 56 |
-
domain=item.get('category', 'unknown').lower(),
|
| 57 |
-
question_text=item['question'],
|
| 58 |
-
correct_answer=item['answer'],
|
| 59 |
-
choices=item.get('options', []),
|
| 60 |
-
success_rate=0.45,
|
| 61 |
-
difficulty_score=0.55,
|
| 62 |
-
difficulty_label="Hard",
|
| 63 |
-
num_models_tested=0
|
| 64 |
-
)
|
| 65 |
-
all_questions.append(question)
|
| 66 |
|
| 67 |
-
# Process
|
| 68 |
for idx, item in enumerate(test_dataset):
|
| 69 |
question = BenchmarkQuestion(
|
| 70 |
question_id=f"mmlu_pro_test_{idx}",
|
|
@@ -80,26 +68,27 @@ if current_count == 0:
|
|
| 80 |
)
|
| 81 |
all_questions.append(question)
|
| 82 |
|
| 83 |
-
logger.info(f"
|
| 84 |
|
| 85 |
-
# Index in batches of 1000
|
| 86 |
batch_size = 1000
|
| 87 |
for i in range(0, len(all_questions), batch_size):
|
| 88 |
batch = all_questions[i:i + batch_size]
|
| 89 |
batch_num = i // batch_size + 1
|
| 90 |
total_batches = (len(all_questions) + batch_size - 1) // batch_size
|
| 91 |
-
logger.info(f"
|
| 92 |
db.index_questions(batch)
|
| 93 |
|
| 94 |
logger.info(f"✓ Database build complete! Indexed {len(all_questions)} questions")
|
|
|
|
| 95 |
|
| 96 |
except Exception as e:
|
| 97 |
-
logger.error(f"Failed to build
|
| 98 |
-
logger.info("Falling back to
|
| 99 |
db.build_database(
|
| 100 |
-
load_gpqa=False,
|
| 101 |
load_mmlu_pro=True,
|
| 102 |
-
load_math=False,
|
| 103 |
max_samples_per_dataset=1000
|
| 104 |
)
|
| 105 |
else:
|
|
|
|
| 25 |
embedding_model="all-MiniLM-L6-v2"
|
| 26 |
)
|
| 27 |
|
| 28 |
+
# Build database if not exists (first launch on Hugging Face)
|
| 29 |
+
# Start with a manageable size to avoid build timeout
|
| 30 |
current_count = db.collection.count()
|
| 31 |
|
| 32 |
if current_count == 0:
|
| 33 |
+
logger.info("Database is empty - building database...")
|
| 34 |
+
logger.info("Building 5K questions to stay within build time limits.")
|
| 35 |
|
|
|
|
| 36 |
try:
|
| 37 |
from datasets import load_dataset
|
| 38 |
from benchmark_vector_db import BenchmarkQuestion
|
| 39 |
|
| 40 |
+
# Load MMLU-Pro test split (sample 5K for fast build)
|
| 41 |
+
logger.info("Loading MMLU-Pro test split (5K sample)...")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
test_dataset = load_dataset("TIGER-Lab/MMLU-Pro", split="test")
|
| 43 |
+
logger.info(f" Dataset has {len(test_dataset)} questions total")
|
| 44 |
|
| 45 |
+
# Sample 5000 questions for fast initial build
|
| 46 |
+
import random
|
| 47 |
+
total_questions = len(test_dataset)
|
| 48 |
+
if total_questions > 5000:
|
| 49 |
+
indices = random.sample(range(total_questions), 5000)
|
| 50 |
+
test_dataset = test_dataset.select(indices)
|
| 51 |
+
logger.info(f" Sampled 5000 questions for initial build")
|
| 52 |
|
| 53 |
+
all_questions = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
# Process questions
|
| 56 |
for idx, item in enumerate(test_dataset):
|
| 57 |
question = BenchmarkQuestion(
|
| 58 |
question_id=f"mmlu_pro_test_{idx}",
|
|
|
|
| 68 |
)
|
| 69 |
all_questions.append(question)
|
| 70 |
|
| 71 |
+
logger.info(f"Indexing {len(all_questions)} questions...")
|
| 72 |
|
| 73 |
+
# Index in batches of 1000
|
| 74 |
batch_size = 1000
|
| 75 |
for i in range(0, len(all_questions), batch_size):
|
| 76 |
batch = all_questions[i:i + batch_size]
|
| 77 |
batch_num = i // batch_size + 1
|
| 78 |
total_batches = (len(all_questions) + batch_size - 1) // batch_size
|
| 79 |
+
logger.info(f" Batch {batch_num}/{total_batches}...")
|
| 80 |
db.index_questions(batch)
|
| 81 |
|
| 82 |
logger.info(f"✓ Database build complete! Indexed {len(all_questions)} questions")
|
| 83 |
+
logger.info("Note: This is a 5K subset. Full 26K database available locally.")
|
| 84 |
|
| 85 |
except Exception as e:
|
| 86 |
+
logger.error(f"Failed to build database: {e}")
|
| 87 |
+
logger.info("Falling back to minimal build...")
|
| 88 |
db.build_database(
|
| 89 |
+
load_gpqa=False,
|
| 90 |
load_mmlu_pro=True,
|
| 91 |
+
load_math=False,
|
| 92 |
max_samples_per_dataset=1000
|
| 93 |
)
|
| 94 |
else:
|