|
|
|
|
|
|
|
|
import gradio as gr |
|
|
import os |
|
|
import sys |
|
|
import traceback |
|
|
from pathlib import Path |
|
|
|
|
|
|
|
|
try: |
|
|
from api.ltx_server_refactored import video_generation_service |
|
|
except ImportError: |
|
|
print("ERRO FATAL: Não foi possível importar 'video_generation_service' de 'api.ltx_server_refactored'.") |
|
|
sys.exit(1) |
|
|
|
|
|
try: |
|
|
from api.seedvr_server import SeedVRServer |
|
|
except ImportError: |
|
|
print("AVISO: Não foi possível importar SeedVRServer. A aba de upscaling SeedVR será desativada.") |
|
|
SeedVRServer = None |
|
|
|
|
|
seedvr_inference_server = SeedVRServer() if SeedVRServer else None |
|
|
|
|
|
|
|
|
def create_initial_state(): |
|
|
return {"low_res_video": None, "low_res_latents": None, "used_seed": None} |
|
|
|
|
|
|
|
|
|
|
|
def run_generate_base_video( |
|
|
|
|
|
generation_mode, prompt, neg_prompt, start_img, height, width, duration, cfg, seed, randomize_seed, |
|
|
fp_guidance_preset, fp_guidance_scale_list, fp_stg_scale_list, fp_timesteps_list, |
|
|
progress=gr.Progress(track_tqdm=True) |
|
|
): |
|
|
""" |
|
|
Função wrapper que decide qual pipeline de backend chamar, passando todas as configurações LTX. |
|
|
""" |
|
|
print(f"UI: Iniciando geração no modo: {generation_mode}") |
|
|
|
|
|
try: |
|
|
initial_image_conditions = [] |
|
|
if start_img: |
|
|
num_frames_estimate = int(duration * 24) |
|
|
items_list = [[start_img, 0, 1.0]] |
|
|
initial_image_conditions = video_generation_service.prepare_condition_items(items_list, height, width, num_frames_estimate) |
|
|
|
|
|
used_seed = None if randomize_seed else seed |
|
|
|
|
|
|
|
|
ltx_configs = { |
|
|
"guidance_preset": fp_guidance_preset, |
|
|
"guidance_scale_list": fp_guidance_scale_list, |
|
|
"stg_scale_list": fp_stg_scale_list, |
|
|
"timesteps_list": fp_timesteps_list, |
|
|
} |
|
|
|
|
|
|
|
|
if generation_mode == "Narrativa (Múltiplos Prompts)": |
|
|
video_path, tensor_path, final_seed = video_generation_service.generate_narrative_low( |
|
|
prompt=prompt, negative_prompt=neg_prompt, |
|
|
height=height, width=width, duration=duration, |
|
|
guidance_scale=cfg, seed=used_seed, |
|
|
initial_image_conditions=initial_image_conditions, |
|
|
ltx_configs_override=ltx_configs, |
|
|
) |
|
|
else: |
|
|
video_path, tensor_path, final_seed = video_generation_service.generate_single_low( |
|
|
prompt=prompt, negative_prompt=neg_prompt, |
|
|
height=height, width=width, duration=duration, |
|
|
guidance_scale=cfg, seed=used_seed, |
|
|
initial_image_conditions=initial_image_conditions, |
|
|
ltx_configs_override=ltx_configs, |
|
|
) |
|
|
|
|
|
new_state = {"low_res_video": video_path, "low_res_latents": tensor_path, "used_seed": final_seed} |
|
|
|
|
|
return video_path, new_state, gr.update(visible=True) |
|
|
|
|
|
except Exception as e: |
|
|
error_message = f"❌ Ocorreu um erro na Geração Base:\n{e}" |
|
|
print(f"{error_message}\nDetalhes: {traceback.format_exc()}") |
|
|
raise gr.Error(error_message) |
|
|
|
|
|
def run_ltx_refinement(state, prompt, neg_prompt, cfg, progress=gr.Progress(track_tqdm=True)): |
|
|
if not state or not state.get("low_res_latents"): |
|
|
raise gr.Error("Erro: Gere um vídeo base primeiro na Etapa 1.") |
|
|
try: |
|
|
video_path, tensor_path = video_generation_service.generate_upscale_denoise( |
|
|
latents_path=state["low_res_latents"], prompt=prompt, |
|
|
negative_prompt=neg_prompt, guidance_scale=cfg, seed=state["used_seed"] |
