File size: 11,705 Bytes
8bbdce0 db47818 5096465 db47818 7720807 8bbdce0 7720807 8bbdce0 7720807 db47818 35e29a5 db47818 994d098 db47818 8bbdce0 994d098 8bbdce0 d993e45 994d098 8bbdce0 994d098 8bbdce0 db47818 994d098 db47818 35e29a5 994d098 db47818 8bbdce0 994d098 7720807 db47818 994d098 8bbdce0 994d098 8bbdce0 861dd74 994d098 8bbdce0 861dd74 994d098 8bbdce0 db47818 994d098 db47818 8bbdce0 35e29a5 994d098 8bbdce0 35e29a5 994d098 35e29a5 994d098 db47818 35e29a5 db47818 994d098 db47818 994d098 35e29a5 db47818 994d098 db47818 994d098 db47818 f85c8b3 35e29a5 8bbdce0 db47818 994d098 8bbdce0 994d098 8bbdce0 994d098 8bbdce0 994d098 7720807 994d098 7720807 8bbdce0 994d098 db47818 994d098 db47818 9362b35 8bbdce0 701d78c 7720807 994d098 8bbdce0 994d098 db47818 994d098 8bbdce0 9b84a2b 8bbdce0 994d098 db47818 35e29a5 8bbdce0 35e29a5 db47818 35e29a5 db47818 35e29a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
# app_refactored_with_postprod.py (com Presets de Guiagem e Opções LTX Completas)
import gradio as gr
import os
import sys
import traceback
from pathlib import Path
# --- Import dos Serviços de Backend ---
try:
from api.ltx_server_refactored import video_generation_service
except ImportError:
print("ERRO FATAL: Não foi possível importar 'video_generation_service' de 'api.ltx_server_refactored'.")
sys.exit(1)
try:
from api.seedvr_server import SeedVRServer
except ImportError:
print("AVISO: Não foi possível importar SeedVRServer. A aba de upscaling SeedVR será desativada.")
SeedVRServer = None
seedvr_inference_server = SeedVRServer() if SeedVRServer else None
# --- ESTADO DA SESSÃO ---
def create_initial_state():
return {"low_res_video": None, "low_res_latents": None, "used_seed": None}
# --- FUNÇÕES WRAPPER PARA A UI ---
def run_generate_base_video(
# Parâmetros de Geração
generation_mode, prompt, neg_prompt, start_img, height, width, duration, cfg, seed, randomize_seed,
fp_guidance_preset, fp_guidance_scale_list, fp_stg_scale_list, fp_timesteps_list,
progress=gr.Progress(track_tqdm=True)
):
"""
Função wrapper que decide qual pipeline de backend chamar, passando todas as configurações LTX.
"""
print(f"UI: Iniciando geração no modo: {generation_mode}")
try:
initial_image_conditions = []
if start_img:
num_frames_estimate = int(duration * 24)
items_list = [[start_img, 0, 1.0]]
initial_image_conditions = video_generation_service.prepare_condition_items(items_list, height, width, num_frames_estimate)
used_seed = None if randomize_seed else seed
# Agrupa todas as configurações LTX em um único dicionário para o backend
ltx_configs = {
"guidance_preset": fp_guidance_preset,
"guidance_scale_list": fp_guidance_scale_list,
"stg_scale_list": fp_stg_scale_list,
"timesteps_list": fp_timesteps_list,
}
# Decide qual função de backend chamar com base no modo
if generation_mode == "Narrativa (Múltiplos Prompts)":
video_path, tensor_path, final_seed = video_generation_service.generate_narrative_low(
prompt=prompt, negative_prompt=neg_prompt,
height=height, width=width, duration=duration,
guidance_scale=cfg, seed=used_seed,
initial_image_conditions=initial_image_conditions,
ltx_configs_override=ltx_configs,
)
else: # Modo "Simples (Prompt Único)"
video_path, tensor_path, final_seed = video_generation_service.generate_single_low(
prompt=prompt, negative_prompt=neg_prompt,
height=height, width=width, duration=duration,
guidance_scale=cfg, seed=used_seed,
initial_image_conditions=initial_image_conditions,
ltx_configs_override=ltx_configs,
)
new_state = {"low_res_video": video_path, "low_res_latents": tensor_path, "used_seed": final_seed}
return video_path, new_state, gr.update(visible=True)
except Exception as e:
error_message = f"❌ Ocorreu um erro na Geração Base:\n{e}"
print(f"{error_message}\nDetalhes: {traceback.format_exc()}")
raise gr.Error(error_message)
def run_ltx_refinement(state, prompt, neg_prompt, cfg, progress=gr.Progress(track_tqdm=True)):
if not state or not state.get("low_res_latents"):
raise gr.Error("Erro: Gere um vídeo base primeiro na Etapa 1.")