|
|
) |
|
|
state["refined_video_ltx"] = video_path; state["refined_latents_ltx"] = tensor_path |
|
|
return video_path, state |
|
|
except Exception as e: |
|
|
raise gr.Error(f"Erro no Refinamento LTX: {e}") |
|
|
|
|
|
def run_seedvr_upscaling(state, seed, resolution, batch_size, fps, progress=gr.Progress(track_tqdm=True)): |
|
|
if not state or not state.get("low_res_video"): |
|
|
raise gr.Error("Erro: Gere um vídeo base primeiro na Etapa 1.") |
|
|
if not seedvr_inference_server: |
|
|
raise gr.Error("Erro: O servidor SeedVR não está disponível.") |
|
|
try: |
|
|
def progress_wrapper(p, desc=""): progress(p, desc=desc) |
|
|
output_filepath = seedvr_inference_server.run_inference( |
|
|
file_path=state["low_res_video"], seed=seed, resolution=resolution, |
|
|
batch_size=batch_size, fps=fps, progress=progress_wrapper |
|
|
) |
|
|
return gr.update(value=output_filepath), gr.update(value=f"✅ Concluído!\nSalvo em: {output_filepath}") |
|
|
except Exception as e: |
|
|
return None, gr.update(value=f"❌ Erro no SeedVR:\n{e}") |
|
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
gr.Markdown("# LTX Video - Geração e Pós-Produção por Etapas") |
|
|
|
|
|
app_state = gr.State(value=create_initial_state()) |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(scale=1): |
|
|
gr.Markdown("### Etapa 1: Configurações de Geração") |
|
|
|
|
|
generation_mode_input = gr.Radio( |
|
|
label="Modo de Geração", choices=["Simples (Prompt Único)", "Narrativa (Múltiplos Prompts)"], |
|
|
value="Narrativa (Múltiplos Prompts)", info="Simples para uma ação, Narrativa para uma sequência (uma cena por linha)." |
|
|
) |
|
|
prompt_input = gr.Textbox(label="Prompt(s)", value="Um leão majestoso caminha pela savana\nEle sobe em uma grande pedra e olha o horizonte", lines=4) |
|
|
neg_prompt_input = gr.Textbox(label="Negative Prompt", value="blurry, low quality, bad anatomy", lines=2) |
|
|
start_image = gr.Image(label="Imagem de Início (Opcional)", type="filepath", sources=["upload"]) |
|
|
|
|
|
with gr.Accordion("Parâmetros Principais", open=False): |
|
|
duration_input = gr.Slider(label="Duração Total (s)", value=1, step=1, minimum=1, maximum=40) |
|
|
with gr.Row(): |
|
|
height_input = gr.Slider(label="Height", value=720, step=32, minimum=256, maximum=1024) |
|
|
width_input = gr.Slider(label="Width", value=720, step=32, minimum=256, maximum=1024) |
|
|
with gr.Row(): |
|
|
seed_input = gr.Number(label="Seed", value=42, precision=0) |
|
|
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) |
|
|
|
|
|
with gr.Accordion("Opções Adicionais LTX (Avançado)", open=False): |
|
|
cfg_input = gr.Slider(label="Guidance Scale (CFG)", info="Afeta o refinamento (se usado) e não tem efeito no First Pass dos modelos 'distilled'.", value=0.0, step=1, minimum=0.0, maximum=10.0) |
|
|
fp_num_inference_steps = gr.Slider(label="Passos de Inferência (First Pass)", minimum=10, maximum=100, step=1, value=10) |
|
|
ship_initial_inference_steps = gr.Slider(label="Passos de Inferência (Ship First)", minimum=0, maximum=100, step=1, value=0) |
|
|
ship_final_inference_steps = gr.Slider(label="Passos de Inferência (Ship Last)", minimum=0, maximum=100, step=1, value=0) |
|
|
|
|
|
with gr.Tabs(): |
|
|
with gr.TabItem("Guiagem (First Pass)"): |
|
|
fp_guidance_preset = gr.Dropdown( |
|
|
label="Preset de Guiagem", |
|
|
choices=["Padrão (Recomendado)", "Agressivo", "Suave", "Customizado"], |
|
|