try:
video_path, tensor_path = video_generation_service.generate_upscale_denoise(
latents_path=state["low_res_latents"], prompt=prompt,
negative_prompt=neg_prompt, guidance_scale=cfg, seed=state["used_seed"]
)
state["refined_video_ltx"] = video_path; state["refined_latents_ltx"] = tensor_path
return video_path, state
except Exception as e:
raise gr.Error(f"Erro no Refinamento LTX: {e}")
def run_seedvr_upscaling(state, seed, resolution, batch_size, fps, progress=gr.Progress(track_tqdm=True)):
if not state or not state.get("low_res_video"):
raise gr.Error("Erro: Gere um vídeo base primeiro na Etapa 1.")
if not seedvr_inference_server:
raise gr.Error("Erro: O servidor SeedVR não está disponível.")
try:
def progress_wrapper(p, desc=""): progress(p, desc=desc)
output_filepath = seedvr_inference_server.run_inference(
file_path=state["low_res_video"], seed=seed, resolution=resolution,
batch_size=batch_size, fps=fps, progress=progress_wrapper
)
return gr.update(value=output_filepath), gr.update(value=f"✅ Concluído!\nSalvo em: {output_filepath}")
except Exception as e:
return None, gr.update(value=f"❌ Erro no SeedVR:\n{e}")
# --- DEFINIÇÃO DA INTERFACE GRADIO ---
with gr.Blocks() as demo:
gr.Markdown("# LTX Video - Geração e Pós-Produção por Etapas")
app_state = gr.State(value=create_initial_state())
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Etapa 1: Configurações de Geração")
generation_mode_input = gr.Radio(
label="Modo de Geração", choices=["Simples (Prompt Único)", "Narrativa (Múltiplos Prompts)"],
value="Narrativa (Múltiplos Prompts)", info="Simples para uma ação, Narrativa para uma sequência (uma cena por linha)."
)
prompt_input = gr.Textbox(label="Prompt(s)", value="Um leão majestoso caminha pela savana\nEle sobe em uma grande pedra e olha o horizonte", lines=4)
neg_prompt_input = gr.Textbox(label="Negative Prompt", value="blurry, low quality, bad anatomy", lines=2)
start_image = gr.Image(label="Imagem de Início (Opcional)", type="filepath", sources=["upload"])
with gr.Accordion("Parâmetros Principais", open=False):
duration_input = gr.Slider(label="Duração Total (s)", value=1, step=1, minimum=1, maximum=40)
with gr.Row():
height_input = gr.Slider(label="Height", value=720, step=32, minimum=256, maximum=1024)
width_input = gr.Slider(label="Width", value=720, step=32, minimum=256, maximum=1024)
with gr.Row():
seed_input = gr.Number(label="Seed", value=42, precision=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Accordion("Opções Adicionais LTX (Avançado)", open=False):
cfg_input = gr.Slider(label="Guidance Scale (CFG)", info="Afeta o refinamento (se usado) e não tem efeito no First Pass dos modelos 'distilled'.", value=0.0, step=1, minimum=0.0, maximum=10.0)
fp_num_inference_steps = gr.Slider(label="Passos de Inferência (First Pass)", minimum=10, maximum=100, step=1, value=10)
ship_initial_inference_steps = gr.Slider(label="Passos de Inferência (Ship First)", minimum=0, maximum=100, step=1, value=0)
ship_final_inference_steps = gr.Slider(label="Passos de Inferência (Ship Last)", minimum=0, maximum=100, step=1, value=0)
with gr.Tabs():
with gr.TabItem("Guiagem (First Pass)"):
fp_guidance_preset = gr.Dropdown(
label="Preset de Guiagem",
choices=["Padrão (Recomendado)", "Agressivo", "Suave", "Customizado"],
value="Padrão (Recomendado)", info="Muda o comportamento da guiagem ao longo da difusão."
)
with gr.Group(visible=False) as custom_guidance_group:
gr.Markdown("⚠️ Edite as listas em formato JSON. Ex: `[1, 2, 3]`")
fp_guidance_scale_list = gr.Textbox(label="Lista de Guidance Scale", value="[1, 1, 6, 8, 6, 1, 1]")
fp_stg_scale_list = gr.Textbox(label="Lista de STG Scale (Movimento)", value="[0, 0, 4, 4, 4, 2, 1]")
fp_timesteps_list = gr.Textbox(label="Lista de Guidance Timesteps", value="[1.0, 0.996, 0.9933, 0.9850, 0.9767, 0.9008, 0.6180]")
generate_low_btn = gr.Button("1. Gerar Vídeo Base", variant="primary")
with gr.Column(scale=1):
gr.Markdown("### Vídeo Base Gerado")
low_res_video_output = gr.Video(label="O resultado da Etapa 1 aparecerá aqui", interactive=False)
with gr.Group(visible=False) as post_prod_group:
gr.Markdown("## Etapa 2: Pós-Produção")
with gr.Tabs():
with gr.TabItem("🚀 Upscaler Textura (LTX)"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("Reutiliza o prompt e CFG para refinar a textura.")
ltx_refine_btn = gr.Button("Aplicar Refinamento LTX", variant="primary")
with gr.Column(scale=1):
ltx_refined_video_output = gr.Video(label="Vídeo com Textura Refinada", interactive=False)
with gr.TabItem("✨ Upscaler SeedVR"):
with gr.Row():
with gr.Column(scale=1):
seedvr_seed = gr.Slider(minimum=0, maximum=999999, value=42, step=1, label="Seed")
seedvr_resolution = gr.Slider(minimum=720, maximum=1440, value=1072, step=8, label="Resolução Vertical")
seedvr_batch_size = gr.Slider(minimum=1, maximum=16, value=4, step=1, label="Batch Size por GPU")
seedvr_fps_output = gr.Number(label="FPS de Saída (0 = original)", value=0)
run_seedvr_button = gr.Button("Iniciar Upscaling SeedVR", variant="primary", interactive=(seedvr_inference_server is not None))
with gr.Column(scale=1):
seedvr_video_output = gr.Video(label="Vídeo com Upscale SeedVR", interactive=False)
seedvr_status_box = gr.Textbox(label="Status", value="Aguardando...", lines=3, interactive=False)
# --- LÓGICA DE EVENTOS ---
def update_custom_guidance_visibility(preset_choice):
return gr.update(visible=(preset_choice == "Customizado"))
fp_guidance_preset.change(fn=update_custom_guidance_visibility, inputs=fp_guidance_preset, outputs=custom_guidance_group)
all_ltx_inputs = [
fp_guidance_preset, fp_guidance_scale_list, fp_stg_scale_list, fp_timesteps_list
]
generate_low_btn.click(
fn=run_generate_base_video,
inputs=[
generation_mode_input, prompt_input, neg_prompt_input, start_image, height_input, width_input,
duration_input, cfg_input, seed_input, randomize_seed,
*all_ltx_inputs
],
outputs=[low_res_video_output, app_state, post_prod_group]
)
ltx_refine_btn.click(
fn=run_ltx_refinement,
inputs=[app_state, prompt_input, neg_prompt_input, cfg_input],
outputs=[ltx_refined_video_output, app_state]
)
run_seedvr_button.click(
fn=run_seedvr_upscaling,
inputs=[app_state, seedvr_seed, seedvr_resolution, seedvr_batch_size, seedvr_fps_output],
outputs=[seedvr_video_output, seedvr_status_box]
)
if __name__ == "__main__":
demo.queue().launch(server_name="0.0.0.0", server_port=7860, debug=True, show_error=True) |