value="Padrão (Recomendado)", info="Muda o comportamento da guiagem ao longo da difusão." |
|
|
) |
|
|
with gr.Group(visible=False) as custom_guidance_group: |
|
|
gr.Markdown("⚠️ Edite as listas em formato JSON. Ex: `[1, 2, 3]`") |
|
|
fp_guidance_scale_list = gr.Textbox(label="Lista de Guidance Scale", value="[1, 1, 6, 8, 6, 1, 1]") |
|
|
fp_stg_scale_list = gr.Textbox(label="Lista de STG Scale (Movimento)", value="[0, 0, 4, 4, 4, 2, 1]") |
|
|
fp_timesteps_list = gr.Textbox(label="Lista de Guidance Timesteps", value="[1.0, 0.996, 0.9933, 0.9850, 0.9767, 0.9008, 0.6180]") |
|
|
|
|
|
generate_low_btn = gr.Button("1. Gerar Vídeo Base", variant="primary") |
|
|
|
|
|
with gr.Column(scale=1): |
|
|
gr.Markdown("### Vídeo Base Gerado") |
|
|
low_res_video_output = gr.Video(label="O resultado da Etapa 1 aparecerá aqui", interactive=False) |
|
|
|
|
|
with gr.Group(visible=False) as post_prod_group: |
|
|
gr.Markdown("## Etapa 2: Pós-Produção") |
|
|
|
|
|
with gr.Tabs(): |
|
|
with gr.TabItem("🚀 Upscaler Textura (LTX)"): |
|
|
with gr.Row(): |
|
|
with gr.Column(scale=1): |
|
|
gr.Markdown("Reutiliza o prompt e CFG para refinar a textura.") |
|
|
ltx_refine_btn = gr.Button("Aplicar Refinamento LTX", variant="primary") |
|
|
with gr.Column(scale=1): |
|
|
ltx_refined_video_output = gr.Video(label="Vídeo com Textura Refinada", interactive=False) |
|
|
|
|
|
with gr.TabItem("✨ Upscaler SeedVR"): |
|
|
with gr.Row(): |
|
|
with gr.Column(scale=1): |
|
|
seedvr_seed = gr.Slider(minimum=0, maximum=999999, value=42, step=1, label="Seed") |
|
|
seedvr_resolution = gr.Slider(minimum=720, maximum=1440, value=1072, step=8, label="Resolução Vertical") |
|
|
seedvr_batch_size = gr.Slider(minimum=1, maximum=16, value=4, step=1, label="Batch Size por GPU") |
|
|
seedvr_fps_output = gr.Number(label="FPS de Saída (0 = original)", value=0) |
|
|
run_seedvr_button = gr.Button("Iniciar Upscaling SeedVR", variant="primary", interactive=(seedvr_inference_server is not None)) |
|
|
with gr.Column(scale=1): |
|
|
seedvr_video_output = gr.Video(label="Vídeo com Upscale SeedVR", interactive=False) |
|
|
seedvr_status_box = gr.Textbox(label="Status", value="Aguardando...", lines=3, interactive=False) |
|
|
|
|
|
|
|
|
def update_custom_guidance_visibility(preset_choice): |
|
|
return gr.update(visible=(preset_choice == "Customizado")) |
|
|
|
|
|
fp_guidance_preset.change(fn=update_custom_guidance_visibility, inputs=fp_guidance_preset, outputs=custom_guidance_group) |
|
|
|
|
|
all_ltx_inputs = [ |
|
|
fp_guidance_preset, fp_guidance_scale_list, fp_stg_scale_list, fp_timesteps_list |
|
|
] |
|
|
|
|
|
generate_low_btn.click( |
|
|
fn=run_generate_base_video, |
|
|
inputs=[ |
|
|
generation_mode_input, prompt_input, neg_prompt_input, start_image, height_input, width_input, |
|
|
duration_input, cfg_input, seed_input, randomize_seed, |
|
|
*all_ltx_inputs |
|
|
], |
|
|
outputs=[low_res_video_output, app_state, post_prod_group] |
|
|
) |
|
|
|
|
|
ltx_refine_btn.click( |
|
|
fn=run_ltx_refinement, |
|
|
inputs=[app_state, prompt_input, neg_prompt_input, cfg_input], |
|
|
outputs=[ltx_refined_video_output, app_state] |
|
|
) |
|
|
|
|
|
run_seedvr_button.click( |
|
|
fn=run_seedvr_upscaling, |
|
|
inputs=[app_state, seedvr_seed, seedvr_resolution, seedvr_batch_size, seedvr_fps_output], |
|
|
outputs=[seedvr_video_output, seedvr_status_box] |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.queue().launch(server_name="0.0.0.0", server_port=7860, debug=True, show_error=True) |